Synthesis and Guest Recognition of Switchable Pt-Salphen Based Molecular Tweezers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Switching Studies
2.3. Guest-Binding Studies
3. Materials and Methods
3.1. General Procedures
3.2. Synthesis
3.3. Titration Procedures
3.4. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chen, C.W.; Whitlock, H.W. Molecular tweezers: A simple model of bifunctional intercalation. J. Am. Chem. Soc. 1978, 100, 4921–4922. [Google Scholar] [CrossRef]
- Leblond, J.; Petitjean, A. Molecular Tweezers: Concepts and Applications. Chem. Phys. Chem. 2011, 12, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Hardouin-Lerouge, M.; Hudhomme, P.; Salle, M. Molecular clips and tweezers hosting neutral guests. Chem. Soc. Rev. 2011, 40, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Klärner, F.G.; Kahlert, B. Molecular Tweezers and Clips as Synthetic Receptors. Molecular Recognition and Dynamics in Receptor−Substrate Complexes. Acc. Chem. Res. 2003, 36, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S. Rigid molecular tweezers as hosts for the complexation of neutral guests. Top. Curr. Chem. 1993, 165, 71–102. [Google Scholar]
- Crowley, J.D.; Bosnich, B. Molecular Recognition: Use of Metal-Containing Molecular Clefts for Supramolecular Self-Assembly and Host–Guest Formation. Eur. J. Inorg. Chem. 2005, 2005, 2015–2025. [Google Scholar] [CrossRef]
- Crowley, J.D.; Goshe, A.J.; Bosnich, B. Molecular recognition. Electrostatic effects in supramolecular self-assembly. Chem. Commun. 2003, 3, 392–393. [Google Scholar] [CrossRef]
- Goshe, A.J.; Steele, I.M.; Bosnich, B. Supramolecular Recognition. Terpyridyl Palladium and Platinum Molecular Clefts and Their Association with Planar Platinum Complexes. J. Am. Chem. Soc. 2003, 125, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Goshe, A.J.; Steele, I.M.; Ceccarelli, C.; Rheingold, A.L.; Bosnich, B. Supramolecular recognition: On the kinetic lability of thermodynamically stable host–guest association complexes. Proc. Natl. Acad. Sci. USA 2002, 99, 4823–4829. [Google Scholar] [CrossRef] [PubMed]
- Sommer, R.D.; Rheingold, A.L.; Goshe, A.J.; Bosnich, B. Supramolecular Chemistry: Molecular Recognition and Self-Assembly Using Rigid Spacer-Chelators Bearing Cofacial Terpyridyl Palladium(II) Complexes Separated by 7 Å. J. Am. Chem. Soc. 2001, 123, 3940–3952. [Google Scholar] [CrossRef] [PubMed]
- Skibinski, M.; Gomez, R.; Lork, E.; Azov, V.A. Redox responsive molecular tweezers with tetrathiafulvalene units: Synthesis, electrochemistry, and binding properties. Tetrahedron 2009, 65, 10348–10354. [Google Scholar] [CrossRef]
- Iordache, A.; Retegan, M.; Thomas, F.; Royal, G.; Saint-Aman, E.; Bucher, C. Redox-Responsive Porphyrin-Based Molecular Tweezers. Chem. Eur. J. 2012, 18, 7648–7653. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, S.; Nakaji, T.; Ogawa, T.; Shigematsu, K.; Manabe, O. Photoresponsive crown ethers. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J. Am. Chem. Soc. 1981, 103, 111–115. [Google Scholar] [CrossRef]
- Muraoka, T.; Kinbara, K.; Kobayashi, Y.; Aida, T. Light-Driven Open-Close Motion of Chiral Molecular Scissors. J. Am. Chem. Soc. 2003, 125, 5612–5613. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hou, L.; Browne, W.R.; Feringa, B.L. Photoswitchable intramolecular through-space magnetic interaction. J. Am. Chem. Soc. 2011, 133, 8162–8164. [Google Scholar] [CrossRef] [PubMed]
- Wezenberg, S.J.; Vlatković, M.; Kistemaker, J.C.M.; Feringa, B.L. Multi-State Regulation of the Dihydrogen Phosphate Binding Affinity to a Light- and Heat-Responsive Bis-Urea Receptor. J. Am. Chem. Soc. 2014, 136, 16784–16787. [Google Scholar] [CrossRef] [PubMed]
- Leblond, J.; Gao, H.; Petitjean, A.; Leroux, J.C. pH-Responsive Molecular Tweezers. J. Am. Chem. Soc. 2010, 132, 8544–8545. [Google Scholar] [CrossRef] [PubMed]
- Tsuchido, Y.; Suzaki, Y.; Ide, T.; Osakada, K. Dynamic Properties of Molecular Tweezers with a Bis(2-hydroxyphenyl)pyrimidine Backbone. Chem. Eur. J. 2014, 20, 4762–4771. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Voskian, S.; Hughes, R.P.; Aprahamian, I. Manipulating Liquid-Crystal Properties Using a pH Activated Hydrazone Switch. Angew. Chem. Int. Ed. 2013, 52, 10734–10739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ao, L.; Han, Y.; Gao, Z.; Wang, F. Modulating Pt[three dots, centered]Pt metal-metal interactions through conformationally switchable molecular tweezer/guest complexation. Chem. Commun. 2018, 54, 1754–1757. [Google Scholar] [CrossRef] [PubMed]
- Barboiu, M.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Kyritsakas, N.; Lehn, J.M. Dynamic Chemical Devices: Modulation of Photophysical Properties by Reversible, Ion-Triggered, and Proton-Fuelled Nanomechanical Shape-Flipping Molecular Motions. Chem. Eur. J. 2004, 10, 2953–2959. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, A.; Khoury, R.; Kyritsakas, N.; Lehn, J.M. Dynamic devices. Shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J. Am. Chem. Soc. 2004, 126, 6637–6647. [Google Scholar] [CrossRef] [PubMed]
- Linke-Schaetzel, M.; Anson, C.E.; Powell, A.K.; Buth, G.; Palomares, E.; Durrant, J.D.; Balaban, T.S.; Lehn, J.M. Dynamic chemical devices: Photoinduced electron transfer and its ion-triggered switching in nanomechanical butterfly-type bis(porphyrin)terpyridines. Chem. Eur. J. 2006, 12, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Barboiu, M.; Legrand, Y.M.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Vaughan, G.; van der Lee, A.; Petit, E.; Lehn, J.M. Modulation of Photochemical Properties in Ion-Controlled Multicomponent Dynamic Devices. Eur. J. Inorg. Chem. 2009, 2009, 2621–2628. [Google Scholar] [CrossRef]
- Ulrich, S.; Lehn, J.M. Adaptation and Optical Signal Generation in a Constitutional Dynamic Network. Chem. Eur. J. 2009, 15, 5640–5645. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S.; Petitjean, A.; Lehn, J.M. Metallo-Controlled Dynamic Molecular Tweezers: Design, Synthesis, and Self-Assembly by Metal-Ion Coordination. Eur. J. Inorg. Chem. 2010, 2010, 1913–1928. [Google Scholar] [CrossRef]
- Li, Z.; Han, Y.; Gao, Z.; Fu, T.; Wang, F. Non-covalent molecular tweezer/guest complexation with Pt(II)-Pt(II) metal-metal interactions: Toward intelligent photocatalytic materials. Mater. Chem. Front. 2018, 2, 76–80. [Google Scholar] [CrossRef]
- Doistau, B.; Cantin, J.L.; Chamoreau, L.M.; Marvaud, V.; Hasenknopf, B.; Vives, G. Mechanical switching of magnetic interaction by tweezers-type complex. Chem. Commun. 2015, 51, 12916–12919. [Google Scholar] [CrossRef] [PubMed]
- Doistau, B.; Benda, L.; Hasenknopf, B.; Marvaud, V.; Vives, G. Switching Magnetic Properties by a Mechanical Motion. Magnetochemistry 2018, 4, 5. [Google Scholar] [CrossRef]
- Doistau, B.; Benda, L.; Cantin, J.L.; Chamoreau, L.M.; Ruiz, E.; Marvaud, V.; Hasenknopf, B.; Vives, G. Six States Switching of Redox-Active Molecular Tweezers by Three Orthogonal Stimuli. J. Am. Chem. Soc. 2017, 139, 9213–9220. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.M.C.; Yam, V.W.W. Self-Assembly of Luminescent Alkynylplatinum(II) Terpyridyl Complexes: Modulation of Photophysical Properties through Aggregation Behavior. Acc. Chem. Res. 2011, 44, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Che, C.M.; Chan, S.C.; Xiang, H.F.; Chan, M.; Liu, Y.; Wang, Y. Tetradentate Schiff base platinum(II) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices. Chem. Commun. 2004, 13, 1484–1485. [Google Scholar] [CrossRef] [PubMed]
- Jie, Z.; Fangchao, Z.; Xunjin, Z.; Wai-Kwok, W.; Dongge, M.; Wai-Yeung, W. New phosphorescent platinum(ii) Schiff base complexes for PHOLED applications. J. Mater. Chem. 2012, 22, 16448–16457. [Google Scholar]
- Wu, W.; Sun, J.; Ji, S.; Wu, W.; Zhao, J.; Guo, H. Tuning the emissive triplet excited states of platinum(II) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet-triplet-annihilation based upconversions. Dalton Trans. 2011, 40, 11550–11561. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tong, W.L.; Chan, M.C.W. Axially rotating (Pt-salphen)2 phosphorescent coordination frameworks. Chem. Commun. 2009, 41, 6189–6191. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yiu, S.M.; Chan, M.C.W. Shape-Persistent (Pt-salphen)2 Phosphorescent Coordination Frameworks: Structural Insights and Selective Perturbations. Chem. Eur. J. 2013, 19, 8937–8947. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.L.; Yiu, S.M.; Chan, M.C.W. Crowded Bis-(M-salphen) [M = Pt(II), Zn(II)] Coordination Architectures: Luminescent Properties and Ion-Selective Responses. Inorg. Chem. 2013, 52, 7114–7124. [Google Scholar] [CrossRef] [PubMed]
- Doistau, B.; Tron, A.; Denisov, S.A.; Jonusauskas, G.; McClenaghan, N.D.; Gontard, G.; Marvaud, V.; Hasenknopf, B.; Vives, G. Terpy(Pt–salphen)2 Switchable Luminescent Molecular Tweezers. Chem. Eur. J. 2014, 20, 15799–15807. [Google Scholar] [CrossRef] [PubMed]
- Doistau, B.; Rossi-Gendron, C.; Tron, A.; McClenaghan, N.D.; Chamoreau, L.M.; Hasenknopf, B.; Vives, G. Switchable platinum-based tweezers with Pt–Pt bonding and selective luminescence quenching. Dalton Trans. 2015, 44, 8543–8551. [Google Scholar] [CrossRef] [PubMed]
- Nabeshima, T.; Hasegawa, Y.; Trokowski, R.; Yamamura, M. Synthesis and guest recognition of molecular cleft consisting of terpyridine-Pt(II) acetylide complexes. Tetrahedron Lett. 2012, 53, 6182–6185. [Google Scholar] [CrossRef]
- Tanaka, Y.; Man-Chung Wong, K.; Wing-Wah Yam, V. Phosphorescent molecular tweezers based on alkynylplatinum(II) terpyridine system: Turning on of NIR emission via heterologous Pt-M interactions (M = PtII, PdII, AuIII and AuI). Chem. Sci. 2012, 3, 1185–1191. [Google Scholar] [CrossRef]
- Tanaka, Y.; Wong, K.M.C.; Yam, V.W.W. Host–Guest Interactions of Phosphorescent Molecular Tweezers Based on an Alkynylplatinum(II) Terpyridine System with Polyaromatic Hydrocarbons. Chem. Eur. J. 2013, 19, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, H.; Kuroda, T.; Harada, S.; Arakawa, H. Efficient Ruthenium Sensitizer with a Terpyridine Ligand Having a Hexylthiophene Unit for Dye-Sensitized Solar Cells: Effects of the Substituent Position on the Solar Cell Performance. Eur. J. Inorg. Chem. 2014, 2014, 4734–4739. [Google Scholar] [CrossRef]
- Constable, E.C.; Hostettler, N.; Housecroft, C.E.; Kopecky, P.; Neuburger, M.; Zampese, J.A. 2,2′:6′,2′′-Terpyridine substituted in the 4′-position by the solubilizing and sterically demanding tert-butyl group: A surprisingly new ligand. Dalton Trans. 2012, 41, 2890–2897. [Google Scholar] [CrossRef] [PubMed]
- Dobrawa, R.; Lysetska, M.; Ballester, P.; Grunea, M.; Wurthner, F. Fluorescent Supramolecular Polymers: Metal Directed Self-Assembly of Perylene Bisimide Building Blocks. Macromolecules 2005, 38, 1315–1325. [Google Scholar] [CrossRef]
- Shunmugam, R.; Gabriel, G.J.; Aamer, K.A.; Tew, G.N. Metal–Ligand-Containing Polymers: Terpyridine as the Supramolecular Unit. Macromol. Rapid Commun. 2010, 31, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Gaizer, F.; Silber, H.B. Stability constants of zinc chloride complexes in DMSO-water mixtures. J. Inorg. Nucl. Chem. 1980, 42, 1317–1320. [Google Scholar] [CrossRef]
- Gaizer, F.; Silber, H.B.; Lázár, J. Stability constants of zinc halide complexes in DMSO—water and DMF—water mixtures. Polyhedron 1985, 4, 1467–1470. [Google Scholar] [CrossRef]
- Anderegg, G.; Gramlich, V. 1:1 Metal Complexes of Bivalent Cobalt, Nickel, Copper, Zink, and Cadmium with the Tripodal Ligand tris[2-(dimethylamino)ethyl]amine: Their stabilities and the X-ray crystal structure of its copper(II) complex sulfate. Helv. Chim. Acta 1994, 77, 685–690. [Google Scholar] [CrossRef]
- Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Wong, K.M.; Yam, V.W. Platinum-based phosphorescent double-decker tweezers: A strategy for extended heterologous metal-metal interactions. Angew. Chem. Int. Ed. 2013, 52, 14117–14120. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Sample Availability: Samples of the compounds 4 and 1 can be synthesized by the authors upon request. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benda, L.; Doistau, B.; Hasenknopf, B.; Vives, G. Synthesis and Guest Recognition of Switchable Pt-Salphen Based Molecular Tweezers. Molecules 2018, 23, 990. https://doi.org/10.3390/molecules23050990
Benda L, Doistau B, Hasenknopf B, Vives G. Synthesis and Guest Recognition of Switchable Pt-Salphen Based Molecular Tweezers. Molecules. 2018; 23(5):990. https://doi.org/10.3390/molecules23050990
Chicago/Turabian StyleBenda, Lorien, Benjamin Doistau, Bernold Hasenknopf, and Guillaume Vives. 2018. "Synthesis and Guest Recognition of Switchable Pt-Salphen Based Molecular Tweezers" Molecules 23, no. 5: 990. https://doi.org/10.3390/molecules23050990
APA StyleBenda, L., Doistau, B., Hasenknopf, B., & Vives, G. (2018). Synthesis and Guest Recognition of Switchable Pt-Salphen Based Molecular Tweezers. Molecules, 23(5), 990. https://doi.org/10.3390/molecules23050990