Effector–Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities
Abstract
:1. Introduction
2. Effector–Immunity (E–I) Pairs of T6SS
2.1. Cell Wall Targeting Effectors
2.2. Membrane Targeting Effectors
2.3. Effectors Targeting Nucleic Acids
2.4. Other Effectors and Their Chaperones
3. Methods for Identifying T6SS E–I Pairs
4. Methods for Verifying the T6SS E–I Pairs
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Costa, T.R.; Felisberto-Rodrigues, C.; Meir, A.; Prevost, M.S.; Redzej, A.; Trokter, M.; Waksman, G. Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol. 2015, 13, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Filloux, A.; Hachani, A.; Bleves, S. The bacterial type VI secretion machine: Yet another player for protein transport across membranes. Microbiology 2008, 154 Pt 6, 1570–1583. [Google Scholar] [CrossRef] [PubMed]
- Green, E.R.; Mecsas, J. Bacterial Secretion Systems: An Overview. Microbiol. Spectr. 2016, 4, 1. [Google Scholar] [CrossRef]
- Cascales, E. The type VI secretion toolkit. EMBO Rep. 2008, 9, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.T.; Dong, T.G.; Mekalanos, J.J. A view to a kill: The bacterial type VI secretion system. Cell Host Microbe 2014, 15, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Cianfanelli, F.R.; Monlezun, L.; Coulthurst, S.J. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends Microbiol. 2016, 24, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Leiman, P.G.; Basler, M.; Ramagopal, U.A.; Bonanno, J.B.; Sauder, J.M.; Pukatzki, S.; Burley, S.K.; Almo, S.C.; Mekalanos, J.J. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. USA 2009, 106, 4154–4159. [Google Scholar] [CrossRef] [PubMed]
- Basler, M.; Pilhofer, M.; Henderson, G.P.; Jensen, G.J.; Mekalanos, J.J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 2012, 483, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Hachani, A.; Wood, T.E.; Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 2016, 29, 81–93. [Google Scholar] [CrossRef] [PubMed]
- French, C.T.; Toesca, I.J.; Wu, T.H.; Teslaa, T.; Beaty, S.M.; Wong, W.; Liu, M.; Schroder, I.; Chiou, P.Y.; Teitell, M.A.; et al. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc. Natl. Acad. Sci. USA 2011, 108, 12095–12100. [Google Scholar] [CrossRef] [PubMed]
- Sana, T.G.; Baumann, C.; Merdes, A.; Soscia, C.; Rattei, T.; Hachani, A.; Jones, C.; Bennett, K.L.; Filloux, A.; Superti-Furga, G.; et al. Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. mBio 2015, 6, e00712. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.G.; Ho, B.T.; Yoder-Himes, D.R.; Mekalanos, J.J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2013, 110, 2623–2628. [Google Scholar] [CrossRef] [PubMed]
- Whitney, J.C.; Chou, S.; Russell, A.B.; Biboy, J.; Gardiner, T.E.; Ferrin, M.A.; Brittnacher, M.; Vollmer, W.; Mougous, J.D. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector–immunity pair. J. Boil. Chem. 2013, 288, 26616–26624. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.B.; Singh, P.; Brittnacher, M.; Bui, N.K.; Hood, R.D.; Carl, M.A.; Agnello, D.M.; Schwarz, S.; Goodlett, D.R.; Vollmer, W.; et al. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 2012, 11, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Koskiniemi, S.; Lamoureux, J.G.; Nikolakakis, K.C.; t’Kint de Roodenbeke, C.; Kaplan, M.D.; Low, D.A.; Hayes, C.S. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. USA 2013, 110, 7032–7037. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.B.; LeRoux, M.; Hathazi, K.; Agnello, D.M.; Ishikawa, T.; Wiggins, P.A.; Wai, S.N.; Mougous, J.D. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 2013, 496, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Hood, R.D.; Singh, P.; Hsu, F.; Guvener, T.; Carl, M.A.; Trinidad, R.R.; Silverman, J.M.; Ohlson, B.B.; Hicks, K.G.; Plemel, R.L.; et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010, 7, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.M.; Unterweger, D.; Bachmann, V.; Kostiuk, B.; Pukatzki, S. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J. Boil. Chem. 2013, 288, 7618–7625. [Google Scholar] [CrossRef] [PubMed]
- Bingle, L.E.; Bailey, C.M.; Pallen, M.J. Type VI secretion: A beginner’s guide. Curr. Opin. Microbiol. 2008, 11, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, M.; Dong, W.; Pan, Z.; Lu, C.; Yao, H. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ. Microbiol. 2017, 19, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Cascales, E.; Cambillau, C. Structural biology of type VI secretion systems. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2012, 367, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.M.; Brunet, Y.R.; Cascales, E.; Mougous, J.D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol. 2012, 66, 453–472. [Google Scholar] [CrossRef] [PubMed]
- Shalom, G.; Shaw, J.G.; Thomas, M.S. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 2007, 153 Pt 8, 2689–2699. [Google Scholar] [CrossRef] [PubMed]
- Mougous, J.D.; Cuff, M.E.; Raunser, S.; Shen, A.; Zhou, M.; Gifford, C.A.; Goodman, A.L.; Joachimiak, G.; Ordonez, C.L.; Lory, S.; et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006, 312, 1526–1530. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Luo, Z.; Du, H.; Xu, S.; Ni, B.; Zhang, H.; Sheng, X.; Xu, H.; Huang, X. Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr. Microbiol. 2011, 63, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Pukatzki, S.; Ma, A.T.; Revel, A.T.; Sturtevant, D.; Mekalanos, J.J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. USA 2007, 104, 15508–15513. [Google Scholar] [CrossRef] [PubMed]
- Pukatzki, S.; McAuley, S.B.; Miyata, S.T. The type VI secretion system: Translocation of effectors and effector-domains. Curr. Opin. Microbiol. 2009, 12, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Pukatzki, S.; Ma, A.T.; Sturtevant, D.; Krastins, B.; Sarracino, D.; Nelson, W.C.; Heidelberg, J.F.; Mekalanos, J.J. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. USA 2006, 103, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; West, T.E.; Boyer, F.; Chiang, W.C.; Carl, M.A.; Hood, R.D.; Rohmer, L.; Tolker-Nielsen, T.; Skerrett, S.J.; Mougous, J.D. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 2010, 6, e1001068. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, D.L.; Miyata, S.T.; Kitaoka, M.; Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl. Acad. Sci. USA 2010, 107, 19520–19524. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, S.L.; Trunk, K.; English, G.; Fritsch, M.J.; Pourkarimi, E.; Coulthurst, S.J. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 2011, 193, 6057–6069. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.B.; Hood, R.D.; Bui, N.K.; LeRoux, M.; Vollmer, W.; Mougous, J.D. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011, 475, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Z.Q.; Wang, W.J.; Liu, G.F.; Xu, J.H.; Su, X.D.; Dong, Y.H. Structure of the type VI effector–immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J. Boil. Chem. 2013, 288, 5928–5939. [Google Scholar] [CrossRef] [PubMed]
- Alcoforado Diniz, J.; Coulthurst, S.J. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein. J. Bacteriol. 2015, 197, 2350–2360. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.; Cambillau, C.; Cascales, E.; Journet, L. VgrG, Tae, Tle, and beyond: The versatile arsenal of Type VI secretion effectors. Trends Microbiol. 2014, 22, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.B.; Peterson, S.B.; Mougous, J.D. Type VI secretion system effectors: Poisons with a purpose. Nat. Rev. Microbiol. 2014, 12, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Gao, Z.; Hu, H.; Dong, C.; Dong, Y.H. Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett. 2014, 588, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Bui, N.K.; Russell, A.B.; Lexa, K.W.; Gardiner, T.E.; LeRoux, M.; Vollmer, W.; Mougous, J.D. Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep. 2012, 1, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.; Liu, X.; Lu, D.; Zhang, J.; Li, N.; Zhu, C.; Liu, S.; Yu, Q.; Zhao, Y.; Zhang, H.; et al. Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochem. J. 2012, 448, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Benz, J.; Sendlmeier, C.; Barends, T.R.; Meinhart, A. Structural insights into the effector–immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS ONE 2012, 7, e40453. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wang, W.; Feng, H.; Zhang, Y.; Wang, D.C. Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms. J. Boil. Chem. 2012, 287, 26911–26920. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhang, H.; Gao, Z.Q.; Wang, W.J.; She, Z.; Liu, G.F.; Shen, Y.Q.; Su, X.D.; Dong, Y.H. Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem. J. 2013, 454, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Shang, G.; Zhang, H.; Yu, Q.; Cong, X.; Yuan, J.; He, F.; Zhu, C.; Zhao, Y.; Yin, K.; et al. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol. Microbiol. 2014, 92, 1092–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Z.Q.; Wei, Y.; Xu, J.H.; Dong, Y.H. Insights into the cross-immunity mechanism within effector families of bacteria type VI secretion system from the structure of StTae4-EcTai4 complex. PLoS ONE 2013, 8, e73782. [Google Scholar] [CrossRef] [PubMed]
- Sana, T.G.; Flaugnatti, N.; Lugo, K.A.; Lam, L.H.; Jacobson, A.; Baylot, V.; Durand, E.; Journet, L.; Cascales, E.; Monack, D.M. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc. Natl. Acad. Sci. USA 2016, 113, E5044–E5051. [Google Scholar] [CrossRef] [PubMed]
- English, G.; Trunk, K.; Rao, V.A.; Srikannathasan, V.; Hunter, W.N.; Coulthurst, S.J. New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol. 2012, 86, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Srikannathasan, V.; English, G.; Bui, N.K.; Trunk, K.; O’Rourke, P.E.; Rao, V.A.; Vollmer, W.; Coulthurst, S.J.; Hunter, W.N. Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69 Pt 12, 2468–2482. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, M.J.; Trunk, K.; Diniz, J.A.; Guo, M.; Trost, M.; Coulthurst, S.J. Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol. Cell. Proteom. MCP 2013, 12, 2735–2749. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.T.; Kitaoka, M.; Brooks, T.M.; McAuley, S.B.; Pukatzki, S. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect. Immun. 2011, 79, 2941–2949. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.T.; Unterweger, D.; Rudko, S.P.; Pukatzki, S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog. 2013, 9, e1003752. [Google Scholar] [CrossRef] [PubMed]
- Flaugnatti, N.; Le, T.T.; Canaan, S.; Aschtgen, M.S.; Nguyen, V.S.; Blangy, S.; Kellenberger, C.; Roussel, A.; Cambillau, C.; Cascales, E.; et al. A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol. Microbiol. 2016, 99, 1099–1118. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Waterfield, N.R.; Yang, J.; Yang, G.; Jin, Q. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 2014, 15, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wang, X.; Wang, B.; Chen, L.; Zhao, Z.; Waterfield, N.R.; Yang, G.; Jin, Q. The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep. 2016, 16, 1502–1509. [Google Scholar] [CrossRef] [PubMed]
- Bleves, S.; Sana, T.G.; Voulhoux, R. The target cell genus does not matter. Trends Microbiol. 2014, 22, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Jamet, A.; Nassif, X. New players in the toxin field: Polymorphic toxin systems in bacteria. mBio 2015, 6, e00285-15. [Google Scholar] [CrossRef] [PubMed]
- Poole, S.J.; Diner, E.J.; Aoki, S.K.; Braaten, B.A.; t’Kint de Roodenbeke, C.; Low, D.A.; Hayes, C.S. Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 2011, 7, e1002217. [Google Scholar] [CrossRef] [PubMed]
- Bernal, P.; Allsopp, L.P.; Filloux, A.; Llamas, M.A. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J. 2017, 11, 972–987. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.S.; Hachani, A.; Lin, J.S.; Filloux, A.; Lai, E.M. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 2014, 16, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Pan, Z.; Huang, J.; Sun, M.; Lu, C.; Yao, H. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence 2017, 8, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Le Trong, I.; Carl, M.A.; Larson, E.T.; Chou, S.; De Leon, J.A.; Dove, S.L.; Stenkamp, R.E.; Mougous, J.D. Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog. 2012, 8, e1002613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robb, C.S.; Robb, M.; Nano, F.E.; Boraston, A.B. The Structure of the Toxin and Type Six Secretion System Substrate Tse2 in Complex with Its Immunity Protein. Structure 2016, 24, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Whitney, J.C.; Beck, C.M.; Goo, Y.A.; Russell, A.B.; Harding, B.N.; De Leon, J.A.; Cunningham, D.A.; Tran, B.Q.; Low, D.A.; Goodlett, D.R.; et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol. Microbiol. 2014, 92, 529–542. [Google Scholar] [CrossRef] [PubMed]
- LaCourse, K.D.; Peterson, S.B.; Kulasekara, H.D.; Radey, M.C.; Kim, J.; Mougous, J.D. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat. Microbiol. 2018, 3, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Whitney, J.C.; Quentin, D.; Sawai, S.; LeRoux, M.; Harding, B.N.; Ledvina, H.E.; Tran, B.Q.; Robinson, H.; Goo, Y.A.; Goodlett, D.R.; et al. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 2015, 163, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Hachani, A.; Allsopp, L.P.; Oduko, Y.; Filloux, A. The VgrG proteins are “a la carte” delivery systems for bacterial type VI effectors. J. Boil. Chem. 2014, 289, 17872–17884. [Google Scholar] [CrossRef] [PubMed]
- Chatzidaki-Livanis, M.; Geva-Zatorsky, N.; Comstock, L.E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl. Acad. Sci. USA 2016, 113, 3627–3632. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Moore, R.; Wilton, M.; Wong, M.J.; Lam, L.; Dong, T.G. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc. Natl. Acad. Sci. USA 2015, 112, 9106–9111. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Si, M.; Song, Y.; Zhu, W.; Gao, F.; Wang, Y.; Zhang, L.; Zhang, W.; Wei, G.; Luo, Z.Q.; et al. Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog. 2015, 11, e1005020. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Wang, Y.; Zhang, B.; Zhao, C.; Kang, Y.; Bai, H.; Wei, D.; Zhu, L.; Zhang, L.; Dong, T.G.; et al. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep. 2017, 20, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Zhao, C.; Burkinshaw, B.; Zhang, B.; Wei, D.; Wang, Y.; Dong, T.G.; Shen, X. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc. Natl. Acad. Sci. USA 2017, 114, E2233–E2242. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, W.; Cheng, J.; Yang, X.; Zhu, K.; Wang, Y.; Wei, G.; Qian, P.Y.; Luo, Z.Q.; Shen, X. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat. Commun. 2017, 8, 14888. [Google Scholar] [CrossRef] [PubMed]
- Altindis, E.; Dong, T.; Catalano, C.; Mekalanos, J. Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector–immunity pair. mBio 2015, 6, e00075. [Google Scholar] [CrossRef] [PubMed]
- Lien, Y.W.; Lai, E.M. Type VI Secretion Effectors: Methodologies and Biology. Front. Cell. Infect. Microbiol. 2017, 7, 254. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, Y.; Xu, H.H.; Hao, L.; Deng, Z.; Rajakumar, K.; Ou, H.Y. SecReT6: A web-based resource for type VI secretion systems found in bacteria. Environ. Microbiol. 2015, 17, 2196–2202. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Wang, J.; Li, C.; Revote, J.; Zhang, Y.; Naderer, T.; Hayashida, M.; Akutsu, T.; Webb, G.I.; Lithgow, T.; et al. SecretEPDB: A comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Sci. Rep. 2017, 7, 41031. [Google Scholar] [CrossRef] [PubMed]
- Aubert, D.F.; Xu, H.; Yang, J.; Shi, X.; Gao, W.; Li, L.; Bisaro, F.; Chen, S.; Valvano, M.A.; Shao, F. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe 2016, 19, 664–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianfanelli, F.R.; Alcoforado Diniz, J.; Guo, M.; De Cesare, V.; Trost, M.; Coulthurst, S.J. VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 2016, 12, e1005735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, J.M.; Agnello, D.M.; Zheng, H.; Andrews, B.T.; Li, M.; Catalano, C.E.; Gonen, T.; Mougous, J.D. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell 2013, 51, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Shneider, M.M.; Buth, S.A.; Ho, B.T.; Basler, M.; Mekalanos, J.J.; Leiman, P.G. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 2013, 500, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Bondage, D.D.; Lin, J.S.; Ma, L.S.; Kuo, C.H.; Lai, E.M. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc. Natl. Acad. Sci. USA 2016, 113, E3931–E3940. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Cascales, E. Antibacterial Weapons: Targeted Destruction in the Microbiota. Trends Microbiol. 2018, 26, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Benz, J.; Meinhart, A. Antibacterial effector/immunity systems: It’s just the tip of the iceberg. Curr. Opin. Microbiol. 2014, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, S.; Li, J.; Shen, X.; Wang, Y.; Yuan, Z. Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch. Microbiol. 2011, 193, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xiao, X.; Li, C.; Wang, T.; Zhao, R.; Zhang, W.; Zhang, L.; Wang, Y.; Shen, X. The dual transcriptional regulator RovM regulates the expression of AR3- and T6SS4-dependent acid survival systems in response to nutritional status in Yersinia pseudotuberculosis. Environ. Microbiol. 2015, 17, 4631–4645. [Google Scholar] [CrossRef] [PubMed]
- Allsopp, L.P.; Wood, T.E.; Howard, S.A.; Maggiorelli, F.; Nolan, L.M.; Wettstadt, S.; Filloux, A. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2017, 114, 7707–7712. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
E–I Pairs | Organisms | Effector Activity | Paper Highlights | Citation |
---|---|---|---|---|
Cell wall Targeting | ||||
Tse1, 3/Tsi1, 3 | P. aeruginosa | Amidase (Tse1), Muramidase(Tse3) | Tse1, 3 hydrolyze PG and Tsi1, 3 are the immunity proteins | [32] |
Tse1(Tae1)/Tsi1(Tai1) | P. aeruginosa | Amidase | Analyzed the crystal structures of Tse1 and Tse1/Tsi1 complex | [39] |
Tse3(Tge1)/Tsi3(Tgi1) | P. aeruginosa | Hydrolyse PG | Revealed a calcium-dependent membrane-binding mechanism | [43] |
Tae1–4/Tai1–4 | B. thailandensis | Amidase | Defined the Tae superfamily | [14] |
Tae3/Tai3 | R. pickettii | Amidase | Analyzed the structures of Tae3, Tai3 and Tae3/Tai3 complex | [42] |
Tae4/Tai4 | E. cloacae, S. Typhimurium | DL-endopeptidase | Analyzed the structure of Tae4/Tai4 | [33] |
Proved the cross-immunity of T6SS E–I pairs | [44] | |||
Tae4/Tai4 | S.Typhimurium | Muramidase | Tae4 contributes to bacteria competition and infection | [45] |
Tae/Tai | A. tumefaciens | Target the PG | Indentified Tae/Tai pairs | [58] |
VgrG3/TsaB(TsiV3) | V. cholerae | Degrade PG | Identified the VgrG-3 and the antitoxin TsaB | [18] |
Analyzed the structures of native TsaB and the VgrG3C-TsaB complex | [37] | |||
VgrG3/TsiV3(TsaB) | V. cholerae | Disrupt bacterial cell wall | Identified E–I pairs with Tn-seq | [12] |
Tge1–3/Tgi1–3 | P. protegens | PG glycoside hydrolase | Identified Tge/Tgi Families | [13] |
Ssp1, 2/Rap1a, 2a | S. marcescens | Target cell wall | Identified new toxic T6SS pairs | [46] |
PG DL-endopeptidase | Analyzed the E–I pair structures | [47] | ||
Ssp1, 2/Rap1, 2 | S. marcescens | Predicted amidases | Identified the Ssp1-6 toxins with proteomic method | [48] |
TseH/TsiH | V. cholerae | Predicted amidase | Identified a new E–I pair with secretome analysis | [72] |
Membrane Targeting | ||||
VasX/TsiV2, TseL/TsiV1(Tle2/Tli2) | V. cholerae | Lipase activity | Identified E–I pairs with Tn-seq | [12] |
The two immunity proteins possess a dual regulatory profile | [50] | |||
Tle1–4, 5(PldA)/Tli1–5 | B. thailandensis, et al. | Esterases | Discovered a superfamily of bacterial phospholipase | [16] |
PldB/PA5088, PA5087, and PA5086 | P. aeruginosa | Phospholipase D | PldB targets the bacterial periplasm and activate eukaryotic PI3K/Akt pathway | [52] |
TplE/TplEi(Tle4/Tli4) | P. aeruginosa | Phospholipase A1 and Lipase activity | Toxicity in bacterial periplasm and could induce host cell ER stress and autophagy | [53] |
Tle1/Tli1 | E. coli EAEC 17-2 | Phospholipase A1 and A2 activities | The transport of antibacterial Tle1 is mediated by the C-terminus of VgrG | [51] |
Hcp-ET2/ETi2 (Tle1/Tli1) | E. coli STEC004, E. coli PE321 | Tle1 Phospholipase | Defined Hcp-ET1-5 and the immunity proteins | [59] |
Nucleotides Targeting | ||||
Tde1, 2/Tdi1, 2 | A. tumefaciens | Nucleases | Indentified Tde/Tdi superfamily | [58] |
RhsA, B/RhsIA, B | D. dadantii | Nucleases | Rhs proteins mediate intercellular competition | [15] |
Rhs2-CT/RhsI2 | S. marcescens | HNH endonuclease | Analyzed the Rhs effectors in intraspecies competition | [34] |
Rhs-CT3-8/Rhs-CTI3-8 | E. coli STEC004, E. coli PE027 | DNase and RNase | Analyzed the Rhs-CTs family | [20] |
Hcp-ET1, 3, 4/ETi1, 3, 4 | E. coli STEC004, E. coli PE321 | HNH-DNase (1), Pyocin S3 (3), Colicin-DNase (4) | Defined Hcp-ET1-5 and the immunity proteins | [59] |
Tke2/Tki2 | P.putida | Nucleases | Toxic Rhs-type effectors were identified and characterized | [57] |
Other effectors | ||||
Hcp-ET5/ETi5 | E. coli STEC004, E. coli PE321 | Papain-like peptidase | Defined Hcp-ET1-5 and the immunity proteins | [59] |
Tse2/Tsi2 | P. aeruginosa | Arrest bacteria growth | Identified Tse1–3 effectors and immunity protein Tsi2 | [17] |
Tse2/Tsi2 | P. aeruginosa | Induce bacterial quiescence | Structure analysis revealed the interaction mechanism of Tse2/Tsi2 | [60] |
Tse2/Tsi2 | P. aeruginosa | NAD-dependent ADP-ribosylating toxins | Analyzed the structure of Tse2 and Tsi2 | [61] |
Tse4-6/Tsi4-6 | P. aeruginosa | Antibacterial effectors | Proteomics screen for T6SS substrates | [62] |
Tse6/Tsi6 | P. aeruginosa | NAD(P)+ Glycohydrolase | Analyzed the function, delivery and structure of Tse6 toxin | [64] |
Tke1, 3/Tki1, 3 | P.putida | NAD(P)+ Glycohydrolase (Tke1), unknown for Tke3 | Toxic Rhs-type effectors were identified and characterized | [57] |
TseC/TsiC | A. hydrophila | Antibacterial toxicity with a predicted colicin domain | Identified T6SS effector using a conserved chaperone domain | [67] |
RhsP1, 2-CT/RhsI1, 2 | P. aeruginosa | Antibacterial toxicity | Identified new E–I pairs carried by VgrG | [65] |
Rhs-CT1, 2, 9/Rhs-CTI1, 2, 9 | E. coli STEC004, E. coli PE027 | Metallopeptidase (1, 2) or Deaminase (9) | Analyzed the Rhs-CTs family | [20] |
Bfe1, 2/Bfi1, 2 | B. fragilis | Antagonism function | T6SS E–I pairs were responsible for antagonism to gut Bacteroidales species | [66] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Long, M.; Shen, X. Effector–Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities. Molecules 2018, 23, 1009. https://doi.org/10.3390/molecules23051009
Yang X, Long M, Shen X. Effector–Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities. Molecules. 2018; 23(5):1009. https://doi.org/10.3390/molecules23051009
Chicago/Turabian StyleYang, Xiaobing, Mingxiu Long, and Xihui Shen. 2018. "Effector–Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities" Molecules 23, no. 5: 1009. https://doi.org/10.3390/molecules23051009
APA StyleYang, X., Long, M., & Shen, X. (2018). Effector–Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities. Molecules, 23(5), 1009. https://doi.org/10.3390/molecules23051009