Investigation of Absorption Routes of Meloxicam and Its Salt Form from Intranasal Delivery Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. PSD and Morphology
2.2. Viscosity and Mucoadhesion
2.3. Dissolution Testing
2.4. In Vitro Diffusion
2.5. In Vivo Studies
3. Experimental Set-Up
3.1. Materials
3.2. Methods
3.2.1. Sample Preparation
3.2.2. Determination of Particle Size Distribution (PSD)
3.2.3. Image Analysis (SEM)
3.2.4. Rheology and Muco Adhesion
3.2.5. In Vitro Dissolution Test
3.2.6. In Vitro Diffusion Study
3.2.7. In Vivo Studies
IN Administration, Blood Sample Collection, and Brain Removal
Sample Preparation of Rat Plasma and Brain
LC–MS/MS Analysis of MEL
Calculations of the Area under the Time-Concentration Curve (AUC) and Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sipos, E.; Kurunczi, A.; Fehér, A.; Penke, Z.; Fülöp, L.; Kasza, A.; Horváth, J.; Horvát, S.; Veszelka, S.; Balogh, G.; et al. Intranasal delivery of human beta-amyloid peptide in rats: Effective brain targeting. Cell. Mol. Neurobiol. 2010, 30, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Gibin, S.; Zambito, Y.; Colo, G.D.; Caramella, C. Nanoparticles based on N-trimethylchitosan: Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. Eur. J. Pharm. Biopharm. 2007, 65, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Saporito, F.; Ferrari, F.; Bonferoni, M.C.; Rossi, S.; Caramella, C. In vitro evaluation of a protective nasal spray: Measurements of mucoadhesion and reconstructive barrier properties towards a tracheobronchial reconstruct. J. Drug Deliv. Sci. Technol. 2015, 30, 368–374. [Google Scholar] [CrossRef]
- Yasir, M.; Sara, U.V.S. Solid lipid nanoparticles for nose to brain delivery of haloperidol: In vitro drug release and pharmacokinetics evaluation. Acta Pharm. Sin. B 2014, 4, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Shinde, R.L.; Bharkad, G.P.; Devarajan, P.V. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid. Eur. J. Pharm. Biopharm. 2015, 96, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Prommer, E.; Thompson, L. Intranasal fentanyl for pain control: Current status with a focus on patient considerations. Patient Preference Adherence 2011, 5, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Soica, C.; Trandafirescu, C.; Danciu, C.; Muntean, D.; Dehelean, C.; Simu, G. New Improved Drug Delivery Technologies for Pentacyclic Triterpenes: A Review. Protein Pept. Lett. 2014, 21, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Singh, R.P.; Sonali; Kumari, L.; Sharma, G.; Koch, B.; Rajesh, C.V.; Mehata, A.K.; Singh, S.; Pandey, B.L.; et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater. Sci. Eng. C 2017, 74, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Gavini, E.; Rassu, G.; Ferraro, L.; Beggiato, S.; Alhalaweh, A.; Velaga, S.; Marchetti, N.; Bandiera, P.; Giunchedi, P.; Dalpiaz, A. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur. J. Pharm. Biopharm. 2013, 83, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.; Singh, M.; Ranjan, O.; Nayak, Y.; Garg, S.; Shavi, G.V.; Nayak, U.Y. Development of risperidone liposomes for brain targeting through intranasal route. Life Sci. 2016, 163, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Patel, R.B.; Bhatt, K.K.; Patel, B.G.; Gaikwad, R.V. Paliperidone microemulsion for nose-to-brain targeted drug delivery system: Pharmacodynamic and pharmacokinetic evaluation. Drug Deliv. 2016, 23, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci. 2016, 92, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, Y.S.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer’s Disease: Optimization, Biological Efficacy, and Potential Toxicity. J. Pharm. Sci. 2015, 104, 3544–3556. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.P.Y. From nose to brain: The promise of peptide therapy for Alzheimer’s disease and other neurodegenerative diseases. J. Alzheimers Dis. Parkinsonism. 2017, 7, 1–3. [Google Scholar] [CrossRef]
- Vasa, D.M.; Buckner, I.S.; Cavanaugh, J.E.; Wildfong, P.L.D. Improved Flux of Levodopa via Direct Deposition of Solid Microparticles on Nasal Tissue. Pharm. Sci. Technol. 2017, 18, 804–912. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Xu, L.; Bi, C.; Duan, D.; Chu, L.; Yu, X.; Wu, Z.; Wang, A.; Sun, K. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int. J. Nanomed. 2018, 13, 273–281. [Google Scholar] [CrossRef]
- WHO. Pain Guidelines. Available online: http://www.who.int/medicines/areas/quality_safety/delphi_study_pain_guidelines.pdf (accessed on 27 March 2017).
- Fenyvesi, Z.S.; Auner, A.; Schmalz, D.; Pásztor, E.; Csóka, G.; Gyires, K.; Marton, S.; Klebovich, I.; Antal, I. Preparation of pH-sensitive beads for NSAID using three-component gel systems. J. Pharm. Sci. 2009, 98, 4285–4295. [Google Scholar] [CrossRef] [PubMed]
- Vijayakaran, K.; Kannan, K.; Kesavan, M.; Suresh, S.; Sankar, P.; Tandan, S.K.; Sarkar, S.N. Arsenic reduces the antipyretic activity of paracetamol in rats: Modulation of brain COX-2 activity and CB1 receptor expression. Environ. Toxicol. Pharmacol. 2014, 37, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Du, L.; Chen, X.; Ge, P.; Wang, Y.; Fu, Y.; Sun, H.; Jiang, Q.; Jin, Y. Nasal delivery of analgesic ketorolac tromethamine thermo- and ion-sensitive in situ hydrogels. Int. J. Pharm. 2015, 489, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Castile, J.D.; Lin, W.; Smith, A.; Watts, P.J. Intranasal Formulation of Meloxicam. World Intellectual Property Organization Patent WO 2005021041 A1, 10 March 2005. [Google Scholar]
- Kürti, L.; Gáspár, R.; Márki, Á.; Kápolna, E.; Bocsik, A.; Veszelka, S.Z.; Bartos, C.S.; Ambrus, R.; Vastag, M.; Deli, M.A.; et al. In vitro and in vivo characterization of meloxicam nanoparticles designed for nasal administration. Eur. J. Pharm. Sci. 2013, 50, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Zelkó, R.; Süvegh, K. Correlation between the release characteristics of theophylline and the free volume of polyvinylpyrrolidone. Eur. J. Pharm. Sci. 2005, 24, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Bartos, C.S.; Ambrus, R.; Sipos, P.; Budai-Szűcs, M.; Csányi, E.; Gáspár, R.; Márki, Á.; Seres, A.B.; Sztojkov-Ivanov, A.; Horváth, T.; et al. Study of sodium hyaluronate-based intranasal formulations containing micro- or nanosized meloxicam particles. Int. J. Pharm. 2015, 491, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Mezei, T.; Mesterházy, N.; Bakó, T.; Porcs-Makkay, M.; Simig, G.; Volk, B. Manufacture of high-purity meloxicam via its novel potassium salt monohydrate. Org. Process. Res. Dev. 2009, 13, 567–572. [Google Scholar] [CrossRef]
- Mezei, T.; Simig, G.; Molnár, E.; Lukács, G.; Porcs-Makkay, M.; Volk, B.; Hofmanné Fekete, V.; Nagy, K.; Mesterházy, N.; Krasznai, G.Y.; et al. Process for Preparation of High-Purity Meloxicam and Meloxicam Potassium Salt. U.S. Patent 8097616 B2, 17 January 2012. [Google Scholar]
- Horváth, T.; Ambrus, R.; Völgyi, G.; Budai-Szűcs, M.; Márki, Á.; Sipos, P.; Bartos, C.S.; Seres, A.B.; Sztojkov-Ivanov, A.; Takács-Novák, K.; et al. Effect of solubility enhancement on nasal absorption of meloxicam. Eur. J. Pharm. Sci. 2016, 95, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Horvát, S.; Fehér, A.; Wolburg, H.; Sipos, P.; Veszelka, S.; Tóth, A.; Kis, L.; Kurunczi, A.; Balogh, G.; Kürti, L.; et al. Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. Eur. J. Pharm. Biopharm. 2009, 72, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Billotte, A.; Dunn, P.J.; Henry, B.T.; Marshall, P.V.; Woods, J.J. Intranasal Formulations for Treating Sexual Disorders. Canadian Intellectual Property Office CA 2275554 C, 3 June 2003. [Google Scholar]
- Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals—Special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm. 2011, 78, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Krüger-Szabó, A.; Aigne, Z.; Balogh, E.; Sebe, I.; Zelkó, R.; Antal, I. Microstructural analysis of the fast gelling freeze-dried sodium hyaluronate. J. Pharm. Biomed. Anal. 2015, 104, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.E.; Gallo, J.M. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm. Res. 1990, 7, 491–495. [Google Scholar]
- Kozlovskaya, L.; Abou-Kaoud, M.; Stepensky, D. Quantitative analysis of drug delivery to the brain via nasal route. J. Control Release 2014, 189, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Junghanns, J.-U.A.H.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008, 3, 295–310. [Google Scholar]
- Caramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv. Drug Deliv. Rev. 2015, 92, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Parepally, J.M.; Mandula, H.; Smith, Q.R. Brain uptake of nonsteroidal anti-inflammatory drugs: Ibuprofen, flurbiprofen, and indomethacin. Pharm. Res. 2006, 23, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, S.; Pathak, K. Physicichemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin. Drug Deliv. 2012, 9, 19–31. [Google Scholar] [CrossRef] [PubMed]
HA Spray | PVA Solution | Blank (HA + PVA) | Nano MEL Spray | MELP Spray | |
---|---|---|---|---|---|
Synergism parameters (mPa*s) | 165 ± 30 | −10 ± 1 | 90 ± 30 | 355 ± 25 | 59.4 ± 20 |
abs. BA for Brain (%) | AUCbrain/AUCblood | DTE (%) | |
---|---|---|---|
IV MEL | 100 | 2.644 × 10−5 | 100 |
nano MEL spray | 100 | 7.26 × 10−5 | 274.58 |
MELP spray | 59 | 3.93 × 10−5 | 148.64 |
MEL (mg) | MELP (mg) | PVA (mg) | HA (mg) | PBS of pH 5.60 (mL) | |
---|---|---|---|---|---|
nano MEL spray | 60.0 | - | 15.0 | 150.0 | ad 30.0 |
MELP spray | - | 60.0 | - | 150.0 | ad 30.0 |
t (min) | %B | Flow Rate (µL/min) |
---|---|---|
0 | 40 | 250 |
0.5 | 40 | 250 |
2 | 70 | 250 |
2.1 | 90 | 600 |
2.5 | 90 | 600 |
2.6 | 40 | 600 |
4.0 | 40 | 600 |
4.1 | 40 | 250 |
4.5 | 40 | 250 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartos, C.; Ambrus, R.; Kovács, A.; Gáspár, R.; Sztojkov-Ivanov, A.; Márki, Á.; Janáky, T.; Tömösi, F.; Kecskeméti, G.; Szabó-Révész, P. Investigation of Absorption Routes of Meloxicam and Its Salt Form from Intranasal Delivery Systems. Molecules 2018, 23, 784. https://doi.org/10.3390/molecules23040784
Bartos C, Ambrus R, Kovács A, Gáspár R, Sztojkov-Ivanov A, Márki Á, Janáky T, Tömösi F, Kecskeméti G, Szabó-Révész P. Investigation of Absorption Routes of Meloxicam and Its Salt Form from Intranasal Delivery Systems. Molecules. 2018; 23(4):784. https://doi.org/10.3390/molecules23040784
Chicago/Turabian StyleBartos, Csilla, Rita Ambrus, Anita Kovács, Róbert Gáspár, Anita Sztojkov-Ivanov, Árpád Márki, Tamás Janáky, Ferenc Tömösi, Gábor Kecskeméti, and Piroska Szabó-Révész. 2018. "Investigation of Absorption Routes of Meloxicam and Its Salt Form from Intranasal Delivery Systems" Molecules 23, no. 4: 784. https://doi.org/10.3390/molecules23040784
APA StyleBartos, C., Ambrus, R., Kovács, A., Gáspár, R., Sztojkov-Ivanov, A., Márki, Á., Janáky, T., Tömösi, F., Kecskeméti, G., & Szabó-Révész, P. (2018). Investigation of Absorption Routes of Meloxicam and Its Salt Form from Intranasal Delivery Systems. Molecules, 23(4), 784. https://doi.org/10.3390/molecules23040784