The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Evaluation of A. emarginata Extracts and Its Active Ingredient
2.2. Natural Lead Structure
2.3. Synthetic Analogues
3. Materials and Methods
3.1. Extractions and Isolation
3.1.1. General Methods
3.1.2. Plant Material
3.1.3. Preparation of Extracts
3.1.4. Bioassay-Guided Fractionation of Annona emarginata Fruit Extracts (MeOHGFE)
3.1.5. Isolation and Characterization of (R)-2-(4-Methylcyclohex-3-en-1-yl)propan-2-yl (E)-3-(4-hydroxyphenyl)acrylate (1)
3.2. Synthesis
3.2.1. General Methods
3.2.2. Synthesis of (R)-2-(4-Methylcyclohex-3-en-1-yl)propan-2-yl (E)-3-(4-ethoxyphenyl)acrylate (2)
3.2.3. General Synthesis of Styrylquinoline Derivatives 3–5
3.3. Antibacterial Activity
3.4. Conformational and Electronic Study
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Moreira, I.C.; Lago, J.H.G.; Young, M.C.M.; Roque, N.F. Antifungal aromadendrane sesquiterpenoids from the leaves of Xylopia brasiliensis. J. Braz. Chem. Soc. 2003, 14, 828–831. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Pereira, C.R.; Pimenta, L.P.; Boaventura, M.A.; Silva, L.G. Antibacterial activity of eight Brazilian Annonaceae plants. Nat. Prod. Res. 2006, 20, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Santos Pimenta, L.P.; Pinto, G.B.; Takahashi, J.A.; Silva, L.G.F.; Boaventura, M.A.D. Biological screening of Annonaceous Brazilian Medicinal Plants using Artemia salina (Brine Shrimp Test). Phytomedicine 2003, 10, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Novaes, P.; Bezerra Torres, P.; Alves, D.Y.; dos Santos, C. Biological activities of Annonaceae species extracts from Cerrado. Braz. J. Bot. 2016, 39, 131–137. [Google Scholar] [CrossRef]
- Frausin, G.; Lima, R.B.S.; Hidalgo, A.F.; Maas, P.; Pohlit, A.M. Plants of the Annonaceae traditionally used as antimalarials: A review. Rev. Bras. Frutic. 2014, 36, 315–337. [Google Scholar] [CrossRef]
- Waechter, A.I.; Cave, A.; Hocquemiller, R.; Bories, C.; Munoz, V.; Fournet, A. Antiprotozoal activity of aporphine alkaloids isolated from Unonopsis buchtienii (Annonaceae). Phytotherapy Res. 1999, 13, 175–177. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.S.; Chen, J.W.; Wang, Y.; Xu, H.Q.; Fan, N.B.; Li, X. Anti-tumor activity of Annona squamosa seeds extract containing annonaceous acetogen in compounds. J. Ethnopharmacol. 2012, 142, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Monks, N.R.; Bordignon, S.A.L.; Ferraz, A.; Machado, K.R.; Faria, D.H.; Lopes, R.M.; Mondin, C.A.; Schwartsmann, G. Anti-tumour screening of Brazilian plants. Pharm. Biol. 2002, 40, 603–616. [Google Scholar] [CrossRef]
- Barboza, G.E.; Cantero, J.J.; Nunez, C.; Pacciaroni, A.; Ariza Espinar, L. Medicinal plants: A general review and a phytochemical and ethnopharmacological screening of the native Argentine flora. Kurtziana 2009, 34, 7–365. [Google Scholar]
- Martinez Crovetto, R. Plantas Utilizadas en Medicina en el NO de Corrientes; Ministry of Culture and Education, Miguel Lillo Foundation: Tucuman, Argentina, 1981.
- Fevrier, A.; Ferreira, M.E.; Fournet, A.; Yaluff, G.; Inchausti, A.; Rojas de Arias, A.; Hocquemiller, R.; Waechter, A.I. Acetogenins and other compounds from Rollinia emarginata and their antiprotozoal activities. Planta Med. 1999, 65, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Colom, O.A.; Popich, S.; Bardon, A. Bioactive constituents from Rollinia emarginata (Annonaceae). Nat. Prod. Res. 2007, 21, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Araya, J.J.; Timmermann, B.N.; Hagenbuch, B. Isolation of modulators of the liver-specific organic anion-transporting polypeptides (OATPs) 1B1 and 1B3 from Rollinia emarginata Schltdl. (Annonaceae). J. Pharmacol. Exp. Ther. 2011, 339, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Nieto, M. Alkaloids from Rollinia emarginata. J. Nat. Prod. 1986, 49, 717. [Google Scholar] [CrossRef] [PubMed]
- Leboeuf, M.; Cave, A.; Bhaumik, P.K.; Mukherjee, B.; Mukherjee, R. The phytochemistry of the Annonaceae. Phytochem 1982, 21, 2783–2813. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; HM Government and the Wellcome Trust: London, UK, 2016.
- Gagetti, P.; Corso, A. Actualización en Staphylococcus aureus resistente a meticilina de la comunidad. Bol. Assoc. Argent. Microbiol. 2011, 193, 7–8. [Google Scholar]
- Faini, F.; Labbe, C.; Torres, R.; Rodilla, J.M.; Silva, L.; Delle Monache, F. New phenolic esters from the resinous exudate of Haplopappus taeda. Fitoterapia 2007, 78, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Feresin, G.E.; Tapia, A.; Gimenez, A.; Gutierrez Ravelo, A.; Zacchino, S.; Sortino, M.; Schmeda-Hirschman, G. Constituents of the Argentinean medicinal plant Baccharis grisebachii and their antimicrobial activity. J. Ethnopharmacol. 2003, 89, 73–80. [Google Scholar] [CrossRef]
- Gianello, J.C.; Giordano, O.S. Constituents from Bacccharis grisebachii. An. Assoc. Quím. Argent. 1987, 75, 1–3. [Google Scholar]
- Bisogno, F.; Mascoti, L.; Sanchez, C.; Garibotto, F.; Giannini, F.; Kurina, M.; Enriz, R.D. Structure-antifungal activity relationship of related cinnamic acid derivatives. J. Agric. Food Chem. 2007, 55, 10635–10640. [Google Scholar] [CrossRef] [PubMed]
- Ioset, J.R.; Marston, A.; Gupta, M.P.; Hostettmann, K. Antifungal and larvicidal compounds from the root bark of Cordia alliodora. J. Nat. Prod. 2000, 63, 424–426. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Campbell, B.C.; Mahomey, N.E.; Chan, K.L.; Molyneux, R.J. Identification of phenolics for control of Aspergillus flavus using Saccharomyces cerevisiae in a model target-gene bioassay. J. Agric. Food Chem. 2004, 52, 7814–7821. [Google Scholar] [CrossRef] [PubMed]
- Gonec, T.; Bobal, P.; Sujan, J.; Pesko, M.; Guo, J.; Kralova, K.; Pavlacka, L.; Vesely, L.; Kreckova, E.; Kos, J.; et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules 2012, 17, 613–644. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Nevin, E.; Soral, M.; Kushkevych, I.; Gonec, T.; Bobal, P.; Kollar, P.; Coffey, A.; O´Mahony, J.; Liptaj, T.; et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015, 23, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Zadrazilova, I.; Nevin, E.; Soral, M.; Gonec, T.; Kollar, P.; Oravec, M.; Coffey, A.; O’Mahony, J.; Liptaj, T.; et al. Ring-substituted 8-Hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015, 23, 4188–4196. [Google Scholar] [CrossRef] [PubMed]
- Polilzer, P.; Truhlar, D.G. Chemical Applications of Atomic and Molecular Electrostatic Potentials; Plenum Publishing: New York, NY, USA, 1991. [Google Scholar]
- Carrupt, P.A.; El Tayar, N.; Karlen, A.; Testa, B. Molecular electrostatic potentials for characterizing drug-biosystem interactions. Methods Enzymol. 1991, 202, 638–677. [Google Scholar]
- Geerlings, P.; Langenaeker, W.; De Proft, F.; Baeten, A. Molecular electrostatic potentials vs. DFT descriptors of reactivity. In Molecular Electrostatic Potentials: Concepts and Applications. Theoretical and Computational Chemistry; Politzer, P., Maksic, Z.B., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996; Volume 3, pp. 587–617. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; M100-S22; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5618–5652. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1998, 38, 3098–3100. [Google Scholar]
- Flukiger, P.; Luthi, H.P.; Portmann, S.; Weber, J. MOLEKEL 4.0; Swiss Center for Scientific Computing: Manno, Switzerland, 2000. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Extracts | MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|---|
MSSA | MRSA | E. coli ATCC 25922 | E. coli LM2 | K. pneumoniae | Salmonella sp. | ||
Stem bark | HBE | >1000 | >1000 | 250 | 500 | >1000 | 1000 |
DCMBE | 1000 | >1000 | 500 | >1000 | 1000 | 250 | |
EtAcOBE | 500 | 1000 | 500 | 500 | >1000 | 500 | |
MeOHBE | 500 | 500 | 1000 | 1000 | >1000 | 1000 | |
Leaves | HLE | 500 | 250 | >1000 | >1000 | >1000 | 500 |
DCMLE | 500 | 500 | >1000 | 1000 | 1000 | 500 | |
EtAcOLE | 500 | 500 | >1000 | >1000 | 250 | 500 | |
MeOHLE | >1000 | >1000 | 500 | 500 | 500 | 500 | |
Flowers | HFlE | 125 | 125 | >1000 | >1000 | 250 | 1000 |
DCMFlE | 62.5 | 16 | >1000 | >1000 | 1000 | >1000 | |
EtAcOFlE | 250 | 250 | 1000 | >1000 | 500 | >1000 | |
MeOHFlE | >1000 | >1000 | 1000 | 1000 | >1000 | >1000 | |
Fruits | MeOHGFE | 500 | 500 | >1000 | >1000 | 250 | >1000 |
cefotaxime | 0.5 | 0.5 | 1.9 | 0.5 | 15 | 12.5 |
Extracts | MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|---|
MSSA | MRSA | E. coli ATCC 25922 | E. coli LM2 | K. pneumoniae | Salmonella sp. | ||
MeOHGFE | 500 | 500 | >1000 | >1000 | 250 | >1000 | |
MeOHGFE Fractions | F1 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
F2 | 500 | 250 | >1000 | >1000 | >1000 | >1000 | |
F3 | 500 | 500 | 500 | >1000 | 125 | >1000 | |
F4 | 1000 | 1000 | 1000 | 125 | 1000 | >1000 | |
F5 | 500 | 500 | 1000 | 250 | 125 | >1000 | |
F6 | 250 | 500 | 250 | 250 | >1000 | >1000 | |
cefotaxime | 0.5 | 0.5 | 1.9 | 0.5 | 15 | 12.5 |
Extracts | MIC (µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MSSA | MRSA | SA | SP | SAG | EC | ELM | KP | Ssp | ||
MeOHGFE fraction F3 | 500 | 500 | 500 | 250 | 250 | 500 | >1000 | 125 | >1000 | |
F3subfractions | Subfraction I | >250 | >250 | >250 | >250 | >250 | >250 | >250 | >250 | >250 |
Subfraction II | >250 | >250 | >250 | >250 | >250 | 250 | >250 | >250 | >250 | |
Subfraction III | >250 | >250 | >250 | >250 | >250 | >250 | 250 | >250 | >250 | |
Subfraction IV | 16 | 16 | 31.2 | 16 | 16 | >250 | 125 | 250 | >250 | |
Subfraction V | 62.5 | 62.5 | 62.5 | 62.5 | 62.5 | >250 | >250 | >250 | >250 | |
cefotaxime | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 | 1.9 | 0.5 | 15 | 12.5 |
Comp. | MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
MSSA | MRSA | SA | SP | SAG | EC | ELM | KP | |
1 | 4 | 6.25 | 3.12 | 3.12 | 3.12 | >50 | 50 | 50 |
2 | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
3 | 50 | 50 | 50 | 50 | 50 | >50 | >50 | >50 |
4 | >50 | >50 | >50 | >50 | >50 | >50 | >50 | >50 |
5 | 50 | >50 | 25 | 25 | 50 | >50 | >50 | >50 |
6 | 25 | 50 | 50 | 50 | 50 | >50 | 25 | >50 |
7 | 12.5 | 50 | 12.5 | 25 | 12.5 | >50 | 12.5 | >50 |
CEF | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 | 1.9 | 0.5 | 15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolab, J.G.; Lima, B.; Spaczynska, E.; Kos, J.; Cano, N.H.; Feresin, G.; Tapia, A.; Garibotto, F.; Petenatti, E.; Olivella, M.; et al. The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria. Molecules 2018, 23, 1187. https://doi.org/10.3390/molecules23051187
Dolab JG, Lima B, Spaczynska E, Kos J, Cano NH, Feresin G, Tapia A, Garibotto F, Petenatti E, Olivella M, et al. The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria. Molecules. 2018; 23(5):1187. https://doi.org/10.3390/molecules23051187
Chicago/Turabian StyleDolab, Juan G., Beatriz Lima, Ewelina Spaczynska, Jiri Kos, Natividad H. Cano, Gabriela Feresin, Alejandro Tapia, Francisco Garibotto, Elisa Petenatti, Monica Olivella, and et al. 2018. "The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria" Molecules 23, no. 5: 1187. https://doi.org/10.3390/molecules23051187