Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Pomelo Peel Essential Oil Composition
2.2. Antibacterial Activity of Essential Oil
2.3. Antibacterial Activity of Water-Soluble Chitosan
2.4. Antibacterial Activity of Essential Oil Emulsion and Water-Soluble Chitosan
2.5. Antibacterial Activity of the Combination of Essential Oil and Chitosan at Various pH Values
3. Materials and Methods
3.1. Plant Material and Isolation of Essential Oils
3.2. Preparation of Essential Oil Emulsions at Different Homogenizer Speeds
3.3. Preparation of Water-Soluble Chitosan
3.4. Preparation of Chitosan and Pomelo Peel Essential Oil Emulsion
3.5. Preparation of Emulsion of Chitosan of Different pH and Essential Oil
3.6. Chemical Analyses
3.6.1. GC–MS
3.6.2. Gas Chromatography (GC)
3.6.3. Determination of the Degree of N-Acetylation in Water-Soluble Chitosan
3.7. Zeta Potential Analysis of Chitosan in TSB
3.8. Assays for Antibacterial Activity
3.8.1. Species Culture
3.8.2. Antibacterial Activity
3.8.3. Determination of Minimum Inhibitory Concentration
- y = ax + b
- y: Residual bacterial count (log CFU/mL)
- x: Essential oil concentration (%)
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Note
- Tian, J.; Zeng, X.; Feng, Z.; Miao, X.; Peng, X.; Wang, Y. Zanthoxylum mold Rehd. Essantial oil as a potential natural preservative in management of Aspergillus flarus. Ind. Crop. Prod. 2014, 60, 151–159. [Google Scholar] [CrossRef]
- Tsai, H.L.; Chang, S.K.C.; Chang, S.J. Antioxidant content and free radical scavenging ability of fresh red pomelo [Citrus grandis (L.) Osbeck] juice and freeze-dried products. J. Agric. Food Chem. 2007, 55, 2867–2872. [Google Scholar] [CrossRef] [PubMed]
- Yearly Report of Taiwan’s Agriculture 2003: Index of Agricultural Production, 5. Fruits, (4) Pai Pomelos, Liuchengs. Council of Agriculture Executive Yuan R.O.C.: 37 Nanhai Road, Taipei, Taiwan 10014, 2009.
- Anwar, F.; Naseer, R.; Bhanger, M.I.; Ashraf, S.; Talpur, F.N.; Aladedunye, F.A. Physico-chemical characteristics of citrus seeds and seed oils from Pakistan. J. Am. Oil Chem. Soc. 2008, 85, 321–330. [Google Scholar] [CrossRef]
- Senevirathne, M.; Jeon, Y.J.; Ha, J.H.; Kim, S.H. Effective drying of citrus by-product by high speed drying: A novel drying technique and their antioxidant activity. J. Food Eng. 2009, 92, 157–163. [Google Scholar] [CrossRef]
- Inouye, S.; Yamaguchi, H.; Takizawa, T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Infect. Chemother. 2001, 7, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, K.; Conti, D.S.; da Rocha, S.R.; Zhang, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 2015, 47, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016, 194, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Alves, N.M.; Mano, J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 2008, 43, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A.; Muzzarelli, C.; Tarsi, R.; Miliani, M.; Gabbanelli, F.; Cartolari, M. Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromolecules 2001, 2, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244. [Google Scholar] [CrossRef]
- Chen, Y.M.; Chung, Y.C.; Wang, L.W.; Chen, K.T.; Li, S.Y. Antibacterial properties of chitosan in waterborne pathogen. J. Environ. Sci. Health Part A 2001, 37, 1379–1390. [Google Scholar] [CrossRef]
- Omura, Y.; Shigemoto, M.; Akiyama, T.; Saimoto, H.; Shigemasa, Y.; Nakamura, I.; Tsuchido, T. Antimicrobial activity of chitosan with different degrees of acetylation and molecular weights. Biocontrol. Sci. 2003, 8, 25–30. [Google Scholar] [CrossRef]
- Marangon, C.A.; Martins, V.C.A.; Leiteb, P.M.F.; Santos, D.A.; Nitschke, M.; Plepis, A.M.G. Chitosan/gelatin/copaiba oil emulsion formulation and its potential on controlling the growth of pathogenic bacteria. Ind. Crop. Prod. 2017, 99, 163–171. [Google Scholar] [CrossRef]
- Minh Tu, N.T.; Thanh, L.X.; Une, A.; Ukeda, H.; Sawamura, M. Volatile constituents of Vietnamese pomelo, orange, tangerine and lime peel oils. Flavour Frag. J. 2002, 17, 169–174. [Google Scholar] [CrossRef]
- Hosni, K.; Zahed, N.; Chrif, R.; Abid, I.; Medfei, W.; Kallel, M.; Brahim, N.B.; Sebei, H. Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chem. 2010, 123, 1098–1104. [Google Scholar] [CrossRef]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Vriesekoop, F.; Yuan, Q.; Liang, H. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem. 2014, 150, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, Y.; Gopal, G.; Lakshmanan, C.C.; Nandakumar, K.S. Chitosan nanoparticles for generating novel systems for better applications: A review. J. Mol. Genet. Med. 2015. [Google Scholar] [CrossRef]
- Feyzioglu, G.C.; Tornuk, F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT-Food Sci. Technol. 2016, 70, 104–110. [Google Scholar] [CrossRef]
- Hongpattarakere, T.; Riyaphan, O. Effect of deacetylation conditions on antimicrobial activity of chitosans prepared from carapace of black tiger shrimp (Penaeus monodon). Songklanakarin J. Sci. Technol. 2008, 30, 1–9. [Google Scholar]
- Hoque, M.; Bari, M.L.; Juneja, V.K.; Kawamoto, S. Antimicrobial activity of cloves and cinnamon extracts against food borne pathogens and spoilage bacteria, and inactivation of Listeria monocytogenes in Ground chicken meat with their essential oils. Rep. Nat. Food Res. Inst. 2008, 72, 9–21. [Google Scholar]
- Canillac, N.; Mourey, A. Effects of several environmental factors on the anti-Listeria monocytogenes activity of an essential oil of Picea excelsa. Int. J. Food Microbiol. 2004, 92, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Microbiol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar] [PubMed]
- Espina, L.; Gelaw, T.K.; de Lamo-Castellvi, S.; Pagán, R.; Garcia-Gonzalo, D. Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PLoS ONE 2013, 8, e56769. [Google Scholar] [CrossRef] [PubMed]
- Roller, S.; Covill, N. The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol. 1999, 47, 67–77. [Google Scholar] [CrossRef]
- Xie, W.; Xu, P.; Wang, W.; Liu, Q. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohyd. Polym. 2002, 50, 35–40. [Google Scholar] [CrossRef]
- Fadel, H.; Marx, F.; El-Sawy, A.; El-Ghorab, A. Effect of extraction techniques on the chemical composition and antioxidant activity of Eucalyptus camaldulensis var. brevirostris leaf oils. Z. Lebensm. Unters. Forsch. 1999, 208, 212–216. [Google Scholar] [CrossRef]
- Mima, S.; Miya, M.; Iwamoto, R.; Yoshikawa, S. Highly deacetylated chitosan and its properties. J. Appl. Polym. Sci. 1983, 28, 1909–1917. [Google Scholar] [CrossRef]
- Kubota, N.; Eguchi, Y. Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility. Polym. J. 1997, 29, 123–127. [Google Scholar] [CrossRef]
- Owlia, P.; Saderia, H.; Rasooli, I.; Sefidkonc, F. Antimicrobial characteristics of some herbal oils on Pseudomonas aeruginosa with special reference to their chemical compositions. Iran. J. Pharm. Res. 2009, 8, 107–114. [Google Scholar]
- Deba, F.; Xuan, T.D.; Yasuda, M.; Tawata, S. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control 2008, 19, 346–352. [Google Scholar] [CrossRef]
- Oliveira de Figueiredo, R.; Nakagawa, J.; Marques, M.O.M. Composition of coriander essential oil from Brazil. Acta Hortic. 2004, 629, 135–137. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sani, T.A.; Ameri, A.A.; Imani, M.; Golmakani, E.; Kamali, H. Seasonal variation in the chemical composition, antioxidant activity, and total phenolic content of Artemisia absinthium essential oils. Pharmacognosy Res. 2015, 7, 329–334. [Google Scholar]
- Niola, F.; Basora, N.; Chornet, E.; Vidal, P.F. A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC. Carbohyd. Res. 1993, 238, 1–9. [Google Scholar] [CrossRef]
- Gohtani, S.; Yamano, Y.; Gohtani, S. Stability and zeta potential of soysaponin I emulsion. Nippon Nog Kag Kaish 1990, 64, 139–144. [Google Scholar] [CrossRef]
- Friendman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Protect. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-till, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef]
- Kim, Y.S.; Shin, D.H. Volatile constituents from the leaves of Callicarpa japonica Thunb. and their antibacterial activities. J. Agr. Food Chem. 2004, 52, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Skandamis, P.; Koutsoumanis, K.; Fasseas, K.; Nychas, G.J.E. Inhibition of oregano essential oil and EDTA on Escherichia coli O157:H7. Ital. J. Food Sci. 2001, 13, 65–75. [Google Scholar]
- SAS Institute Inc. SAS user’s guide: Statistics; SAS Institute Press: Cary, NC, USA, 1988; p. 584. [Google Scholar]
Sample Availability: Samples of the compounds 1–3, 5, 7, 8, 10, 11, 17, 25, 26 are available from the authors. |
Peak No. | Constituents | K.I.a | Concentration | |
---|---|---|---|---|
Relative(%) | Absolute (mg/g) | |||
1 | α-pinene | 938 | 0.8 | 4.66 |
2 | β-pinene | 980 | 2.7 | 13.53 |
3 | myrcene | 991 | 3.1 | 23.65 |
4 | α-phellandrene | 1002 | 0.1 | |
5 | limonene | 1031 | 87.5 | 940.07 |
6 | trans-β-ocimene | 1048 | 0.4 | |
7 | γ-terpinene | 1061 | 0.1 | 0.24 |
8 | cis-linalool oxide (f) | 1072 | 0.6 | 3.82 |
9 | α-terpinolene | 1086 | 0.1 | |
10 | trans-linalool oxide (f) | 1089 | 0.3 | 2.15 |
11 | linalool | 1098 | 0.4 | 2.48 |
12 | trans-p-2,8-mentha-dien-1-ol | 1121 | 0.0 | |
13 | cis-limonene oxide | 1135 | 0.0 | |
14 | trans-limonene oxide | 1140 | 0.0 | |
15 | β-terpineol | 1147 | - | |
16 | terpinen-4-ol | 1176 | 0.1 | |
17 | α-terpineol | 1188 | 0.3 | 2.18 |
18 | trans-carveol | 1216 | 0.0 | |
19 | nerol | 1228 | 0.1 | |
20 | cis-carveol | 1229 | 0.1 | |
21 | neral | 1237 | 0.1 | |
22 | carvone | 1243 | 0.0 | |
23 | geraniol | 1250 | 0.1 | |
24 | geranial | 1266 | 0.2 | |
25 | neryl acetate | 1363 | 0.0 | 0.072 |
26 | geranyl acetate | 1380 | 0.0 | 0.25 |
27 | β-elemene | 1390 | 0.0 | |
28 | α-cedrene | 1410 | 0.2 | |
29 | β-caryophyllene | 1420 | 0.2 | |
30 | germacrene-d | 1486 | 0.4 | |
31 | δ-cadinene | 1523 | 0.0 | |
32 | (E)-nerolidol | 1561 | 0.0 | |
33 | caryophyllene oxide | 1582 | 0.0 |
Bacteria | rpm | Concentration of Essential Oil (%) | |||
---|---|---|---|---|---|
0c | 0.1 | 0.2 | 0.4 | ||
S. aureus | 0 | 9.00 ± 0.14 Ax | 8.32 ± 0.07 Bx | 8.07 ± 0.11 BCx | 7.97 ± 0.23 Cx |
13,500 | 8.97 ± 0.06 Ax | 8.21 ± 0.09 Bx | 8.16 ± 0.02 BCx | 8.07 ± 0.07 Cx | |
24,000 | 8.97 ± 0.06 Ax | 8.20 ± 0.03 Bx | 8.05 ± 0.11 Cx | 7.81 ± 0.01 Dx | |
E. coli | 0 | 9.03 ± 0.07 Ax | 8.44 ± 0.15 Bx | 8.25 ± 0.03 BCx | 8.18 ± 0.13 Cx |
13,500 | 8.95 ± 0.15 Ax | 8.49 ± 0.03 Bx | 8.26 ± 0.14 Cx | 7.85 ± 0.06 Dy | |
24,000 | 8.95 ± 0.15 Ax | 8.38 ± 0.06 Bx | 7.91 ± 0.12 Cy | 7.72 ± 0.03 Cz |
Bacteria | Concentration of Chitosan (%) | ||||
---|---|---|---|---|---|
Control | 0.01 | 0.03 | 0.05 | 0.1 | |
S. aureus | 9.05 ± 0.04 Ax | 8.56 ± 0.03 Bx | 8.53 ± 0.02 Bx | 7.93 ± 0.16 Cx | 8.09 ± 0.15 Cx |
E. coli | 9.01 ± 0.01 Ax | 8.57 ± 0.04 Bx | 8.54 ± 0.01 Bx | 8.18 ± 0.07 Cx | 7.94 ± 0.05 Dx |
Bacteria | Concentration of Chitosan (%) | |||||
---|---|---|---|---|---|---|
Control | 0 | 0.01 | 0.03 | 0.05 | 0.1 | |
S. aureus | 9.16 ± 0.09 Ax | 8.10 ± 0.07 Bx | 7.19 ± 0.22 Cx | 6.76 ± 0.17 Dx | 6.82 ± 0.13 Dx | 6.99 ± 0.26 CDx |
E. coli | 9.18 ± 0.01 Ax | 7.93 ± 0.01 By | 7.39 ± 0.15 Cx | 6.92 ± 0.26 Dx | 6.63 ± 0.06 Ex | 7.10 ± 0.16 DEx |
Bacteria | MIC | ||||
---|---|---|---|---|---|
Essential Oil (%) | Chitosan (%) | ||||
0 (rpm) | 13,500 (rpm) | 24,000 (rpm) | +0% E.O. | +0.4% E.O. | |
S. aureus | 0.29 | >0.29 | 0.27 | 0.046 | 0.019 |
E. coli | 0.49 | 0.34 | 0.25 | 0.086 | 0.034 |
Bacteria | Sample | pH | ||
---|---|---|---|---|
5.5 c | 7.4 d | 8.5 e | ||
S. aureus | 0.4% E.O. | 81.20 ± 2.22 Cx | 90.04 ± 1.04 By | 95.10 ± 0.65 Ax |
0.03% chitosan | 85.47 ± 1.33 Ax | 65.26 ± 2.09 Bz | 61.83 ± 1.90 By | |
0.4% E.O. + 0.03% chitosan | 82.58 ± 0.77 Cx | 99.48 ± 0.25 Ax | 97.46 ± 0.94 Bx | |
E. coli | 0.4% E.O. | 78.11 ± 0.40 By | 92.70 ± 0.62 Ay | 71.29 ± 2.56 Cy |
0.03% chitosan | 76.04 ± 1.63 Ay | 62.61 ± 3.70 Bz | 66.06 ± 6.71 ABy | |
0.4% E.O. + 0.03% chitosan | 91.68 ± 4.56 Bx | 99.06 ± 0.07 Ax | 95.06 ± 0.63 ABx |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.-W.; Lin, Y.-H.; Lin, C.-H.; Jen, H.-C. Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli. Molecules 2018, 23, 840. https://doi.org/10.3390/molecules23040840
Chen G-W, Lin Y-H, Lin C-H, Jen H-C. Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli. Molecules. 2018; 23(4):840. https://doi.org/10.3390/molecules23040840
Chicago/Turabian StyleChen, Guan-Wen, Yu-Hsin Lin, Chia-Hua Lin, and Hsiao-Chin Jen. 2018. "Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli" Molecules 23, no. 4: 840. https://doi.org/10.3390/molecules23040840
APA StyleChen, G. -W., Lin, Y. -H., Lin, C. -H., & Jen, H. -C. (2018). Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli. Molecules, 23(4), 840. https://doi.org/10.3390/molecules23040840