A Preliminary Study of Aroma Composition and Impact Odorants of Cabernet Franc Wines under Different Terrain Conditions of the Loess Plateau Region (China)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Parameters
2.2. Volatile Composition
2.3. Odor-activity Values (OAVs)
3. Materials and Methods
3.1. Chemicals
3.2. Sample Collection and Vinification
3.3. HS-SPME Procedure
3.4. GC–MS Analysis
3.5. Odor-activity Values (OAVs)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Nogales, J.; Fernandez-Fernandez, E.; Vila-Crespo, J. Characterization and classification of Spanish Verdejo young white wines by volatile and sensory analysis with chemometric tools. J. Sci. Food Agric. 2009, 89, 1927–1935. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Boss, P.K. Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229. [Google Scholar] [CrossRef]
- Rapp, A. Volatile flavour of wine: Correlation between instrumental analysis and sensory perception. Nahrung. 1998, 42, 351–363. [Google Scholar] [CrossRef]
- Bonino, M.; Schellino, R.; Rizzi, C.; Aigotti, R.; Delfini, C.; Baiocchi, C. Aroma compounds of an Italian wine (Ruche) by HS–SPME analysis coupled with GC–ITMS. Food Chem. 2003, 80, 125–133. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Falqué, E.; Ferreira, A.C.; Hogg, T.; Guedes-Pinho, P. Determination of aromatic descriptors of Touriga Nacional wines by sensory descriptive analysis. Flavour Fragr. J. 2004, 19, 298–302. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Pawliszyn, J. New directions in sample preparation for analysis of organic compounds. Trend Anal. Chem. 1995, 14, 113–122. [Google Scholar] [CrossRef]
- Augusto, F.; Lopes, A.L.; Zini, C.A. Sampling and sample preparation for analysis of aromas and fragrances. Trend Anal. Chem. 2003, 22, 160–169. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yang, M.J.; Pawliszyn, J. Solid phase microextraction. A solvent-free alternative for sample preparation. Anal. Chem. 1994, 66, 844–853. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.C.; De Revel, G. Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-solid-phase microextraction–gas chromatography–mass spectrometry. Food Chem. 2010, 121, 1236–1245. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.W. Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.X.; Xu, Q.; Duan, C.Q.; Qu, W.Q.; Wu, Y.W. Comparative study of aromatic compounds in young red wines from Cabernet Sauvignon, Cabernet Franc, and Cabernet Gernischet varieties in China. J. Food Sci. 2007, 72, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D’Onofrio, C.; Tomasi, D. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): Effects on aroma evolution and wine sensory profile. J. Sci. Food Agric. 2017, 97, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
- Falcao, L.D.; de Revel, G.; Perello, M.C.; Moutsiou, A.; Zanus, M.C.; Bordignon-Luiz, M.T. A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13-norisoprenoids, and the sensory profile of Brazilian Cabernet sauvignon wines. J. Agric. Food Chem. 2007, 55, 3605–3612. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.G.; Wardle, D.A.; Dever, M.J. Vine performance, fruit composition and wine sensory attributes of Gewürztraminer in response to vineyard location and canopy manipulation. Am. J. Enol. Vitic. 1996, 47, 77–92. [Google Scholar]
- Corino, L.; Stefano, D.R. Response of white Muscat grapes in relation to various growing environments and evaluation of systems for training and pruning. Rivista Vitic. Enol. 1988, 41, 72–85. [Google Scholar]
- Yue, T.X.; Chi, M.; Song, C.Z.; Liu, M.Y.; Meng, J.F.; Zhang, Z.W.; Li, M.H. Aroma characterization of Cabernet Sauvignon wine from the Plateau of Yunnan (China) with different altitudes using SPME-GC/MS. Int. J. Food Prop. 2015, 18, 1584–1596. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xing, K.; Zhang, X.X.; Wang, H.; Wang, Y.; Wang, F.; Li, J.M. Influence of freeze concentration technique on aromatic and phenolic compounds, color attributes, and sensory properties of Cabernet Sauvignon wine. Molecules 2017, 22, 899. [Google Scholar] [CrossRef] [PubMed]
- Cliff, M.; Yuksel, D.; Girard, B.; King, M. Characterization of Canadian ice wines by sensory and compositional analysis. Am. J. Enol. Vitic. 2002, 53, 46–53. [Google Scholar]
- Jackson, D.I.; Lombard, P.B. Environmental and management practices affecting grape composition and wine quality-a review. Am. J. Enol. Viticult. 1993, 44, 409–430. [Google Scholar]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2016, 63, 9777–9788. [Google Scholar] [CrossRef] [PubMed]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [PubMed]
- Lorenzo, C.; Pardo, F.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Complementary effect of Cabernet Sauvignon on Monastrell wines. J. Food Compos. Anal. 2008, 21, 54–61. [Google Scholar] [CrossRef]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Camara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast its importance to wine aroma: A review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar]
- Francioli, S.; Torrens, J.; Riu-Aumatell, M.; López-Tamames, E.; Buxaderas, S. Volatile compounds by SPME-GC as agemarkers of sparkling wines. Am. J. Enol. Vitic. 2003, 54, 158–162. [Google Scholar]
- Li, H. The Taste and Aroma Balance. In Wine Tasting, 1st ed.; Science Press: Beijing, China, 2006; pp. 86–88. [Google Scholar]
- Jiang, B.; Xi, Z.M.; Luo, M.J.; Zhang, Z.W. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Schreirer, P.; Jennings, W.G. Flavor composition of wines: A review. Crit. Rev. Food Sci. 1979, 12, 59–111. [Google Scholar] [CrossRef]
- Shinohara, T. Gas chromatographic analysis of volatile fatty acids in wines. Agric. Biol. Chem. 1985, 49, 2211–2212. [Google Scholar]
- Gil, M.; Cabellos, J.M.; Arroyo, T.; Prodanov, M. Characterization of the volatile fraction of young wines from the denomination of origin “Vinos de Madrid” (Spain). Anal. Chim. Acta 2006, 563, 145–153. [Google Scholar] [CrossRef]
- Gerbaux, V.; Vincent, B.; Bertrand, A. Influence of maceration temperature and enzymes on the content of volatile phenols in Pinot noir wines. Am. J. Enol. Vitic. 2002, 53, 131–137. [Google Scholar]
- Chatonne, P.; Dubourdieu, D.; Boidron, J.N. The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am. J. Enol. Vitic. 1995, 46, 463–468. [Google Scholar]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Li, H. The Smell and OAVs Analysis of Wine. In Wine Tasting, 1st ed.; Science Press: Beijing, China, 2006; pp. 33–46. [Google Scholar]
- Moyano, L.; Zea, L.; Villafuerte, L.; Medina, M. Comparison of odor-active compounds in sherry wines processed from ecologically and conventionally grown Pedro Ximenez grapes. J. Agric. Food Chem. 2009, 57, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tao, Y.S.; Wang, H.; Zhang, L. Impact odorants of Chardonnay dry white wine from Changli County (China). Eur. Food Res. Tech. 2008, 227, 287–292. [Google Scholar] [CrossRef]
- Gomez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Salo, P. Variability of odour thresholds for some compounds in alcoholic beverages. J. Sci. Food Agr. 1970, 21, 597–600. [Google Scholar] [CrossRef]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatograpgy–olfactory and chemical qualitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food. Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Souid, I.; Hassene, Z.; Palomo, E.S.; Perez-Coello, M.S.; Ghorbel, A. Varietal aroma compounds of Vitis vinifera L. cv Khamri grown in Tunisia. J. Food Qual. 2007, 30, 718–730. [Google Scholar] [CrossRef]
- Guadagni, D.G.; Buttery, R.G.; Okano, S. Odour thresholds of some organic compounds associated with food flavours. J. Sci. Food Agr. 1963, 14, 761–765. [Google Scholar] [CrossRef]
- Teranishi, R.; Wick, E.L.; Hornstein, I.; Buttery, R.G. Flavor Chemistry and Odor Thresholds. In Flavor Chemistry: 30 Years of Progress, 3rd ed.; Buttery, R.G., Ed.; Kluwer Academic: Boston, MA, USA, 1999; pp. 353–367. [Google Scholar]
- Howard, K.L.; Mike, J.H.; Riesen, R. Validation of a solid-phase microextraction method for headspace analysis of wine aroma components. Am. J. Enol. Vitic. 2005, 56, 37–45. [Google Scholar]
- Ferreira, V.; Lápez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Yuan, C.L.; Wang, S.S. Wine Techniques. In Vinification of Wine, 2nd ed.; Li, H., Ed.; Science Press: Beijing, China, 2006; pp. 132–138. [Google Scholar]
- Wang, H. Physical and Chemical Analysis of Grape and Wine. In Standard Practice for Grape and Wine Experiment, 1st ed.; Xi'an Map Publishing House: Xi’an, China, 1999; pp. 152–159. [Google Scholar]
- Wang, X.Y. Study on the Antioxidant Activity and Methods of Detection in Wine. Doctoral Thesis, Northwest A & F University, Xi’an, China, 2008. [Google Scholar]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Analytical Parameters | F-Land | LS-Land | HS-Land | |||
---|---|---|---|---|---|---|
Must | Wine | Must | Wine | Must | Wine | |
Total sugar (g/L) | 210.7 ± 2.2 A | NA | 198.5 ± 1.8 A | NA | 197.4 ± 0.9 A | NA |
Total acidity 1 (g/L) | 7.5 ± 0.5 A | 9.6 ± 0.0 a | 7.2 ± 0.3 A | 9.3 ± 0.2 a | 6.9 ± 0.1 A | 9.5 ± 0.2 a |
pH | 3.2 ± 0.1 A | 3.2 ± 0.1 a | 3.3 ± 0.1 A | 3.2 ± 0.2 a | 3.1 ± 0.1 A | 3.1 ± 0.2 a |
Total phenolics 2 (mg/kg or mg/L) | 2306.2 ± 152.4 A | 889.7 ± 56.8 a | 2403.1 ± 96.0 A | 707.4 ± 20.5 b | 2306.1 ± 102.3 A | 660.9 ± 33.6 b |
Residual sugar (g/L) | NA | 2.5 ± 0.1 a | NA | 2.2 ± 0.0 a | NA | 1.2 ± 0.2 b |
Ethanol (%, v/v) | NA | 11.8 ± 0.2 a | NA | 11.6 ± 0.1 a | NA | 12.1 ± 0.1 a |
Compounds | RI | Threshold (mg/L) | Sensory properties | Concentration (μg/L) | ||
---|---|---|---|---|---|---|
F-Land | LS-Land | HS-Land | ||||
Alcohols | ||||||
1-Propanol | 1057 | 306 [35] | Fresh, alcohol | 16659.0 ± 880.5 c | 30857.9 ± 1609.7 a | 21572.9 ± 503.0 b |
Isobutyl alcohol | 1111 | 40 [5] | Fusel, alcohol | 10060.8 ± 72.4 c | 14970.7 ± 144.7 b | 19902.2 ± 112.6 a |
1-Butanol | 1149 | 150 [35] | Medicinal, alcohol | 1332.0 ± 140.3 b | 1487.7 ± 136.7 a | 1207.7 ± 18.5 c |
Isoamyl alcohol | 1209 | 30 [5] | Cheese | 51052.5 ± 36.8 c | 55280.9 ± 1131.0 b | 67458.6 ± 759.6 a |
1-Pentanol | 1268 | 80 [36] | Fruity, balsamic | 6.0 ± 0.5 | nd | 13.4 ± 1.3 |
4-Methyl-1-pentanol | 1309 | 50 [37] | NA | nd | 132.7 ± 4.8 | nd |
1-Hexanol | 1348 | 8 [5] | Green, grass | 1304.2 ± 13.2 c | 2851.6 ± 49.3 a | 1559.3 ± 160.9 b |
(E)-3-hexen-1-ol | 1354 | 4 × 10−1 [5] | Green, floral | 16.5 ± 0.6 c | 55.1 ± 2.3 a | 45.3 ± 5.5 b |
(Z)-3-hexen-1-ol | 1378 | 4 × 10−1 [5] | Green | 35.4 ± 2.5 c | 580.2 ± 10.1 a | 107.1 ± 7.8 b |
2-Octanol | 1417 | 1.3 × 10−1 [36] | NA | tr | nd | nd |
1-Octen-3-ol | 1445 | NA | NA | 38.2 ± 2.4 | nd | nd |
1-Heptanol | 1448 | 1 [36] | Grape, sweet | 71.9 ± 0.9 c | 191.9 ± 9.6 a | 88.9 ± 5.0 b |
levo-2,3-Butanediol | 1542 | 120 [38] | Butter, creamy | 183.2 ± 10.4 b | 805.8 ± 3.5 a | 791.2 ± 45.4 a |
1-Octanol | 1554 | 1.3 × 10−1 [36] | Intense citrus, roses | 17.6 ± 0.7 b | 39.8 ± 1.2 a | 3.3 ± 0.3 c |
3-(Methylthio)-1-propanol | 1726 | 5 × 10−1 [5] | Boiled potato, rubber | 2041.4 ± 141.3 b | 2796.6 ± 43.2 a | 2900.4 ± 66.9 a |
1-Decanol | 1781 | 4 × 10−1 [5] | Orange flowery, special fatty | 10.9 ± 0.7 | 12.8 ± 0.3 | nd |
Benzyl alcohol | 1894 | 200 [39] | Citrusy, sweet | 352.3 ± 2.7 b | 604.8 ± 4.5 a | 622.7 ± 14.6 a |
2-Phenylethanol | 1928 | 10 [5] | Flowery, pollen, perfumed | 11434.8 ± 608.3 b | 31433.8 ± 1228.5 a | 30600.5 ± 50.7 a |
Citronellol | 1767 | 1 × 10−1 [5] | Green lemon | 2.6 ± 0.1 c | 14.0 ± 0.3 a | 5.1 ± 0.1 b |
Subtotal (μg/L) | 94619.3 | 142116.3 | 146878.6 | |||
Proportion (%) | 41.1 | 41.4 | 40.0 | |||
Esters | ||||||
Ethyl acetate | 877 | 7.5 [5] | Fruity, sweet | 64571.6 ± 298.4 c | 107130.0 ± 889.6 b | 123756.8 ± 928.3 a |
Ehyl butanoate | 1032 | 2 × 10−2 [5] | Sour fruit, fruity | nd | nd | 265.8±23.0 |
Ethyl hexanoate | 1232 | 5 × 10−3 [5] | Fruity, anise | 51090.6 ± 60.4 b | 63860.7 ± 364.7 a | 64627.6 ± 501.9 a |
Phenethyl acetate | 1830 | 2.5 × 10−1 [5] | Pleasant, floral | 8.1 ± 0.3 b | 31.8 ± 1.7 a | 36.9 ± 4.4 a |
Isoamyl acetate | 1122 | 3 × 10−2 [5] | Banana | 2238.0 ± 113.8 a | 1569.5 ± 29.3 b | 2051.5 ± 59.5 a |
Hexyl acetate | 1287 | 6.7 × 10−1 [35] | Pleasant fruity, pear | 178.1 ± 3.1 a | 125.1 ± 6.6 c | 154.9 ± 10.7 b |
Ethyl lactate | 1363 | 14 [40] | Lactic, raspberry | 4203.7 ± 124.4 c | 4477.4 ± 20.9 b | 5646.6 ± 100.1 a |
Heptyl acetate | 1051 | 1.4 [36] | Almond, pear | 1.1 ± 0.2 b | 2.1 ± 0.3 a | 1.5 ± 0.1 b |
Methyl octanoate | 1111 | 2 × 10−1 [36] | Intense citrus | 2.2 ± 0.0 | nd | 3.1 ± 0.1 |
Ethyl octanoate | 1429 | 2 × 10−3 [5] | Pineapple, pear, floral | 4383.9 ± 77.5 c | 6263.5 ± 139.8 a | 5741.8 ± 44.2 b |
Isoamyl hexanoate | 2044 | NA | NA | tr | tr | tr |
Ethyl decanoate | 1637 | 2 × 10−1 [5] | Fruity, fatty, pleasant | 861.8 ± 2.8 b | 1148.7 ± 45.6 a | 1200.5 ± 77.0 a |
Diethyl succinate | 1682 | 200 [41] | Light fruity | 766.2 ± 33.4 c | 1456.9 ± 89.6 a | 1123.0 ± 100.5 b |
Ethyl dodecanoate | 1848 | 1.5 [36] | Flowery, fruity | 698.5 ± 2.9 c | 1672.4 ± 59.9 b | 3375.1 ± 77.7 a |
Subtotal (μg/L) | 129003.8 | 187738.1 | 207985.1 | |||
Proportion (%) | 56.1 | 54.6 | 56.6 | |||
Acids | ||||||
Isobutyric acid | 1607 | 200 [5] | Fatty | nd | 24.7 ± 1.3 | nd |
Hexanoic acid | 1855 | 3 [5] | Cheese, rancid, fatty | 1737.4±54.2 b | 4113.2 ± 231.0 a | 3961.0 ± 37.1 a |
Heptanoic acid | 1990 | 3 [42] | Fatty, dry | tr | nd | nd |
Octanoic acid | 2075 | 5 × 10−1 [5] | Rancid, harsh, cheese, fatty acid | 1834.4 ± 137.8 b | 4094.4 ± 97.8 a | 3875.1 ± 233.4 a |
Decanoic acid | 2292 | 15 [5] | Fatty, unpleasant | 501.0 ± 100.8 b | 1483.5 ± 30.8 a | 1404.1 ± 74.5 a |
Subtotal (μg/L) | 4072.8 | 9715.8 | 9240.2 | |||
Proportion (%) | 1.8 | 2.8 | 2.5 | |||
Aldehydes and ketones | ||||||
Nonanal | 1394 | 1 × 10−3 [43] | Green, slightly pungent | tr | tr | nd |
Benzaldehyde | 1534 | 2 [35] | Almond | 42.0 ± 2.5 a | 11.7 ± 0.1 b | 11.4 ± 0.4 b |
Benzylethylaldehyde | 1782 | NA | NA | 55.0±3.7 | nd | nd |
Geranylacetone | 1864 | 6 × 10−2 [36] | Floral | tr | nd | 5.5 ± 0.2 |
Acetoin | 1284 | 150 [5] | Flowery, wet | 2343.2 ± 50.7 c | 4009.7 ± 138.9 a | 3064.3 ± 67.7 b |
Subtotal (μg/L) | 2440.2 | 4021.4 | 3081.2 | |||
Proportion (%) | 1.1 | 1.2 | 0.8 | |||
Others | ||||||
Phenol | 2006 | NA | NA | 0.6 ± 0.0 c | 2.4±0.1 a | 1.8 ± 0.2 b |
Subtotal (μg/L) | 0.6 | 2.4 | 1.8 | |||
Proportion (%) | < 0.1 | < 0.1 | <0 .1 | |||
Total (μg/L) | 230136.7 | 343594.0 | 367186.9 |
Compounds | Threshold (mg/L) | Sensory properties | F-Land | LS-Land | HS-Land |
---|---|---|---|---|---|
Ethyl hexanoate | 5 × 10−3 [5] | Fruity, anise | 10218.1 | 12772.1 | 12925.5 |
Ethyl octanoate | 2 × 10−3 [5] | Pineapple, pear, floral | 2192.0 | 3131.8 | 2870.9 |
Isoamyl acetate | 3 × 10−2 [5] | Banana | 74.6 | 52.3 | 68.4 |
Ethyl acetate | 7.5 [5] | Fruity, sweet | 8.6 | 14.3 | 16.5 |
Ethyl butanoate | 2 × 10−2 [5] | Sour fruit, fruity | nd | nd | 13.3 |
Octanoic acid | 5 × 10−1 [5] | Rancid, harch, cheese, fatty acid | 3.7 | 8.2 | 7.8 |
Ethyl decanoate | 2 × 10−1 [5] | Fruity, fatty, pleasant | 4.3 | 5.7 | 6.0 |
3-(Methylthio)-1--propanol | 5 × 10−1 [5] | Boiled potato, rubber | 4.1 | 5.6 | 5.8 |
Ethyl dodecanoate | 1.5 [36] | Flowery, fruity | 0.5 | 1.1 | 2.3 |
2-Phenylethanol | 10 [5] | Flowery, pollen, perfume | 1.1 | 3.1 | 3.1 |
Isoamyl alcohol | 30 [5] | Cheese | 1.7 | 1.8 | 2.2 |
(Z)-3-Hexen-1-ol | 4 × 10−1 [5] | Green | 0.1 | 1.5 | 0.3 |
Hexanoic acid | 3 [5] | Cheese, rancid, fatty | 0.6 | 1.4 | 1.3 |
Locality | North latitude | East longitude | Altitude (m) | Aspect | Slope (%) |
---|---|---|---|---|---|
F-Land | 35°59′59″ | 110°46′48″ | 1201 | NA | NA |
LS-Land | 36°01′38″ | 110°49′00″ | 1323 | SN | 6.2 |
HS-Land | 36°02′41″ | 110°48′43″ | 1381 | SN | 13.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Zhang, Z.-W. A Preliminary Study of Aroma Composition and Impact Odorants of Cabernet Franc Wines under Different Terrain Conditions of the Loess Plateau Region (China). Molecules 2018, 23, 1096. https://doi.org/10.3390/molecules23051096
Jiang B, Zhang Z-W. A Preliminary Study of Aroma Composition and Impact Odorants of Cabernet Franc Wines under Different Terrain Conditions of the Loess Plateau Region (China). Molecules. 2018; 23(5):1096. https://doi.org/10.3390/molecules23051096
Chicago/Turabian StyleJiang, Bao, and Zhen-Wen Zhang. 2018. "A Preliminary Study of Aroma Composition and Impact Odorants of Cabernet Franc Wines under Different Terrain Conditions of the Loess Plateau Region (China)" Molecules 23, no. 5: 1096. https://doi.org/10.3390/molecules23051096
APA StyleJiang, B., & Zhang, Z.-W. (2018). A Preliminary Study of Aroma Composition and Impact Odorants of Cabernet Franc Wines under Different Terrain Conditions of the Loess Plateau Region (China). Molecules, 23(5), 1096. https://doi.org/10.3390/molecules23051096