Liquid Marbles: From Industrial to Medical Applications
Abstract
:1. Introduction
2. Liquid Marbles
2.1. State of the Art
2.2. Liquid Marbles’ Formulation
2.3. Liquid Marbles Covered in a Hydrophilic Shell
2.4. How to Obtain Liquid Marbles
3. Powders’ Superficial Properties
Contact Angle: Methods of Determination
4. Liquid Marbles’ Properties
4.1. Surface Tension
4.2. Liquid Marbles’ Elasticity
4.3. Liquid Marbles’ Coalescence
4.4. Liquid Marbles’ Drying
4.5. Liquid Marbles’ Freezing
4.6. Liquid Marbles’ Floating and Self-Propulsion
5. Liquid Marbles’ Applications
5.1. Applications in the Pharmaceutical Domain
5.2. Liquid Marbles as Cosmeceuticals
5.3. Liquid Marbles as Biological and Biochemical Micro-Reactors
5.4. Liquid Marbles as Chemical Reactors
5.5. Liquid Marbles as Sensors and Analytical Platforms
5.6. Liquid Marbles as Gas Sensors, Transporters and Emitters: Gas Marbles
6. Conclusions
Conflicts of Interest
References
- Mahadevan, L.; Pomeau, Y. Rolling droplets. Phys. Fluids 1999, 11, 2449–2453. [Google Scholar] [CrossRef]
- Aussillous, P.; Quéré, D. Liquid marbles. Nature 2001, 411, 924–927. [Google Scholar] [CrossRef] [PubMed]
- Janardan, N.; Panchagnula, M.; Bormashenko, E. Liquid marbles: Physics and applications. Sadhana Acad. Proc. Eng. Sci. 2015, 40, 653–671. [Google Scholar] [CrossRef]
- McHale, G.; Newton, M.I. Liquid marbles: Principles and applications. Soft Matter 2011, 7, 5473–5481. [Google Scholar] [CrossRef]
- Mahadevan, L. Non-stick water. Nature 2001, 411, 895–896. [Google Scholar] [CrossRef] [PubMed]
- Dandan, M.; Erbil, H.Y. Evaporation rate of graphite liquid marbles: Comparison with water droplets. Langmuir 2009, 25, 8362–8367. [Google Scholar] [CrossRef] [PubMed]
- Mele, E.; Bayer, I.S.; Nanni, G.; Heredia-Guerrero, J.A.; Ruffilli, R.; Ayadi, F.; Marini, L.; Cingolani, R.; Athanassiou, A. Biomimetic approach for liquid encapsulation with nanofibrillar cloaks. Langmuir 2014, 30, 2896–2902. [Google Scholar] [CrossRef] [PubMed]
- Quéré, D.; Aussillous, P. Properties of liquid marbles. Proc. R. Soc. A Math. Phys. Eng. Sci. 2006, 462, 973–999. [Google Scholar]
- Bormashenko, E.; Balter, R.; Aurbach, D. Formation of liquid marbles and wetting transitions. J. Colloid Interface Sci. 2012, 384, 157–161. [Google Scholar] [CrossRef] [PubMed]
- McEleney, P.; Walker, G.M.; Larmour, I.A.; Bell, S.E.J. Liquid marble formation using hydrophobic powders. Chem. Eng. J. 2009, 147, 373–382. [Google Scholar] [CrossRef]
- Walker, G.M.; McEleney, P.; Al-Muhtaseb, A.A.H.; Bell, S.E.J. Liquid marble granulation using super-hydrophobic powders. Chem. Eng. J. 2013, 228, 984–992. [Google Scholar] [CrossRef]
- Nguyen, T.; Shen, W.; Hapgood, K. Observation of the Liquid Marble Morphology using Confocal Microscopy. Chem. Eng. J. 2010, 162, 396–405. [Google Scholar] [CrossRef]
- Bormashenko, E. Liquid marbles: Properties and applications. Curr. Opin. Colloid Interface Sci. 2011, 16, 266–271. [Google Scholar] [CrossRef]
- McHale, G.; Newton, M.I. Liquid marbles: Topical context within soft matter and recent progress. Soft Matter 2015, 11, 2530–2546. [Google Scholar] [CrossRef] [PubMed]
- Lagubeau, G.; Rescaglio, A.; Melo, F. Armoring a droplet: Soft jamming of a dense granular interface. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014, 90, 030201. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, A.B.; Abkarian, M.; Mahadevan, L.; Stone, H.A. Colloid science: Non-spherical bubbles. Nature 2005, 438, 930. [Google Scholar] [CrossRef] [PubMed]
- Gokmen, M.T.; Dereli, B.; De Geest, B.G.; Du Prez, F.E. Complexity from Simplicity: Unique Polymer Capsules, Rods, Monoliths, and Liquid Marbles Prepared via HIPE in Microfluidics. Part. Part. Syst. Charact. 2013, 30, 438–444. [Google Scholar] [CrossRef]
- Nakai, K.; Nakagawa, H.; Kuroda, K.; Fujii, S.; Nakamura, Y.; Yusa, S.-I. Near-infrared-responsive Liquid Marbles Stabilized with Carbon Nanotubes. Chem. Lett. 2013, 42, 719–721. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, Z.; Pan, Q. Constructing Robust Liquid Marbles for Miniaturized Synthesis of Graphene/Ag Nanocomposite. ACS Appl. Mater. Interfaces 2014, 6, 8378–8386. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Bormashenko, Y.; Pogreb, R.; Gendelman, O. Janus droplets: Liquid marbles coated with dielectric/semiconductor particles. Langmuir 2011, 27, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Balter, R.; Aharoni, H.; Aurbach, D. Shaped composite liquid marbles. J. Colloid Interface Sci. 2014, 417, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Pogreb, R.; Balter, R.; Gendelman, O.; Aurbach, D. Composite non-stick droplets and their actuation with electric field. Appl. Phys. Lett. 2012, 100, 151601. [Google Scholar] [CrossRef]
- Bradley, L.C.; Gupta, M. Initiated Chemical Vapor Deposition of Polymers onto Liquid Substrates. Nanosci. Nanotechnol. Lett. 2015, 7, 39–44. [Google Scholar] [CrossRef]
- Bradley, L.C.; Gupta, M. Microstructured Films Formed on Liquid Substrates via Initiated Chemical Vapor Deposition of Cross-Linked Polymers. Langmuir 2015, 31, 7999–8005. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, H.; Zhao, Y.; Dai, L.; Feng, L.; Wang, X.; Lin, T. Magnetic liquid marbles: A “precise” miniature reactor. Adv. Mater. 2010, 22, 4814–4818. [Google Scholar] [CrossRef] [PubMed]
- Matsukuma, D.; Watanabe, H.; Yamaguchi, H.; Takahara, A. Preparation of Low-Surface-Energy Poly[2-(perfluorooctyl)ethyl acrylate] Microparticles and Its Application to Liquid Marble Formation. Langmuir 2011, 27, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; McCarthy, T.J. Ionic Liquid Marbles. Langmuir 2007, 23, 10445–10447. [Google Scholar] [CrossRef] [PubMed]
- Sivan, V.; Tang, S.-Y.; O’Mullane, A.P.; Petersen, P.; Eshtiaghi, N.; Kalantar-zadeh, K.; Mitchell, A. Liquid Metal Marbles. Adv. Funct. Mater. 2013, 23, 144–152. [Google Scholar] [CrossRef]
- Eshtiaghi, N.; Liu, J.J.S.; Hapgood, K.P. Formation of hollow granules from liquid marbles: Small scale experiments. Powder Technol. 2010, 197, 184–195. [Google Scholar] [CrossRef]
- Khanmohammadi, B.; Yeo, L.; Hapgood, K.P. Formation of Hollow Granules from Hydrophobic Powders. In Proceedings of the Chemeca 2007: Academia and Industry, Melbourne, Australia, 23–26 September 2007; pp. 451–459. [Google Scholar]
- Bhosale, P.S.; Panchagnula, M.V.; Stretz, H.A. Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl. Phys. Lett. 2008, 93, 034109. [Google Scholar] [CrossRef]
- Bhosale, P.S.; Panchagnula, M.V. Sweating Liquid Micro-Marbles: Dropwise Condensation on Hydrophobic Nanoparticulate Materials. Langmuir 2012, 28, 14860–14866. [Google Scholar] [CrossRef] [PubMed]
- Zuber, K.; Evans, D.; Murphy, P. Nanoporous glass films on liquids. ACS Appl. Mater. Interfaces 2014, 6, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hugentobler, C.P.; Shum, H.C. A Millifluidic Approach for Continuous Generation of Liquid Marbles. J. Colloid Sci. Biotechnol. 2013, 2, 350–354. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Gracia, R.; Leal, G.P.; Paulis, M.; Mecerreyes, D. Simple route to prepare stable liquid marbles using poly(ionic liquid)s. Polymer 2014, 55, 3397–3403. [Google Scholar] [CrossRef]
- Alghunaim, A.; Kirdponpattara, S.; Newby, B.-M.Z. Techniques for determining contact angle and wettability of powders. Powder Technol. 2016, 287, 201–215. [Google Scholar] [CrossRef]
- Yuehua, Y.; Lee, R. Surface Science Techniques; Bracco, G., Holst, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 51, Chapter 1; pp. 1–33. [Google Scholar]
- Arbatan, T.; Shen, W.; Pulp, A. Surface Tension of Liquid Marbles, an Experimental. In Proceedings of the Chemeca 2011: Engineering a Better World, Sydney, Australia, 18–21 September 2010. [Google Scholar]
- Bormashenko, E.; Pogreb, R.; Whyman, G.; Musin, A. Surface tension of liquid marbles. Colloids Surf. A Physicochem. Eng. Asp. 2009, 351, 78–82. [Google Scholar] [CrossRef]
- Whyman, G.; Bormashenko, E. Oblate spheroid model for calculation of the shape and contact angles of heavy. J. Colloid Interface Sci. 2009, 331, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Newton, M.I.; Herbertson, D.L.; Elliott, S.J.; Shirtcliffe, N.J.; McHale, G. Electrowetting of liquid marbles. J. Phys. D Appl. Phys. 2007, 40, 20–24. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Whyman, G.; Musin, A.; Bormashenko, Y.; Barkay, Z. Shape, Vibrations, and Effective Surface Tension of Water Marbles. Langmuir 2009, 25, 1893–1896. [Google Scholar] [CrossRef] [PubMed]
- Celestini, F.; Kofman, R. Vibration of submillimeter-size supported droplets. Phys. Rev. E 2006, 73, 041602. [Google Scholar] [CrossRef] [PubMed]
- Aussillous, P. Les Gouttes Enrobees. Ph.D. Thesis, Marie Curie (Paris), Paris, France, 2003. [Google Scholar]
- Gao, L.; McCarthy, T.J. Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization. Langmuir 2008, 24, 9183–9188. [Google Scholar] [CrossRef] [PubMed]
- McHale, G. All Solids, Including Teflon, Are Hydrophilic (To Some Extent), But Some Have Roughness Induced Hydrophobic Tendencies. Langmuir 2009, 25, 7185–7187. [Google Scholar] [CrossRef] [PubMed]
- Whitby, C.P.; Bian, X.; Sedev, R. Spontaneous liquid marble formation on packed porous beds. Soft Matter 2012, 8, 11336–11342. [Google Scholar] [CrossRef]
- Vella, D.; Aussillous, P.; Mahadevan, L. Elasticity of an interfacial particle raft. EPL Europhys. Lett. 2004, 68, 212. [Google Scholar] [CrossRef]
- Asare-Asher, S.; Connor, J.N.; Sedev, R. Elasticity of liquid marbles. J. Colloid Interface Sci. 2015, 449, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Bormashenko, Y.; Musin, A.; Barkay, Z. On the mechanism of floating and sliding of liquid marbles. ChemPhysChem 2009, 10, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Aussillous, P.; QuÉRÉ, D. Shapes of rolling liquid drops. J. Fluid Mech. 2004, 512, 133–151. [Google Scholar] [CrossRef]
- Brown, R.A.; Scriven, L.E. New class of asymmetric shapes of rotating siquid drops. Phys. Rev. Lett. 1980, 45, 180–183. [Google Scholar] [CrossRef]
- Hill, R.J.A.; Eaves, L. Nonaxisymmetric shapes of a magnetically levitated and spinning water droplet. Phys. Rev. Lett. 2008, 101, 234501. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Balter, R.; Aurbach, D. Liquid marbles swallowing one another and extraneous objects. Available online: http://www.ariel.ac.il/sites/conf/mmt/mmt-2014/service%20files/papers/4-1-14.pdf (accessed on 1 March 2018).
- Arbatan, T.; Li, L.; Tian, J.; Shen, W. Liquid marbles as micro-bioreactors for rapid blood typingy. Adv. Healthc. Mater. 2012, 1, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Sarvi, F.; Arbatan, T.; Chan, P.P.Y.; Shen, W. A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Adv. 2013, 3, 14501–14508. [Google Scholar] [CrossRef]
- Tian, J.; Fu, N.; Chen, X.D.; Shen, W. Respirable liquid marble for the cultivation of microorganisms. Colloids Surf. B Biointerfaces 2013, 106, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Tsapis, N.; Dufresne, E.R.; Sinha, S.S.; Riera, C.S.; Hutchinson, J.W.; Mahadevan, L.; Weitz, D.A. Onset of buckling in drying droplets of colloidal suspensions. Phys. Rev. Lett. 2005, 94. [Google Scholar] [CrossRef] [PubMed]
- Tosun, A.; Erbil, H.Y. Evaporation rate of PTFE liquid marbles. Appl. Surf. Sci. 2009, 256, 1278–1283. [Google Scholar] [CrossRef]
- Doganci, M.D.; Sesli, B.U.; Erbil, H.Y.; Binks, B.P.; Salama, I.E. Liquid marbles stabilized by graphite particles from aqueous surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 417–426. [Google Scholar] [CrossRef]
- Doganci, M.D.; Sesli, B.U.; Erbil, H.Y. Diffusion-controlled evaporation of sodium dodecyl sulfate solution drops placed on a hydrophobic substrate. J. Colloid Interface Sci. 2011, 362, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Laborie, B.; Lachaussée, F.; Lorenceau, E.; Rouyer, F. How coatings with hydrophobic particles may change the drying of water droplets: Incompressible surface versus porous media effects. Soft Matter 2013, 9, 4822–4830. [Google Scholar] [CrossRef] [Green Version]
- Aberle, C.; Lewis, M.; Yu, G.; Lei, N.; Xu, J. Liquid marbles as thermally robust droplets: Coating-assisted Leidenfrost-like effect. Soft Matter 2011, 7, 11314. [Google Scholar] [CrossRef]
- Vakarelski, I.U.; Patankar, N.A.; Marston, J.O.; Chan, D.Y.C.; Thoroddsen, S.T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 2012, 489, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Erbil, H.Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Adv. Colloid Interface Sci. 2012, 170, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.; Strauss, A.; Xu, J. Freezing of a liquid marble. Langmuir 2012, 28, 10324–10328. [Google Scholar] [CrossRef] [PubMed]
- Zang, D.; Lin, K.; Wang, W.; Gu, Y.; Zhang, Y.; Geng, X.; Binks, B.P. Tunable shape transformation of freezing liquid water marbles. Soft Matter 2014, 10, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.H.; Vadivelu, R.K.; St John, J.; Dao, D.V.; Nguyen, N.-T. Deformation of a floating liquid marble. Soft Matter 2015, 11, 4576–4583. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Bormashenko, Y.; Musin, A. Water rolling and floating upon water: Marbles supported by a water/marble interface. J. Colloid Interface Sci. 2009, 333, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Bormashenko, Y.; Grynyov, R.; Aharoni, H.; Whyman, G.; Binks, B.P. Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow. J. Phys. Chem. C 2015, 119, 9910–9915. [Google Scholar] [CrossRef]
- Farber, P.L. Hydrophobic Nucleation in Particle Agglomeration. In Proceedings of the 2006 Spring National Meeting, Orlando, FL, USA, 23–27 April 2006; pp. 1–7. [Google Scholar]
- Forny, L.; Pezron, I.; Saleh, K.; Guigon, P.; Komunjer, L. Storing water in powder form by self-assembling hydrophobic silica nanoparticles. Powder Technol. 2007, 171, 15–24. [Google Scholar] [CrossRef]
- Ueno, K.; Hamasaki, S.; Wanless, E.J.; Nakamura, Y.; Fujii, S. Microcapsules fabricated from liquid marbles stabilized with latex particles. Langmuir 2014, 30, 3051–3059. [Google Scholar] [CrossRef] [PubMed]
- Pickering, S.U. Pickering: Emulsions. J. Chem. Soc. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Binks, B.P. Particles as surfactants—Similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Musin, A. Stable water and glycerol marbles immersed in organic liquids: From liquid marbles to Pickering-like emulsions. J. Colloid Interface Sci. 2012, 366, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Oleada, M.; Sawa, H.; Furuzono, T.; Nakamura, Y. Hydroxyapatite nanoparticles as particulate emulsifier: Fabrication of hydroxyapatite-coated biodegradable microspheres. Langmuir 2009, 25, 9759–9766. [Google Scholar] [CrossRef] [PubMed]
- Simovic, S.; Heard, P.; Prestidge, C.A. Hybrid lipid-silica microcapsules engineered by phase coacervation of Pickering emulsions to enhance lipid hydrolysis. Phys. Chem. Chem. Phys. 2010, 12, 7162–7170. [Google Scholar] [CrossRef] [PubMed]
- Frelichowska, J.; Bolzinger, M.A.; Valour, J.P.; Mouaziz, H.; Pelletier, J.; Chevalier, Y. Pickering w/o emulsions: Drug release and topical delivery. Int. J. Pharm. 2009, 368, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chen, S. Janus nanoparticles: Preparation, characterization, and applications. Chem. Asian J. 2014, 9, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Indalkar, Y.R.; Gaikwad, S.S.; Ubale, A.T. Janus Particles Recent and Novel Approach in Drug Delivery: An Overview. Curr. Pharma Res. 2013, 3, 1031–1037. [Google Scholar]
- Sheng, Y.; Sun, G.; Ngai, T. Dopamine Polymerization in Liquid Marbles: A General Route to Janus Particle Synthesis. Langmuir 2016, 32, 3122–3129. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Shen, W.; Hapgood, K. Characterisation of liquid marbles in commercial cosmetic products. Adv. Powder Technol. 2016, 27, 33–41. [Google Scholar] [CrossRef]
- Santos, E. Powder to Liquid Compositions. U.S. Patent WO2001037800 A1, 31 May 2001. [Google Scholar]
- Arbatan, T.; Al-Abboodi, A.; Sarvi, F.; Chan, P.P.Y.; Shen, W. Tumor inside a pearl drop. Adv. Healthc. Mater. 2012, 1, 467–469. [Google Scholar] [CrossRef] [PubMed]
- Ledda, S.; Idda, A.; Kelly, J.; Ariu, F.; Bogliolo, L.; Bebbere, D. A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. J. Assist. Reprod. Genet. 2016, 33, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.C.; Nardecchia, S.; Gutiérrez, M.C.; Ferrer, M.L.; Del Monte, F. Mammalian cell cryopreservation by using liquid marbles. ACS Appl. Mater. Interfaces 2015, 7, 3854–3860. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.-E.; Lee, H.K.; Chew, W.S.; Phang, I.Y.; Liu, T.; Ling, X.Y. Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chem. Commun. 2014, 50, 5923–5926. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, J.; Li, L.; Liu, A.; Shen, W. Charge transport between liquid marbles. Chem. Eng. Sci. 2013, 97, 337–343. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, L.; Chen, J.F.; Dai, L. Liquid Marbles Based on Magnetic Upconversion Nanoparticles as Magnetically and Optically Responsive Miniature Reactors for Photocatalysis and Photodynamic Therapy. Angew. Chem. Int. Ed. 2016, 55, 10795–10799. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E.; Balter, R.; Aurbach, D. Use of Liquid Marbles as Micro-Reactors. Int. J. Chem. React. Eng. 2011, 9, 1542–6580. [Google Scholar] [CrossRef]
- Hu, M.; Tian, M.; He, J.; He, Y. Sensing ammonia using dry waters containing cupric chloride solution. Colloids Surf. A Physicochem. Eng. Asp. 2012, 414, 216–219. [Google Scholar] [CrossRef]
- Matsubara, K.; Danno, M.; Inoue, M.; Nishizawa, H.; Honda, Y.; Abe, T. Surface fluorination of polystyrene particles via CF4 plasma irradiation using a barrel-plasma-treatment system. Surf. Coat. Technol. 2013, 236, 269–273. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, Y.H.; Phang, I.Y.; Wei, J.; Miao, Y.E.; Liu, T.; Ling, X.Y. Plasmonic liquid marbles: A miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. Angew. Chem. 2014, 53, 5054–5058. [Google Scholar]
- Dupin, D.; Thompson, K.L.; Armes, S.P. Preparation of stimulus-responsive liquid marbles using a polyacid-stabilised polystyrene latex. Soft Matter 2011, 7, 6797–6800. [Google Scholar] [CrossRef]
- Hoffman, D.M.; Chiu, I.L. Solid-Water Detoxifying Reagents for Chemical and Biological Reagents. U.S. Patent, No. 7030071, 18 April 2006. [Google Scholar]
- Tian, J.; Arbatan, T.; Li, X.; Shen, W. Porous liquid marble shell offers possibilities for gas detection and gas reactions. Chem. Eng. J. 2010, 165, 347–353. [Google Scholar] [CrossRef]
- Timounay, Y.; Pitois, O.; Rouyer, F. Gas Marbles: Much Stronger than Liquid Marbles. Phys. Rev. Lett. 2017, 118, 228001. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avrămescu, R.-E.; Ghica, M.-V.; Dinu-Pîrvu, C.; Udeanu, D.I.; Popa, L. Liquid Marbles: From Industrial to Medical Applications. Molecules 2018, 23, 1120. https://doi.org/10.3390/molecules23051120
Avrămescu R-E, Ghica M-V, Dinu-Pîrvu C, Udeanu DI, Popa L. Liquid Marbles: From Industrial to Medical Applications. Molecules. 2018; 23(5):1120. https://doi.org/10.3390/molecules23051120
Chicago/Turabian StyleAvrămescu, Roxana-Elena, Mihaela-Violeta Ghica, Cristina Dinu-Pîrvu, Denisa Ioana Udeanu, and Lăcrămioara Popa. 2018. "Liquid Marbles: From Industrial to Medical Applications" Molecules 23, no. 5: 1120. https://doi.org/10.3390/molecules23051120
APA StyleAvrămescu, R.-E., Ghica, M.-V., Dinu-Pîrvu, C., Udeanu, D. I., & Popa, L. (2018). Liquid Marbles: From Industrial to Medical Applications. Molecules, 23(5), 1120. https://doi.org/10.3390/molecules23051120