Next Article in Journal
Anti-Inflammatory Effect of Lupinalbin A Isolated from Apios americana on Lipopolysaccharide-Treated RAW264.7 Cells
Next Article in Special Issue
Utilizing a Spiro Core with Acridine- and Phenothiazine-Based New Hole Transporting Materials for Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes
Previous Article in Journal
Quantum Chemical Design Guidelines for Absorption and Emission Color Tuning of fac-Ir(ppy)3 Complexes
Previous Article in Special Issue
Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Facile One-Pot Construction of Succinimide-Fused Spiro[Pyrrolidine-2,3′-Oxindoles] via 1,3-Dipolar Cycloaddition Involving 3-Amino Oxindoles and Maleimides

The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
*
Author to whom correspondence should be addressed.
Molecules 2018, 23(3), 582; https://doi.org/10.3390/molecules23030582
Submission received: 9 February 2018 / Revised: 27 February 2018 / Accepted: 1 March 2018 / Published: 5 March 2018
(This article belongs to the Special Issue Advances in Spiro Compounds)

Abstract

:
Increasing interests have been invested in the development of synthetic strategies toward the construction of spiro[pyrrolidine-2,3′-oxindole], which is the core structural skeleton in some compounds with diverse biological activities. In this work, an efficient diastereoselective 1,3-dipolar cycloaddition reaction of azomethine ylides generated in situ from 3-amino oxindoles and aldehydes with maleimides has been described. The protocol provides a facile and efficient access to structurally diverse succinimide-fused spiro[pyrrolidine-2,3′-oxindole] compounds in good to high yields (up to 93%) with moderate to excellent diastereoselectivities (up to >95:5). The relative stereochemistry of cycloaddition products has been assigned by X-ray diffraction analysis.

1. Introduction

The spiro[pyrrolidine-2,3′-oxindole] has been identified as the core structural skeleton in some unnatural compounds with diverse biological activities [1,2,3,4,5,6]. As a subset of spiro[pyrrolidine-2,3′-oxindole], succinimide-fused spiro-[pyrrolidine-2,3′-oxindole] has been attracting more attention due to the recent discovery of some important biological activities such as anti-tumor [7], Ape1 inhibitor [8], and anti-fungal synergizer [9] (Figure 1). As a consequence, much more attention has been paid to developing synthetic strategies toward the construction of this spirocyclic structure [2,7,9,10,11,12,13,14,15,16]. Among these reported approaches, most studies have focused on 1,3-dipolar cycloaddition of azomethine ylides generated in situ via decarboxylative condensation of isatins with amino acids (Scheme 1a) [7,9,13,14,15].
Although Zhao et al. developed a 1,3-dipolar cycloaddition of azomethine ylides generated in situ from isatins and arylmethylamines with maleimides (Scheme 1b) [16], an urgent necessity is still in need to enrich the synthetic methodologies of spiro[pyrrolidine-2,3′-oxindole]. 1,3-dipolar cycloaddition of azomethine ylides derived from 3-aminooxindole with other alkenes such as nitroalkene derivatives [17,18], α and β unsaturated imines [19], and ketones [20] were investigated. However, to our best knowledge, no azomethine ylides derived from aminoindolones were used in this kind of 1,3-dipolar cycloaddition. As well, azomethine ylides have been widely investigated in synthesizing spiro[pyrrolidine-2,3′-oxindoles] [17,18,19,20,21]. Herein, we describe a facile and efficient strategy for accessing to succinimide-fused spiro[pyrrolidine-2,3′-oxindoles] by a one-pot three-component 1,3-dipolar cycloaddition reaction of azomethine ylides generated in situ from 3-amino oxindoles 1 and aldehydes 2 with maleimides 3 in the presence of triethylamine (TEA, Scheme 1c), which is a supplement to previous work.

2. Results and Discussion

We commenced our studies with the three-component reaction of 3-amino-1-methylindolin-2-one hydrochloride 1a, 2a, and N-phenylmaleimide 3a (Scheme 2) as model substrates for surveying the reaction parameters, and the results are summarized in Table 1. Initially, the reaction was performed in the presence of 1 equivalent of weak inorganic base NaHCO3 and the desired product 4a could be obtained in 60% yield with 74:26 diasteromeric excess (dr, Table 1, entry 1). Other two weak inorganic bases, K2CO3 and KF/Al2O3, did not provide better results (Table 1, entries 2 and 3). When the strong base NaOH was employed, only trace product was detected (Table 1, entry 4). A further study showed that organic base TEA could afford 4a in 68% yield and 83:17 dr (Table 1, entry 6), and prolonging reaction time would benefit the reaction yield (Table 1, entry 7). Subsequently, a series of solvents were also screened. As seen from Table 1, with chlorinated alkane-type solvents, ether-type solvents, alcohol-type solvents, toluene or acetonitrile, the current strategy could afford the desired product 4a in various yields and diastereoselectivities (Table 1, entries 8–16). In terms of diastereoselectivity, CH2Cl2 was selected as the optimal reaction solvent (Table 1, entry 8). When the reaction temperature was increased to reflux, up to 86% yield could be obtained without erosion in diastereoselectivity (Table 1, entry 17). Scaling up reaction did not result in the loss of the reactivity and diastereoselectivity (Table 1, entry 18).
Under optimum conditions, a variety of aldehyde substrates 2 were firstly investigated (Scheme 3). As shown in Table 2, all tested aldehydes underwent the reaction smoothly to afford the corresponding products with good to excellent results. Both electron-withdrawing and electron-donating substituents on the aryl ring of R2 groups could be well tolerated (Table 2, entries 2–19). It was shown that the positions of the substituents on the aryl ring of R2 groups seem to play a significant influence on the reaction results. The ortho- and para-substituents exhibit more beneficial impact on reaction yield and diastereoselectivity than meta-substituents (Table 2, entries 2 and 4 vs. entry 3; entries 5 and 7 vs. entry 6; entries 9 and 11 vs. entry 10; entries 15 and 17 vs. entry 16; entry 18 vs. entry 19). The aldehyde adorned with 2-naphthyl group could be well performed, affording 93% yield and 94:6 dr (Table 2, entry 20). Notably, as demonstrated by the examples with 2-furyl and 2-thienyl substituents, heteroaryl aldehydes 2u and 2v could be also well accommodated, giving 94:6 and 93:7 dr values, respectively (Table 2, entries 21 and 22). In addition, aliphatic aldehydes could be tolerated albeit with moderate diastereoselectivities (Table 2, entries 23 and 24).
To extend the utility of this procedure, we then screened a series of 3-amino oxindoles 1 and maleimides 3 (Scheme 4). As can be seen from Table 3, the electronic property of the substituent R1 on aromatic ring of 3-amino oxindole seems to show significant influence on the diastereoselectivity of the reaction, and electron-donating group gave better dr value than electron-withdrawing group (Table 3, entry 1 vs. entry 3, entry 2 vs. entry 4). Additionally, the N-protecting group R of 3-amino oxindole has also been found to have a major impact on the reaction result. When methyl-substituted 1a was replaced with benzyl-substituted 1e, the diastereoselectivity of the reaction was decreased from 88:12 to 83:17 (Table 2, entry 1 vs. Table 3, entry 6). Unprotected 1d came to the worst results (Table 3, entry 5). Next, to further validate the compatibility of this strategy, the scope of maleimides 3 was also explored. It was found that substrates 3 with either electron-withdrawing or electron-donating substituents R3 could be amenable to this reaction system (Table 3, entries 8–13).
The relative configuration of 1,3-dipolar cycloaddition product 4k was established by X-ray diffraction analysis (Figure 2) [22], the relevant data shown in Supplementary Materials and the relative configurations of other succinimide-fused spiro[pyrrolidine-2,3′-oxindole] products were assigned by analogy.

3. Materials and Methods

3.1. Experimental

All reactions were carried out in reaction tubes with magnetic stirring and no special precautions were taken to exclude air from the reaction vessels. TLC was performed on pre-coated silica gel plates (Qingdao Marine Chemistry Company, Qingdao, China). Column chromatography was carried out with silica gel (200–300 mesh, Qingdao Marine Chemistry Company, Qingdao, China) eluting with ethyl acetate and petroleum ether. NMR spectra were recorded with a Bruker Avance II 400 NMR spectrometer (Bruker Biospin, Fällanden, Switzerland). Chemical shifts are reported in parts per million (ppm) downfield from TMS (Aladdin, Shanghai, China) with the solvent resonance as the internal standard. Coupling constants (J) are reported in Hz and refer to apparent peak multiplications. High Resolution Mass Spectrometer (HRMS) was recorded on a Bruker micrOTOF-Q II mass spectrometer (Bruker Daltonics Inc., Billerica, Massachusetts, MA, USA). X-ray diffraction analysis was recorded with a Bruker Apex-II spectrometer (Bruker AXS, Karlsruhe, Germany).

3.2. General Procedure forthe Preparation of Succinimide-Fused Spiro[Pyrrolidine-2,3′-Oxindoles] 4 and 5

3-Amino oxindoles 1 (0.2 mmol), aldehydes 2 (0.2 mmol) and TEA (0.2 mmol) were put into an ordinary test tube equipped with a magnetic stirring bar and then sealed in the air. Then, CH2Cl2 (1 mL) was added. After being stirred at room temperature for 30 min, maleimides 3 (0.22 mmol) and CH2Cl2 (1 mL) were added and the resulting mixture was stirred at reflux for 24 h. The crude reaction mixture was directly purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 7:1–3:1) to give the correspondingsuccinimide-fused spiro[pyrrolidine-2,3′-oxindole] products 4 or 5. All the products were confirmed by 1H-NMR, 13C-NMR and HRMS spectroscopic analysis. The diastereomeric ratio was determined by crude NMR analysis.
1-Methyl-3′,5′-diphenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4a). White solid, 71.9 mg, 85% yield. 88:12 dr. 1H-NMR (400 MHz, CDCl3): δ 7.56 (d, J = 7.2 Hz, 2H), 7.48–7.43 (m, 2H), 7.41–7.36 (m, 4H), 7.36–7.31 (m, 2H), 7.24 (d, J = 7.4 Hz, 2H), 7.14 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 5.83 (d, J = 8.8 Hz, 1H), 4.03 (t, J = 8.4 Hz, 1H), 3.55 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.8, 174.1, 173.5, 143.7, 138.0, 130.2, 129.1, 128.5, 128.4, 128.3, 127.3, 127.0, 126.2, 125.4, 122.8, 108.4, 68.0, 60.8, 50.9, 49.5, 26.2; HRMS (ESI): m/z calcd for C26H21NaN3O3+ [M + Na]+ 446.1481, found 446.1493.
3′-(4-Fluorophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4b). White solid, 70.6 mg, 80% yield. 81:19 dr. 1H-NMR (400 MHz, CDCl3): δ 7.51 (dd, J = 7.7, 5.8 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.38 (dd, J = 13.7, 7.0 Hz, 2H), 7.32 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H), 7.06 (t, J = 8.4 Hz, 2H), 6.89 (d, J = 7.8 Hz, 1H), 5.80 (d, J = 8.7 Hz, 1H), 3.97 (t, J = 8.3 Hz, 1H), 3.53 (d, J = 7.9 Hz, 1H), 3.23 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.7, 174.2, 173.5, 143.7, 130.3, 129.2, 128.9, 128.8, 128.6, 126.9, 126.1, 125.3, 122.8, 115.4, 115.2, 108.5, 67.9, 60.0, 50.8, 49.4, 26.2; HRMS (ESI): m/z calcd for C26H20FN3NaO3+ [M + Na]+ 442.1567, found 442.1579.
3′-(3-Fluorophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4c). White solid, 61.8 mg, 70% yield. 62:38 dr. 1H-NMR (400 MHz, CDCl3): δ 7.45 (t, J = 7.6 Hz, 2H), 7.39 (dd, J = 15.4, 7.8 Hz, 3H), 7.32 (t, J = 9.0 Hz, 3H), 7.22 (d, J = 7.6 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.00 (dd, J = 10.4, 5.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 5.81 (d, J = 8.8 Hz, 1H), 4.01 (t, J = 8.4 Hz, 1H), 3.54 (d, J = 7.9 Hz, 1H), 3.24 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.7, 174.0, 173.4, 143.7, 130.3, 129.9, 129.2, 128.7, 127.0, 126.2, 123.2, 122.9, 115.1, 114.1, 113.9, 108.5, 67.9, 60.1, 50.8, 49.4, 26.2; HRMS (ESI): m/z calcd for C26H20FN3NaO3+[M + Na]+ 442.1567, found 442.1576.
3′-(2-Fluorophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4d). White solid, 79.4 mg, 90% yield. 92:8 dr. 1H-NMR (400 MHz, CDCl3): δ 7.57 (t, J = 7.1 Hz, 1H), 7.43–7.38 (m, 4H), 7.30 (d, J = 5.9 Hz, 1H), 7.20 (d, J = 7.6 Hz, 2H), 7.16–7.08 (m, 4H), 6.89 (d, J = 7.8 Hz, 1H), 6.01 (d, J = 8.4 Hz, 1H), 4.13 (t, J = 8.2 Hz, 1H), 3.61 (d, J = 8.0 Hz, 1H), 3.24 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 174.0, 173.5, 143.8, 130.3, 129.5, 128.6, 127.0, 126.9, 126.7, 126.2, 122.9, 115.2, 115.0, 108.5, 67.8, 54.7, 51.1, 48.0, 26.2; HRMS (ESI): m/z calcd for C26H20FN3NaO3+ [M + Na]+ 442.1567, found 442.1573.
3′-(4-Chlorophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4e). White solid, 72.2 mg, 79% yield. 81:19 dr. 1H-NMR (400 MHz, CDCl3): δ 7.47 (t, J = 8.4 Hz, 5H), 7.38–7.30 (m, 4H), 7.24 (d, J = 7.5 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 5.80 (d, J = 8.7 Hz, 1H), 4.00 (t, J = 8.3 Hz, 1H), 3.56 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.7, 174.0, 173.4, 143.7, 136.5, 133.9, 131.7, 130.3, 129.2, 128.7, 128.6, 126.9, 126.1, 125.3, 122.9, 108.5, 67.9, 60.1, 50.8, 49.4, 26.2; HRMS (ESI): m/z calcd for C26H20ClN3NaO3+ [M + Na]+ 480.1091, found 480.1090.
3′-(3-Chlorophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4f). White solid, 64.9 mg, 71% yield. 76:24 dr. 1H-NMR (400 MHz, CDCl3): δ 7.58 (s, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 3H), 7.34 (dd, J = 14.0, 7.1 Hz, 3H), 7.24 (d, J = 7.6 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 5.80 (d, J = 8.8 Hz, 1H), 4.03 (t, J = 8.4 Hz, 1H), 3.54 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 174.0, 173.3, 143.7, 140.3, 134.4, 130.3, 129.7, 129.2, 128.7, 128.4, 127.1, 126.7, 126.2, 125.9, 122.9, 108.4, 68.0, 60.1, 50.7, 49.4, 26.2; HRMS (ESI): m/z calcd for C26H20ClN3NaO3+ [M + Na]+ 480.1091, found 480.1109.
3′-(2-Chlorophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4g). White solid, 75.9 mg, 83% yield. 81:19 dr. 1H-NMR (400 MHz, CDCl3): δ 7.69 (dd, J = 5.6, 3.8 Hz, 1H), 7.48–7.44 (m, 2H), 7.42 (d, J = 7.6 Hz, 3H), 7.40–7.34 (m, 2H), 7.33 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 7.5 Hz, 2H), 7.14 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 6.11 (d, J = 8.4 Hz, 1H), 4.31 (t, J = 8.1 Hz, 1H), 3.62 (d, J = 8.0 Hz, 1H), 3.26 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 173.8, 173.5, 143.8, 136.0, 134.0, 130.3, 129.4, 129.1, 129.0, 128.5, 127.0, 126.8, 126.7, 126.2, 122.9, 108.5, 67.6, 57.6, 51.0, 47.0, 26.2; HRMS (ESI): m/z calcd for C26H20ClN3NaO3+ [M + Na]+ 480.1091, found 480.1116.
3′-(3,4-Dichlorophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4h). White solid, 83.5 mg, 85% yield. 86:14 dr. 1H-NMR (400 MHz, CDCl3): δ 7.64 (s, 1H), 7.46 (dd, J = 15.9, 7.9 Hz, 3H), 7.42–7.35 (m, 3H), 7.35–7.29 (m, 1H), 7.22 (d, J = 7.6 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 5.76 (dd, J = 8.6, 3.2 Hz, 1H), 3.99 (t, J = 8.3 Hz, 1H), 3.53 (d, J = 7.9 Hz, 1H), 3.23 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.5, 173.9, 173.2, 143.7, 138.5, 132.1, 130.4, 129.3, 128.9, 128.8, 127.0, 126.2, 124.9, 122.9, 108.5, 67.9, 59.6, 50.7, 49.3, 26.2; HRMS (ESI): m/z calcd for C26H20Cl2N3O3+ [M + H]+ 492.0882, found 492.0905.
3′-(4-Bromophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4i). White solid, 81.2 mg, 81% yield. >95:5 dr. 1H-NMR (400 MHz, CDCl3): δ 7.47 (dd, J = 16.4, 8.1 Hz, 4H), 7.39 (dd, J = 12.5, 5.4 Hz, 4H), 7.31 (d, J = 7.3 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 5.77 (d, J = 7.4 Hz, 1H), 3.98 (t, J = 8.3 Hz, 1H), 3.55 (d, J = 7.9 Hz, 1H), 3.23 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.7, 173.9, 173.3, 143.7, 137.0, 131.5, 130.3, 129.2, 129.0, 128.6, 126.9, 126.1, 125.3, 122.9, 122.1, 108.4, 67.9, 60.2, 50.9, 49.3, 26.2; HRMS (ESI): m/z calcd for C26H20BrN3NaO3+ [M + Na]+ 524.0586, found 524.0567.
3′-(3-Bromophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4j).White solid, 65.1 mg, 65% yield. 67:33 dr. 1H-NMR (400 MHz, CDCl3): δ 7.72 (s, 1H), 7.46 (t, J = 7.7 Hz, 4H), 7.40 (t, J = 7.1 Hz, 2H), 7.34 (d, J = 7.4 Hz, 1H), 7.24 (dd, J = 7.5, 4.7 Hz, 3H), 7.13 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 5.78 (d, J = 8.9 Hz, 1H), 4.02 (t, J = 8.4 Hz, 1H), 3.53 (d, J = 7.9 Hz, 1H), 3.24 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 173.9, 173.2, 143.7, 140.6, 131.4, 130.3, 130.0, 129.9, 129.2, 128.6, 127.1, 126.4, 126.2, 125.0, 122.9, 108.4, 68.0, 60.1, 50.7, 49.4, 26.2; HRMS (ESI): m/z calcd for C26H20BrN3NaO3+ [M + Na]+ 524.0586, found 524.0570.
3′-(2-Bromophenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4k). White solid, 90.2 mg, 90% yield. 93:7 dr. 1H-NMR (400 MHz, CDCl3): δ 7.70–7.65 (m, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 7.7 Hz, 3H), 7.39–7.29 (m, 3H), 7.19 (d, J = 7.5 Hz, 3H), 7.13 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.07 (d, J = 8.3 Hz, 1H), 4.34 (t, J = 8.2 Hz, 1H), 3.60 (d, J = 8.0 Hz, 1H), 3.25 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 173.8, 173.5, 143.8, 137.6, 132.7, 130.3, 129.4, 129.1, 128.5, 127.4, 127.2, 126.8, 126.1, 124.3, 122.9, 108.5, 67.7 , 59.9, 50.8, 46.9, 26.2; HRMS (ESI): m/z calcd for C26H20BrN3NaO3+ [M + Na]+ 524.0586, found 524.0561.
1-Methyl-3′-(4-nitrophenyl)-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4l). White solid, 79.6 mg, 85% yield. >95:5 dr. 1H-NMR (400 MHz, CDCl3): δ 8.24 (d, J = 8.6 Hz, 2H), 7.72 (d, J = 8.6 Hz, 2H), 7.47 (dd, J = 12.9, 5.2 Hz, 2H), 7.41 (dd, J = 7.6, 2.2 Hz, 2H), 7.32 (d, J = 7.3 Hz, 1H), 7.23 (d, J = 7.6 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 5.94 (d, J = 8.5 Hz, 1H), 4.06 (t, J = 8.3 Hz, 1H), 3.62 (d, J = 8.0 Hz, 1H), 3.26 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.5, 173.8, 173.1, 147.7, 145.6, 143.7, 131.4, 130.5, 129.3, 128.9, 128.1, 126.8, 126.1, 125.0, 123.6, 123.5, 123.1, 108.7, 68.0, 60.0, 50.7, 49.5, 26.3; HRMS (ESI): m/z calcd for C26H20N4NaO5+ [M + Na]+ 491.1331, found 491.1331.
1-Methyl-3′-(3-nitrophenyl)-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4m). White solid; 77.7 mg, 83% yield; >95:5 dr; 1H-NMR (400 MHz, CDCl3): δ 8.43 (s, 1H), 8.17 (d, J = 7.9 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.40 (dd, J = 7.3, 3.6 Hz, 2H), 7.33 (d, J = 7.3 Hz, 1H), 7.23 (d, J = 7.7 Hz, 2H), 7.15 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 7.7 Hz, 1H), 5.93 (d, J = 8.5 Hz, 1H), 4.04 (t, J = 8.2 Hz, 1H), 3.60 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 174.0, 173.2, 148.4 , 143.7, 140.4, 133.9, 130.5, 129.4, 129.3, 129.2, 128.9, 126.9, 126.4, 126.3, 123.3, 123.1, 122.0, 108.6, 67.9, 59.9, 50.7, 49.4, 26.2; HRMS (ESI): m/z calcd for C26H20N4NaO5+ [M + Na]+ 491.1331, found 491.1332.
1-Methyl-3′-(2-nitrophenyl)-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4n). White solid; 80.5 mg, 86% yield; 94:6 dr; 1H-NMR (400 MHz, CDCl3): δ 8.13 (d, J = 8.1 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.44–7.38 (m, 3H), 7.38–7.32 (m, 3H), 7.17 (d, J = 7.6 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.23 (dd, J = 8.2, 2.8 Hz, 1H), 4.51 (t, J = 8.2 Hz, 1H), 3.60 (d, J = 8.1 Hz, 1H), 3.22 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.5, 174.2, 173.4, 148.7, 143.8, 134.5, 133.4, 130.4, 129.2, 128.8, 128.7, 128.1, 126.7, 126.1, 125.3, 122.8, 108.6, 67.7, 56.9, 50.7, 48.5, 26.2; HRMS (ESI): m/z calcd for C26H20N4NaO5+ [M + Na]+ 491.1331, found 491.1350.
1-Methyl-5′-phenyl-3′-(p-tolyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4o). White solid; 68.2 mg, 78% yield; 82:18 dr; 1H-NMR (400 MHz, CDCl3): δ 7.43 (dd, J = 14.0, 6.1 Hz, 3H), 7.38 (d, J = 3.3 Hz, 1H), 7.35 (d, J = 3.5 Hz, 4H), 7.23 (d, J = 7.7 Hz, 2H), 7.12 (dd, J = 8.7, 5.2 Hz, 2H), 6.88 (d, J = 8.0 Hz, 1H), 5.76 (d, J = 8.9 Hz, 1H), 4.00 (t, J = 8.4 Hz, 1H), 3.50 (d, J = 7.9 Hz, 1H), 3.23 (s, 3H), 2.36 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.8, 174.2, 173.5, 143.8, 138.0, 137.9, 130.2, 129.1, 128.5, 128.3, 128.0, 127.1, 126.2, 124.5, 122.8, 108.4, 68.1 , 60.7, 50.9, 49.5, 26.2, 21.6; HRMS (ESI): m/z calcd for C27H23N3NaO3+ [M + Na]+ 460.1637, found 460.1658.
1-Methyl-5′-phenyl-3′-(m-tolyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4p). White solid; 62.1 mg, 71% yield; 75:25 dr; 1H-NMR (400 MHz, CDCl3): δ 7.46–7.40 (m, 4H), 7.37 (d, J = 7.4 Hz, 2H), 7.34 (d, J = 7.3 Hz, 1H), 7.24 (d, J = 7.5 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 7.12 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 5.78 (d, J = 8.7 Hz, 1H), 3.98 (t, J = 8.4 Hz, 1H), 3.52 (d, J = 7.9 Hz, 1H), 3.23 (s, 3H), 2.35 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.8, 174.2, 173.6, 143.7, 137.9, 134.9, 130.2, 129.2, 129.1, 128.5, 127.2, 127.0, 126.7, 126.2, 125.5, 122.8, 108.4, 67.9, 60.6, 51.0, 49.5, 26.2, 21.3; HRMS (ESI): m/z calcd for C27H24N3O3+ [M + H]+ 438.1818, found 438.1825.
1-Methyl-5′-phenyl-3′-(o-tolyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4q). White solid; 69.9 mg, 80% yield; 77:23 dr; 1H-NMR (400 MHz, CDCl3): δ 7.75–7.68 (m, 1H), 7.40 (t, J = 7.7 Hz, 4H), 7.36–7.30 (m, 1H), 7.21 (d, J = 7.8 Hz, 3H), 7.13 (t, J = 8.4 Hz, 3H), 6.90 (d, J = 7.7 Hz, 1H), 5.94 (d, J = 9.0 Hz, 1H), 4.13 (t, J = 8.4 Hz, 1H), 3.53 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H), 2.54 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.8, 173.9, 173.5, 143.8, 136.6, 130.3, 130.2, 129.1, 128.5, 127.8, 127.3, 126.2, 125.8, 125.1, 122.8, 108.4, 67.8, 57.1, 50.9, 47.2, 26.2, 19.5; HRMS (ESI): m/z calcd for C27H23N3NaO3+ [M + Na]+ 460.1637, found 460.1646.
3′-(4-Methoxyphenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4r). White solid; 76.1 mg, 84% yield; 83:17 dr; 1H-NMR (400 MHz, CDCl3): δ 7.46 (t, J = 7.7 Hz, 4H), 7.41–7.35 (m, 3H), 7.28–7.24 (m, 2H), 7.13 (t, J = 7.6 Hz, 1H), 6.94–6.88 (m, 3H), 5.78 (d, J = 8.8 Hz, 1H), 3.99 (t, J = 8.5 Hz, 1H), 3.82 (s, 3H), 3.53 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H); 13C-NMR (100MHz, CDCl3): δ 178.8, 174.2, 173.5, 143.8, 138.0, 137.9, 129.1, 128.5, 128.3, 128.0, 127.1, 126.2, 124.5, 122.8, 108.4, 68.1, 60.7, 50.9, 49.5, 26.2, 21.6; HRMS (ESI): m/z calcd for C27H23N3NaO4+ [M + Na]+ 476.1586, found 476.1597.
3′-(3-Methoxyphenyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4s). White solid; 68.9 mg, 76% yield; 80:20 dr; 1H-NMR (400 MHz, CDCl3): δ 7.48–7.42 (m, 2H), 7.41–7.30 (m, 4H), 7.27–7.22 (m, 2H), 7.14 (dd, J = 12.9, 5.2 Hz, 3H), 6.89 (d, J = 7.9 Hz, 1H), 6.86 (dd, J = 7.9, 2.2 Hz, 1H), 5.79 (d, J = 8.9 Hz, 1H), 4.02 (t, J = 8.4 Hz, 1H), 3.81 (s, 3H), 3.53 (d, J = 7.9 Hz, 1H), 3.25 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.7, 174.0, 173.5, 143.7, 139.8, 130.2, 129.4, 129.1, 128.5, 127.1, 126.7, 126.2, 125.3, 122.8, 119.8, 108.4, 68.0, 60.6, 55.2, 50.9, 49.4, 26.2; HRMS (ESI): m/z calcd for C27H23N3NaO4+ [M + Na]+ 476.1586, found 476.1605.
1-Methyl-3′-(naphthalen-1-yl)-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4t). White solid; 88.0 mg, 93% yield; 94:6 dr; 1H-NMR (400 MHz, CDCl3): δ 8.26 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.41 (dd, J = 14.6, 7.3 Hz, 5H), 7.18–7.12 (m, 3H), 6.93 (d, J = 7.9 Hz, 1H), 6.57 (d, J = 8.5 Hz, 1H), 4.32 (t, J = 8.2 Hz, 1H), 3.64 (d, J = 7.8 Hz, 1H), 3.28 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.7, 173.6, 173.5, 143.8,130.3, 129.1, 129.0, 128.6, 128.5, 127.1, 126.5, 126.2, 125.8, 125.2, 122.9, 108.5, 67.7, 56.5, 51.1, 48.4, 26.2; HRMS (ESI): m/z calcd for C30H23N3NaO3+ [M + Na]+ 496.1637, found 496.1651.
3′-(Furan-2-yl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4u). White solid; 57.8 mg, 70% yield; 94:6 dr; 1H-NMR (400 MHz, CDCl3): δ 7.48 (d, J = 8.0 Hz, 3H), 7.39 (dd, J = 16.4, 7.7 Hz, 3H), 7.32 (d, J = 7.5 Hz, 2H), 7.10 (t, J = 7.6 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.43 (d, J = 3.1 Hz, 1H), 6.40–6.36 (m, 1H), 5.78 (d, J = 8.8 Hz, 1H), 4.02 (t, J = 8.4 Hz, 1H), 3.51 (d, J = 8.0 Hz, 1H), 3.21 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.3, 174.4, 173.5, 151.2, 143.8, 142.7, 131.9, 130.3, 129.2, 128.7, 126.9, 126.3, 124.8, 122.8, 110.4, 108.4, 108.1, 67.9, 55.8, 50.7, 48.6, 26.2; HRMS (ESI): m/z calcd for C24H19N3NaO4+ [M + Na]+ 436.1273, found 436.1290.
1-Methyl-5′-phenyl-3′-(thiophen-2-yl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4v). White solid; 67.8 mg, 79% yield; 93:7 dr; 1H-NMR (400 MHz, CDCl3): δ 7.47 (t, J = 7.6 Hz, 2H), 7.39 (dd, J = 7.5, 5.4 Hz, 2H), 7.34 (d, J = 7.6 Hz, 1H), 7.29 (s, 1H), 7.28 (d, J = 2.1 Hz, 2H), 7.22 (d, J = 3.2 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.08-7.04 (m, 1H), 6.89 (d, J = 7.7 Hz, 1H), 6.11 (d, J = 9.1 Hz, 1H), 4.02 (t, J = 8.5 Hz, 1H), 3.49 (d, J = 1.7 Hz, 1H), 3.24 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.5, 173.8, 173.4, 143.7, 142.7, 131.8, 130.3, 129.2, 128.6, 127.3, 127.2, 126.7, 126.4, 125.5, 125.0, 124.8, 122.8, 108.4, 67.8, 57.1, 50.5, 49.3, 26.2; HRMS (ESI): m/z calcd for C24H19N3NaO3S+ [M + Na]+ 452.1045, found 452.1066.
3′-Benzyl-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4w). White solid; 66.5 mg, 76% yield; 77:23 dr; 1H-NMR (400 MHz, CDCl3): δ 7.56 (t, J = 7.6 Hz, 2H), 7.46 (dd, J = 12.7, 7.4 Hz, 4H), 7.31 (t, J = 7.2 Hz, 5H), 7.23 (dd, J = 13.3, 6.6 Hz, 2H), 6.82 (d, J = 7.7 Hz, 1H), 4.87–4.78 (m, 1H), 3.77 (t, J = 7.8 Hz, 1H), 3.57 (d, J = 8.0 Hz, 1H), 3.29–3.23 (m, 1H), 3.15 (s, 3H), 2.80–2.71 (m, 1H); 13C-NMR (100 MHz, CDCl3): δ 178.5, 175.4, 173.9, 143.6, 139.4, 131.9, 130.1, 129.4, 129.1, 128.8, 128.7, 128.4, 126.5, 126.3, 122.8, 108.4, 67.7, 58.8, 51.7, 47.6, 38.2, 26.1; HRMS (ESI): m/z calcd for C27H23N3NaO3+ [M + Na]+ 460.1637, found 460.1647.
3′-(tert-Butyl)-1-methyl-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (4x). White solid; 58.1 mg; 72% yield; 72:28 dr; 1H-NMR (400 MHz, CDCl3): δ 7.50 (d, J = 7.7 Hz, 3H), 7.37–7.30 (m, 4H), 6.87 (d, J = 7.9 Hz, 2H), 4.38 (d, J = 7.9 Hz, 1H), 3.75 (t, J = 8.0 Hz, 1H), 3.58 (d, J = 8.1 Hz, 1H), 3.22 (s, 3H), 1.19 (s, 9H); 13C-NMR (100 MHz, CDCl3): δ 178.8, 176.3, 173.5, 143.6, 130.0, 129.3, 128.8, 126.5, 126.2, 122.8, 108.4, 68.4, 67.3, 52.2, 47.0, 33.2, 29.7, 26.2; HRMS (ESI): m/z calcd for C24H25N3NaO3+ [M + Na]+ 426.1794, found 426.1808.
5-Methoxy-1-methyl-3′,5′-diphenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5a). White solid; 74.3 mg; 82% yield; 83:17 dr; 1H-NMR (400 MHz, CDCl3): δ 7.54 (d, J = 7.5 Hz, 2H), 7.42 (dd, J = 14.5, 6.9 Hz, 3H), 7.39–7.32 (m, 3H), 7.23 (d, J = 7.8 Hz, 2H), 6.94 (s, 1H), 6.89 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.80 (d, J = 8.6 Hz, 1H), 3.99 (t, J = 8.3 Hz, 1H), 3.76 (s, 3H), 3.55 (d, J = 7.9 Hz, 1H), 3.21 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 174.1, 173.4, 155.9, 138.0, 137.1, 129.1, 128.5, 128.3, 128.2, 127.3, 127.0, 126.2, 114.5, 114.3, 108.7, 68.2, 60.9, 55.8, 51.1, 49.6, 26.2; HRMS (ESI): m/z calcd for C27H23N3NaO4+ [M + Na]+ 476.1586, found 476.1605.
5-Methoxy-1-methyl-3′-(4-nitrophenyl)-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5b). White solid; 79.7 mg; 80% yield; 82:18 dr; 1H-NMR (400 MHz, CDCl3): δ 8.26 (dd, J = 8.4, 4.9 Hz, 3H), 7.88 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 7.7 Hz, 2H), 7.42 (d, J = 7.2 Hz, 1H), 6.91 (d, J = 8.4 Hz, 3H), 6.79 (d, J = 8.5 Hz, 1H), 5.63 (d, J = 6.8 Hz, 1H), 3.95 (t, J = 10.8 Hz, 1H), 3.86 (s, 3H), 3.57 (dd, J = 10.0, 7.0 Hz, 1H), 3.17 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 177.29 (s), 175.51 (s), 173.89 (s), 156.90 (s), 148.76 (s), 137.30 (s), 131.74 (s), 130.47 (s), 129.04 (d, J = 31.4 Hz), 128.76 (s), 127.66 (s), 126.87 (s), 126.41 (s), 123.94 (s), 114.48 (s), 111.45 (s), 109.36 (s), 69.20 (s), 61.17 (s), 55.97 (s), 53.48 (s), 52.95 (s), 26.26 (s). HRMS (ESI): m/z calcd for C27H22N4NaO6+ [M + Na]+ 521.1437, found 521.1437.
5-Chloro-1-methyl-3′,5′-diphenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5c). White solid; 77.7 mg; 85% yield; 75:25 dr; 1H-NMR (400 MHz, CDCl3): δ 7.53 (d, J = 7.2 Hz, 3H), 7.39-7.31 (m, 7H), 7.21 (d, J = 7.3 Hz, 3H), 5.76 (d, J = 8.8 Hz, 1H), 4.02 (t, J = 8.3 Hz, 1H), 3.53 (d, J = 7.9 Hz, 1H), 3.22 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.4, 174.0, 173.3, 142.3, 137.7, 130.1, 129.2, 128.8, 128.7, 128.6, 128.4, 128.3, 127.4, 127.3, 126.1, 109.4, 67.9, 60.9, 51.0, 49.4, 26.3; HRMS (ESI): m/z calcd for C26H20ClN3NaO3+ [M + Na]+ 480.1091, found 480.1103.
5-Chloro-1-methyl-3′-(4-nitrophenyl)-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5d). White solid; 82.3 mg; 82% yield; 78:22 dr; 1H-NMR (400 MHz, CDCl3): δ 8.22 (d, J = 7.9 Hz, 2H), 7.84 (d, J = 7.7 Hz, 2H), 7.52–7.43 (m, 4H), 7.41 (d, J = 6.3 Hz, 2H), 6.78 (t, J = 8.4 Hz, 2H), 5.56 (d, J = 6.1 Hz, 1H), 3.85 (d, J = 9.9 Hz, 1H), 3.54 (t, J = 9.8 Hz, 1H), 3.14 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 177.2, 175.5, 173.9, 148.5, 147.6, 142.5, 130.3, 130.2, 129.3, 129.0, 127.7, 127.2, 126.8, 126.7, 124.6, 124.0, 110.0, 68.8, 61.2, 53.4, 52.8, 26.3; HRMS (ESI): m/z calcd for C26H19ClN4NaO5+ [M + Na]+ 525.0942, found 525.0962.
3′,5′-Diphenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5e). White solid; 55.6 mg; 68% yield; 69:31 dr; 1H-NMR (400 MHz, DMSO-d6): δ 10.46 (s, 1H), 7.44 (d, J = 26.8 Hz, 6H), 7.24 (d, J = 36.5 Hz, 8H), 5.53 (s, 1H), 4.27 (s, 1H), 3.88 (s, 1H); 13C-NMR (100 MHz, DMSO-d6): δ 181.3, 174.9, 174.3, 142.8, 140.0, 129.6, 129.4, 128.2, 128.0, 127.7, 127.4,127.3, 121.5, 109.8, 68.1, 60.6, 51.8, 50.4; HRMS (ESI): m/z calcd for C25H19N3NaO3+ [M + Na]+ 432.1324, found 432.1341.
1-Benzyl-3′,5′-diphenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5f). White solid; 79.9 mg; 80% yield; 83:17 dr; 1H-NMR (400 MHz, DMSO-d6): δ 7.50 (s, 5H), 7.42–7.18 (m, 12H), 7.00 (s, 1H), 6.85 (s, 1H), 5.60 (s, 1H), 4.90 (s, 2H), 3.94 (s, 1H), 3.57 (s, 1H); 13C-NMR (100 MHz, DMSO-d6): δ 179.4, 174.8, 174.1, 143.2, 139.9, 136.7, 133.3, 129.7, 129.4, 129.1, 129.0, 128.8, 128.2, 128.0, 127.7, 127.4, 127.2, 122.3, 109.4, 68.0, 60.8, 52.1, 50.4, 42.9; HRMS (ESI): m/z calcd for C32H25N3NaO3+ [M + Na]+ 522.1794, found 522.1799.
1-Benzyl-3′-(4-nitrophenyl)-5′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5g). White solid; 88.2 mg; 81% yield; 82:18 dr; 1H-NMR (400 MHz, DMSO-d6): δ 8.22 (d, J = 7.9 Hz, 2H), 7.85 (d, J = 7.9 Hz, 2H), 7.48 (d, J = 6.8 Hz, 2H), 7.41 (s, 3H), 7.37–7.32 (m, 2H), 7.30–7.21 (m, 5H), 7.04 (t, J = 6.8 Hz, 1H), 6.88 (d, J = 7.2 Hz, 1H), 5.05–4.85 (m, 2H), 4.70 (s, 1H), 4.13 (t, J = 7.7 Hz, 1H), 3.66 (d, J = 7.4 Hz, 1H); 13C-NMR (100 MHz, DMSO-d6): δ 179.3, 174.9, 174.0, 148.3, 147.2, 143.2, 136.6, 129.8, 129.5, 129.2, 129.1, 128.9, 127.9, 127.8, 127.4, 127.1, 127.0, 123.4, 122.5, 109.6, 68.0, 60.1, 52.2, 50.5, 43.0; HRMS (ESI): m/z calcd for C32H24N4NaO5+ [M + Na]+ 567.1644, found 567.1646.
5′-(4-Chlorophenyl)-1-methyl-3′-phenyl-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5h). White solid; 60.3 mg; 66% yield; 67:33 dr; 1H-NMR (400 MHz, DMSO-d6): δ 7.55 (d, J = 7.9 Hz, 3H), 7.47 (d, J = 7.1 Hz, 3H), 7.28 (d, J = 7.1 Hz, 2H), 7.23 (d, J = 7.9 Hz, 3H), 7.01 (d, J = 8.2 Hz, 2H), 5.54 (d, J = 6.1 Hz, 1H), 3.90 (t, J = 8.1 Hz, 1H), 3.50 (d, J = 7.6 Hz, 1H), 3.14 (s, 3H); 13C-NMR (100 MHz, DMSO-d6): δ 179.1, 174.7, 174.0, 144.4, 139.9, 133.2, 131.6, 129.7, 129.5, 129.1, 128.2, 127.9, 127.7, 127.1, 127.0, 122.2, 108.7, 67.9, 60.7, 51.8, 50.5, 26.3; HRMS (ESI): m/z calcd for C26H20ClN3NaO3+ [M + Na]+ 480.1091, found 480.1110.
5′-(4-Chlorophenyl)-1-methyl-3′-(4-nitrophenyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5i). White solid; 81.3 mg; 81% yield; 82:18 dr; 1H-NMR (400 MHz, CDCl3): δ 8.22 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 7.42 (t, J = 3.3 Hz, 2H), 7.28 (dd, J = 14.0, 7.8 Hz, 2H), 7.15 (dd, J = 16.8, 8.2 Hz, 3H), 6.91 (d, J = 7.8 Hz, 1H), 5.91 (d, J = 8.5 Hz, 1H), 4.03 (t, J = 8.2 Hz, 1H), 3.59 (d, J = 8.0 Hz, 1H), 3.24 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.5, 173.6, 172.9, 147.7, 145.5, 143.7, 134.5, 130.6, 129.9, 129.5, 129.4, 128.1, 128.0, 127.2, 126.6, 125.0, 123.6, 123.0, 108.7, 68.0, 60.0, 50.8, 49.5, 26.3; HRMS (ESI): m/z calcd for C26H19ClN4NaO5+ [M + Na]+ 525.0942, found 525.0964.
5′-(3-Chlorophenyl)-1-methyl-3′-(4-nitrophenyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5j). White solid; 80.3 mg; 80% yield; 81:19 dr; 1H-NMR (400 MHz, CDCl3): δ 8.24 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H), 7.46–7.35 (m, 3H), 7.28 (dd, J = 12.9, 4.8 Hz, 2H), 7.21–7.11 (m, 2H), 6.93 (d, J = 7.8 Hz, 1H), 5.94 (d, J = 8.5 Hz, 1H), 4.06 (t, J = 8.2 Hz, 1H), 3.61 (d, J = 8.0 Hz, 1H), 3.26 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.4, 173.5, 172.7, 147.7, 145.4, 143.7, 134.8, 130.6, 130.3, 129.0, 128.0, 126.7, 126.3, 124.9, 124.2, 123.7, 123.1, 108.7, 68.0, 60.0, 50.7, 49.5, 26.3; HRMS (ESI): m/z calcd for C26H19ClN4NaO5+ [M + Na]+ 525.0942, found 525.0965.
5′-(4-Methoxyphenyl)-1-methyl-3′-(4-nitrophenyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5k). White solid; 79.7 mg; 80% yield; 78:22 dr; 1H-NMR (400 MHz, DMSO-d6): δ 8.29 (s, 2H), 7.87 (s, 2H), 7.10 (d, J = 34.9 Hz, 8H), 5.26 (s, 1H), 4.48 (s, 1H), 3.99 (s, 1H), 3.78 (s, 3H), 3.09 (s, 3H); 13C-NMR (100 MHz, DMSO-d6): δ 177.9, 177.1, 175.3, 159.5, 150.8, 147.3, 144.4, 130.1, 129.8, 128.7, 128.6, 128.3, 125.2, 124.6, 124.3,124.1, 123.4, 114.7, 109.3, 100.0, 69.0, 60.9, 55.9, 53.6, 26.3; HRMS (ESI): m/z calcd for C27H22N4NaO6+ [M + Na]+ 521.1437, found 521.1450.
5′-(3-Methoxyphenyl)-1-methyl-3′-(4-nitrophenyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5l). White solid; 84.7 mg; 85% yield; 84:16 dr; 1H-NMR (400 MHz, CDCl3): δ 8.21 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 7.36 (ddd, J = 20.8, 14.1, 7.5 Hz, 4H), 7.14 (t, J = 7.5 Hz, 1H), 6.91 (dd, J = 11.2, 4.7 Hz, 2H), 6.79 (d, J = 7.9 Hz, 1H), 5.90 (d, J = 8.5 Hz, 1H), 4.03 (t, J = 8.2 Hz, 1H), 3.77 (s, 3H), 3.58 (d, J = 7.9 Hz, 1H), 3.23 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 173.8, 173.1, 147.7, 145.7, 143.7, 132.5, 130.5, 130.0, 129.9, 128.1, 126.8, 125.1, 123.6, 123.0, 118.3, 114.4, 112.2, 108.6, 68.0, 60.0, 55.4, 50.8, 49.5, 26.2; HRMS (ESI): m/z calcd for C27H22N4NaO6+ [M + Na]+ 521.1437, found 521.1461.
1-Methyl-3′-(4-nitrophenyl)-5′-(p-tolyl)-2′,3′,3a′,6a′-tetrahydro-4′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H)-trione (5m). White solid; 78.1 mg; 81% yield; 82:18 dr; 1H-NMR (400 MHz, CDCl3): δ 8.21 (d, J = 8.6 Hz, 2H), 7.69(d, J = 8.6 Hz, 2H), 7.40(t, J = 7.5 Hz, 1H), 7.30 (d, J = 7.3 Hz, 1H), 7.28–7.21 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 7.8 Hz, 1H), 5.90 (d, J = 8.5 Hz, 1H), 4.02 (t, J = 8.2 Hz, 1H), 3.57 (d, J = 7.9 Hz, 1H), 3.23 (s, 3H), 2.36 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 178.6, 173.9, 173.2, 147.7, 145.7, 143.7, 138.9, 130.4, 129.9, 128.9, 128.1, 126.8, 125.9, 125.1, 123.6, 123.0, 108.6, 68.0, 60.0, 50.7, 49.5, 26.2, 21.2; HRMS (ESI): m/z calcd for C27H22N4NaO5+ [M + Na]+ 505.1488, found 505.1510.

4. Conclusions

In summary, we have developed a simple and efficient strategy for diastereoselective construction of structurally diverse succinimide-fused spiro[pyrrolidine-2,3′-oxindoles] by a one-pot three-component 1,3-dipolar cycloaddition reaction ofazomethine ylides generated in situ from 3-amino oxindolesand aldehydes with maleimides. A series of succinimide-fused spiro[pyrrolidine-2,3′-oxindole] compounds have been obtained in good to high yields (up to 93%) with moderate to excellent diastereoselectivities (up to >95:5). The relative stereochemistry of products has been assigned by X-ray diffraction analysis. Further biological applications of 3-aminooxindoles are currently underway.

Supplementary Materials

The NMR spectra of the products (4 and 5) are available online; the crystallographic data of 4k is available online.

Acknowledgments

We acknowledge the financial support from National Natural Science Foundation of China (21372183), and Program for Innovative Teams of Outstanding Young and Middle–aged Researchers in the Higher Education Institutions of Hubei Province (T201702).

Author Contributions

L.J. and F.L. conceived and designed the experiments; L.J. performed the experiments; L.J. and F.L. analyzed the data; L.J. and F.L. wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References and Notes

  1. Santos, M.M.M. Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron 2014, 70, 9735–9757. [Google Scholar] [CrossRef]
  2. Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers. 2016, 20, 299–344. [Google Scholar] [CrossRef] [PubMed]
  3. Raj, A.A.; Raghunathan, R.; SrideviKumari, M.R.; Raman, N. Synthesis antimicrobial and antifungal activity of a new class of spiro pyrrolidines. Bioorg. Med. Chem. 2003, 11, 407–419. [Google Scholar] [CrossRef]
  4. Murugan, R.; Anbazhagan, S.; Sriman Narayanan, S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem. 2009, 44, 3272–3279. [Google Scholar] [CrossRef] [PubMed]
  5. Ali, M.A.; Ismail, R.; Choon, T.S.; Yoon, Y.K.; Wei, A.C.; Pandian, S.; Kumar, R.S.; Osman, H.; Manogaran, E. Substituted spiro [2.3′] oxindolespiro [3.2″]-5,6-dimethoxy-indane-1″-one-pyrrolidine analogue as inhibitors of acetylcholinesterase. Bioorg. Med. Chem. Lett. 2010, 20, 7064–7066. [Google Scholar] [CrossRef] [PubMed]
  6. Prasanna, P.; Balamurugan, K.; Perumal, S.; Yogeeswari, P.; Sriram, D. A regio- and stereoselective 1,3-dipolar cycloaddition for the synthesis of novel spiro-pyrrolothiazolyloxindoles and their antitubercular evaluation. Eur. J. Med. Chem. 2010, 45, 5653–5661. [Google Scholar] [CrossRef] [PubMed]
  7. Girgis, A.S.; Stawinski, J.; Ismail, N.S.M.; Farag, H. Synthesis and QSAR study of novel cytotoxic spiro[3H-indole-3,2′(1′H)-pyrrolo[3,4-c]pyrrole]-2,3,5(1H, 2′aH, 4′H)-triones. Eur. J. Med. Chem. 2012, 47, 312–322. [Google Scholar] [CrossRef] [PubMed]
  8. Ruiz, F.M.; Francis, S.M.; Tintoré, M.; Ferreira, R.; Gil-Redondo, R.; Morreale, A.; Ortiz, Á.R.; Eritja, R.; Fàbrega, C. Receptor-based virtual screening and biological characterization of human apurinic/apyrimidinic endonuclease (Ape1) inhibitors. ChemMedChem 2012, 7, 2168–2178. [Google Scholar] [CrossRef] [PubMed]
  9. Premachandra, I.D.U.A.; Scott, K.A.; Shen, C.; Wang, F.; Lane, S.; Liu, H.; Van Vranken, D.L. Potent synergy between spirocyclic pyrrolidinoindolinones and fluconazole against calbicans. ChemMedChem 2015, 10, 1672–1686. [Google Scholar] [CrossRef] [PubMed]
  10. Lashgari, N.; Ziarani, G.M. Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions. Arkivoc 2012, 2012, 277–320. [Google Scholar] [CrossRef]
  11. Yang, J.; Liu, X.W.; Wang, D.D.; Tian, M.Y.; Han, S.N.; Feng, T.T.; Liu, X.L.; Mei, R.Q.; Zhou, Y. Diversity-oriented one-pot multicomponent synthesis of spirooxindole derivatives and their biological evaluation for anticancer activities. Tetrahedron 2016, 72, 8523–8536. [Google Scholar] [CrossRef]
  12. Shao, C.D.; Wu, Z.; Ji, X.M.; Zhou, B.; Zhang, Y.H. An approach to spirooxindoles via palladiumcatalyzed remote C–H activation and dual alkylation with CH2Br2. Chem. Commun. 2017, 53, 10429–10432. [Google Scholar] [CrossRef] [PubMed]
  13. Azizian, J.; Asadi, A.; Jadidi, K. One-pot highly diastereo-selective synthesis of new 2-substituted 8-(sprio-3′-indolino-2′-one)-pyrrolo[3,4-a]-pyrriolizine-1,3-diones mediated by azomethine ylide induced by microwave irradiation. Synth. Commun. 2001, 31, 2727–2733. [Google Scholar] [CrossRef]
  14. Azizian, J.; Saffar-Teluri, A.; Asadi, A. A facile one-pot synthesis of new spiro pyrrolidine-oxindoles under ultrasonic irradiation in DMSO–H2O. Lett. Org. Chem. 2006, 3, 887–890. [Google Scholar] [CrossRef]
  15. Pavlovskaya, T.; Red’kin, R.; Yaremenko, F.; Shishkina, S.; Shishkin, O.; Musatov, V.; Lipson, V. Synthesis and chemical properties of new derivatives of 3a′,6a′-dihydro-2′H-spiro-[indole-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′-(1H,3′H,5′H)-trione. Chem. Heterocycl. Compd. 2013, 49, 882–896. [Google Scholar] [CrossRef]
  16. Zhao, H.W.; Yang, Z.; Meng, W.; Tian, T.; Li, B.; Song, X.Q.; Chen, X.Q.; Pang, H.L. Diastereo- and enantioselective synthesis of chiral pyrrolidine-fused spirooxindoles via organocatalytic [3 + 2] 1,3-dipolar cycloaddition of azomethine ylides with maleimides. Adv. Synth. Catal. 2015, 357, 2492–2502. [Google Scholar] [CrossRef]
  17. Sun, H.; Wang, X.; Chen, Y.; Ouyang, L.; Liu, J.; Zhang, Y. Efficient construction of highly functionalized endo0-selective spiro[pyrrolidin-2,30-oxindoles] via a regioselective 1,3-dipolar cycloaddition reaction between 3-amino oxindoles as azomethine ylide precursors and nitroalkenes. Tetrahedron Lett. 2014, 55, 5434–5438. [Google Scholar] [CrossRef]
  18. Zhu, G.; Wang, B.; Bao, X.; Zhang, H.; Wei, Q.; Qu, J. Asymmetric [3 + 2] cycloaddition of 3-amino oxindole-based azomethine ylides and α,β-enones with divergent diastereocontrol on the spiro[pyrrolidine-oxindoles]. Chem. Commun. 2015, 51, 15510–15513. [Google Scholar] [CrossRef] [PubMed]
  19. Zhu, G.; Liu, S.; Wu, S.; Peng, L.; Qu, J.; Wang, B. Assembly of indolenines, 3-amino oxindoles, and aldehydes into indolenine-substituted spiro[pyrrolidin-2,3′-oxindoles] via 1,3-dipolar cycloaddition with divergent diastereoselectivities. J. Org. Chem. 2017, 82, 4317–4327. [Google Scholar] [CrossRef] [PubMed]
  20. Zhu, G.; Wei, Q.; Chen, H.; Zhang, Y.; Shen, W.; Qu, J.; Wang, B. Asymmetric [3 + 2] cycloaddition of 3-amino oxindole-based azomethine ylides and α, β-enones with divergent diastereocontrol on the Spiro[pyrrolidine-oxindoles]. Org. Lett. 2017, 19, 1862–1865. [Google Scholar] [CrossRef] [PubMed]
  21. Wei, Q.; Zhu, G.; Zhang, H.; Qu, J.; Wang, B. 1,3-Dipolar cycloaddition of azomethineylides involving 3-aminooxindoles: Versatile construction of dispiro[pyrrolidine-2,3′-oxindole] scaffolds. Eur. J. Org. Chem. 2016, 2016, 5335–5339. [Google Scholar] [CrossRef]
  22. Crystal data for 4k (C26H20BrN3O3): Crystal System = Triclinic, Space Group Name = P-1, Mr = 502.3680, a = 10.0641(5), b = 10.7045(6), c = 11.0214(7), alpha = 74.935(2), beta = 73.244(2), gamma = 81.118(2), Data completeness = 0.997, Theta(max) = 26.387, R(reflections) = 0.0405(3736), wR2(reflections) = 0.1183(4487), S = 1.071. CCDC-1473174 (4k) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Sample Availability: The sample of the compounds is not available from the authors.
Figure 1. Representative bioactive succinimide-fused spiro[pyrrolidine-2,3′-oxindoles].
Figure 1. Representative bioactive succinimide-fused spiro[pyrrolidine-2,3′-oxindoles].
Molecules 23 00582 g001
Scheme 1. Strategies for the construction of succinimide-fused spiro[pyrrolidine-2,3′-oxindoles].
Scheme 1. Strategies for the construction of succinimide-fused spiro[pyrrolidine-2,3′-oxindoles].
Molecules 23 00582 sch001
Scheme 2. The three-component reaction of 3-amino-1-methylindolin-2-one hydrochloride 1a, benzaldehyde 2a, and N-phenylmaleimide 3a. Prolonging reaction time would benefit the reaction.
Scheme 2. The three-component reaction of 3-amino-1-methylindolin-2-one hydrochloride 1a, benzaldehyde 2a, and N-phenylmaleimide 3a. Prolonging reaction time would benefit the reaction.
Molecules 23 00582 sch002
Scheme 3. A variety of aldehyde substrates 2 were investigated under optimized reaction conditions.
Scheme 3. A variety of aldehyde substrates 2 were investigated under optimized reaction conditions.
Molecules 23 00582 sch003
Scheme 4. Screening of a series of 3-amino oxindoles 1 and maleimides 3.
Scheme 4. Screening of a series of 3-amino oxindoles 1 and maleimides 3.
Molecules 23 00582 sch004
Figure 2. X-ray crystal structure of product 4k. All H atoms have been omitted for clarity.
Figure 2. X-ray crystal structure of product 4k. All H atoms have been omitted for clarity.
Molecules 23 00582 g002
Table 1. Optimization of reaction conditions a.
Table 1. Optimization of reaction conditions a.
EntryBaseSolventT (°C)Time (h)Yield b (%)dr c
1NaHCO3CHCl330166074:26
2K2CO3CHCl330166273:27
3KF/Al2O3CHCl330165871:29
4NaOHCHCl33016trace-
5DIPEACHCl330166581:19
6TEACHCl330166883:17
7TEACHCl330247484:16
8TEACH2Cl230246088:12
9TEADCE30246183:17
10TEATHF30246269:31
11TEAdioxane30244180:20
12TEAEt2O30245569:31
13TEACH3OH30245784:16
14TEAC2H5OH30247478:22
15TEAtoluene30243771:29
16TEACH3CN30244285:15
17TEACH2Cl2reflux248688:12
18 dTEACH2Cl2reflux248588:12
a Unless otherwise noted, all reactions were carried out with 1a (0.1 mmol), 2a (0.1 mmol), 3a (0.11 mmol), and base (0.1 mmol) in solvent (1.0 mL) at specified temperature for 16 or 24 h. DIPEA: diisopropylethylamine, TEA: triethylamine, DCE: 1,2-dichloroethane. b Isolated yield. c Determined by 1H-NMR spectroscopy of the crude mixture. d Reaction was carried out with two-fold scale.
Table 2. Scope of aldehyde 2 a.
Table 2. Scope of aldehyde 2 a.
Entry2,R24Yield b (%)dr c
12a,Ph4a8588:12
22b,4-F-Ph4b8081:19
32c,3-F-Ph4c7062:38
42d,2-F-Ph4d9092:8
52e,4-Cl-Ph4e7981:19
62f,3-Cl-Ph4f7176:24
72g,2-Cl-Ph4g8381:19
82h,3,4-diCl-Ph4h8586:14
92i,4-Br-Ph4i81>95:5
102j,3-Br-Ph4j6567:33
112k,2-Br-Ph4k9093:7
122l,4-NO2-Ph4l85>95:5
132m,3-NO2-Ph4m83>95:5
142n,2-NO2-Ph4n8694:6
152o,4-Me-Ph4o7882:18
162p,3-Me-Ph4p7175:25
172q,2-Me-Ph4q8077:23
182r,4-OMe-Ph4r8483:17
192s,3-OMe-Ph4s7680:20
202t,2-naphthyl4t9394:6
212u,2-furyl4u7094:6
222v,2-thienyl4v7993:7
232w,Benzyl4w7677:23
242x,tBu4x7272:28
a All reactions were carried out with 1a (0.2mmol), 2 (0.2 mmol), 3a (0.22 mmol), TEA (0.2 mmol) in CH2Cl2 (2.0 mL) at reflux for 24 h. b Isolated yield. c Determined by 1H-NMR analysis of the crude reaction mixture.
Table 3. Scope of 3-amino oxindoles 1 and maleimides 3 a.
Table 3. Scope of 3-amino oxindoles 1 and maleimides 3 a.
Entry12,R235Yield b (%)dr c
11b2a,Ph3a5a8283:17
21b2l,4-NO2-Ph3a5b8082:18
31c2a,Ph3a5c8575:25
41c2l,4-NO2-Ph3a5d8278:22
51d2a,Ph3a5e6869:31
61e2a,Ph3a5f8083:17
71e2l,4-NO2-Ph3a5g8182:18
81a2a,Ph3b5h6667:33
91a2l,4-NO2-Ph3b5i8182:18
101a2l,4-NO2-Ph3c5j8081:19
111a2l,4-NO2-Ph3d5k8078:22
121a2l,4-NO2-Ph3e5l8584:16
131a2l,4-NO2-Ph3f5m8182:18
a All reactions were carried out with 1 (0.2mmol), 2 (0.2 mmol), 3 (0.22 mmol), TEA (0.2 mmol) in CH2Cl2 (2.0 mL) at reflux for 24 h. b Isolated yield. c Determined by 1H-NMRanalysis of the crude reaction mixture.

Share and Cite

MDPI and ACS Style

Jin, L.; Liang, F. A Facile One-Pot Construction of Succinimide-Fused Spiro[Pyrrolidine-2,3′-Oxindoles] via 1,3-Dipolar Cycloaddition Involving 3-Amino Oxindoles and Maleimides. Molecules 2018, 23, 582. https://doi.org/10.3390/molecules23030582

AMA Style

Jin L, Liang F. A Facile One-Pot Construction of Succinimide-Fused Spiro[Pyrrolidine-2,3′-Oxindoles] via 1,3-Dipolar Cycloaddition Involving 3-Amino Oxindoles and Maleimides. Molecules. 2018; 23(3):582. https://doi.org/10.3390/molecules23030582

Chicago/Turabian Style

Jin, Lunqiang, and Feng Liang. 2018. "A Facile One-Pot Construction of Succinimide-Fused Spiro[Pyrrolidine-2,3′-Oxindoles] via 1,3-Dipolar Cycloaddition Involving 3-Amino Oxindoles and Maleimides" Molecules 23, no. 3: 582. https://doi.org/10.3390/molecules23030582

APA Style

Jin, L., & Liang, F. (2018). A Facile One-Pot Construction of Succinimide-Fused Spiro[Pyrrolidine-2,3′-Oxindoles] via 1,3-Dipolar Cycloaddition Involving 3-Amino Oxindoles and Maleimides. Molecules, 23(3), 582. https://doi.org/10.3390/molecules23030582

Article Metrics

Back to TopTop