A Modified GC-MS Analytical Procedure for Separation and Detection of Multiple Classes of Carbohydrates
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Preparation of Water Extracts of A. asphodeloides
2.3. Preparation of G. ganoderma Polysaccharides and Complete Acid Hydrolysis
2.4. TMSD Derivatization of Carbohydrates
2.5. GC-MS Apparatus and Conditions
2.6. Method Validation
3. Results and Discussion
3.1. Optimization of Derivatizations by Formation of TMSDs
3.2. Modification of Sample Preparation of TMSD Derivatives
3.3. Method Validations
3.4. Application to Real Samples
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yan, J.; Shi, S.; Wang, H.; Liu, R.; Chen, Y.; Wang, S. Neutral monosaccharide composition analysis of plant- derived oligo-and polysaccharides by high performance liquid chromatography. Carbohydr. Polym. 2016, 136, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Afshari, K.; Samavati, V.; Shahidi, S.V. Ultrasonic-assisted extraction and in vitro antioxidant activity of polysaccharide from Hibiscus leaf. Int. J. Biol. Macromol. 2015, 74, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, Á.; Carrillo, J.D.; Ayestarán, B. Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC). Food Chem. 2012, 131, 367–374. [Google Scholar] [CrossRef]
- Bonaduce, I.; Brecoulaki, H.; Colombini, M.P.; Lluveras, A.; Restivo, V.; Ribechini, E. Gas chromatographic-mass spectrometric characterisation of plant gums in samples from painted works of art. J. Chromatogr. A 2007, 1175, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Tulp, M.T.M.; Hutzinger, O. Structure elucidation of hydroxylated metabolites of polychlorinated aromatic compounds by GC-MS investigation of their methyl ethers. In Recent Developments in Mass Spectrometry in Biochemistry and Medicine; Alberto, F., Ed.; Springer: Boston, MA, USA, 1978; Volume 1, pp. 549–553. [Google Scholar]
- Rumpel, C.; Dignac, M.F. Gas chromatographic analysis of monosaccharides in a forest soil profile: Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation. Soil Biol. Bioch. 2006, 38, 1478–1481. [Google Scholar] [CrossRef]
- Cooper, G.; Sant, M.; Asiyo, C. Gas chromatography-mass spectrometry resolution of sugar acid enantiomers on a permethylated beta-cyclodextrin stationary phase. J. Chromatogr. A 2009, 1216, 6838–6843. [Google Scholar] [CrossRef] [PubMed]
- Bettignies-Dutz, A.D.; Reznicek, G.; Kopp, B.; Jurenitsch, J. Gas chromatographic-mass spectrometric separation and characterization of methyl trimethylsilyl monosaccharides obtained from naturally occurring glycosides and carbohydrates. J. Chromatogr. A 1991, 547, 299–306. [Google Scholar] [CrossRef]
- Sanz, M.L.; Sanz, J.; Martínez-Castro, I. Gas chromatographic–mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey. J. Chromatogr. A 2004, 1059, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Pitthard, V.; Finch, P. GC-MS analysis of monosaccharide mixtures as their diethyldithioacetal derivatives: Application to plant gums used in art works. Chromatogr. 2001, 53, S317–S321. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Mazurek, J.; Restivo, A.; Colombini, M.P.; Bonaduce, L. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases. Chem. Centr. J. 2012, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lluveras, A.; Bonaduce, I.; Andreotti, A.; Colombini, M.P. GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal. Chem. 2010, 82, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Zhang, J.; Li, Y.; Wang, Q.H.; Xue, J.; Su, X.L.; Wang, C.F.; Xia, Y.G.; Kuang, H.X. Exploring effective components of laxative effect of Anemarrhenae rhizoma based on Chinese herbal processing theory. China J. Chinese Mater. Medica. 2015, 40, 1283–1286. [Google Scholar]
- Yang, B.Y.; Gao, Y.L.; Zhang, J.; Liu, Y.; Xia, Y.G.; Kuang, H.X. Chemical constituents in water fraction from Anemarrhena asphodeloides Bge. Acta Chinese Med. Pharmacol. 2016, 44, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Dong, W.T.; Bi, X.Y.; Su, X.L.; Xia, Y.G.; Wang, Q.H.; Kuang, H.X. Therapeutic material basis of chemical subdivisions of Anemarrhenae rhizoma on anti-inflammatory and immunomudulatory effects. J. Chin. Med. Mater. 2015, 38, 1904–1907. [Google Scholar]
- Celık, G.Y.; Onbaslı, D.; Altınsoy, B.; Allı, H. In vitro antimicrobial and antioxidant properties of Ganoderma lucidum extracts grown in Turkey. Eur. J. Med. Plants. 2014, 4, 709–722. [Google Scholar] [CrossRef]
- Chen, H.S.; Tsai, Y.F.; Lin, S.; Khoo, K.H.; Lin, C.H.; Wong, C.H. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg. Med. Chem. 2004, 12, 5595–5601. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.Z.; Li, S.Z.; Yee, A.; Pierre, P.L.; Deng, Z.Q.; Lee, D.Y.; Wu, Q.P.; Chen, Q.; Li, C.; Zhang, Z.; Guo, J.; Jiang, Z.; Yang, B.B. Ganoderma lucidum inhibits tumour cell proliferation and induces tumour cell death. Enz. Micr. Tech. 2007, 40, 177–185. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Han, X.; Chen, S.; Zhu, S.; Dai, J. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydr. Polym. 2014, 114, 432–439. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
No. | TMSDs | RI | m/z (Intensity, %) |
---|---|---|---|
1 | GlcN | 1836 | 73(47.7), 131(100), 147(15.9), 191(11.7), 204(22.1), 217(10.5), 259(3.5), 361(2.5) |
2 | GalN | 1873 | 73(47.7), 131(100), 147(11.9), 191(7.0), 204(8.1), 217(8.1), 259(1.1), 361(3.0) |
3 | ManN | 1906 | 73(45.8), 131(100), 147(15.6), 191(7.8), 204(16.0), 217(8.9), 259(1.8), 361(4.0) |
4 | Fru | 2020 | 73(100), 103(9.5), 147(46.0), 191(20.5), 217(30.0), 243(23.6), 361(97.9) |
5 | Xyl | 2125 | 73(100), 103(22.0), 135(25.7), 147(48.1), 205(61.8), 249(74.0), 307(5.8), 319(77.8) |
6 | Ara | 2129 | 73(100), 103(20.1), 135(25.9), 147(45.8), 205(56.2), 249(80.0), 307(6.0), 319(69.9) |
7 | Rha | 2196 | 73(100), 117(81.6), 135(30.2), 147(34.0), 219(70.5), 249(85.8), 277(9.8), 333(33.6) |
8 | Fuc | 2219 | 73(100), 117(81.9), 135(28.7), 147(37.4), 219(65.6), 249(82.1), 277(7.57), 333(25.7) |
9 | GalUA | 2295 | 73(53.7), 135(100), 103(3.5), 147(9.8), 217(21.9), 305(6.7), 361(1.2) |
10 | GlcUA | 2334 | 73(97.8), 135(100), 103(11.7), 147(27.6), 217(67.8), 305(33.5), 361(4.5) |
11 | Glc | 2359 | 73(100), 103(41.7), 147(57.8), 205(51.0), 217(77.8), 307(47.6), 319(59.4), 331(7.7) |
12 | Man | 2364 | 73(100), 103(41.5), 135(31.2), 147(51.9), 205(38.1), 217(46.9), 249(84.3), 307(48.3), 319(58.7), 331(7.5) |
13 | Gal | 2388 | 73(100), 103(43.5), 147(58.7), 205(49.1), 217(53.6), 249(85.2), 307(30.9), 319(58.1), 331(7.9) |
No. | TMSDs | Regression equations | R2 | Linear ranges (μg/mL) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|---|
1 | GlcN | y = 0.0229x + 0.0062 | 0.9923 | 16.3–650.8 | 1.3 | 6.5 |
2 | GalN | y = 0.0232x + 0.0572 | 0.9951 | 16.5–659.2 | 1.3 | 6.6 |
3 | ManN | y = 0.0285x + 0.0888 | 0.9975 | 16.3–652.7 | 1.3 | 6.5 |
4 | Fru | y = 0.0103x + 0.0412 | 0.9921 | 33.2–664.2 | 2.7 | 13.3 |
5 | Xyl | y = 0.0249x + 0.1878 | 0.9920 | 8.4–336.5 | 0.7 | 3.4 |
6 | Ara | y = 0.0133x + 0.0874 | 0.9928 | 7.7–306.6 | 0.6 | 3.1 |
7 | Rha | y = 0.0159x + 0.1246 | 0.9924 | 16.8–672.1 | 1.3 | 6.7 |
8 | Fuc | y = 0.0163x + 0.1314 | 0.9921 | 16.9–676.2 | 1.4 | 6.8 |
9 | GalUA | y = 0.0243x + 0.0131 | 0.9961 | 20.8–415.2 | 1.7 | 8.3 |
10 | GlcUA | y = 0.026x + 0.1254 | 0.9933 | 20.5–410.3 | 1.6 | 8.2 |
11 | Glc | y = 0.018x + 0.1778 | 0.9921 | 10.1–402.9 | 0.8 | 4.0 |
12 | Man | y = 0.0188x + 0.1396 | 0.9933 | 10.2–407.5 | 0.8 | 4.1 |
13 | Gal | y = 0.0176x + 0.1269 | 0.9920 | 10.1–403.3 | 0.8 | 4.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.-G.; Sun, H.-M.; Wang, T.-L.; Liang, J.; Yang, B.-Y.; Kuang, H.-X. A Modified GC-MS Analytical Procedure for Separation and Detection of Multiple Classes of Carbohydrates. Molecules 2018, 23, 1284. https://doi.org/10.3390/molecules23061284
Xia Y-G, Sun H-M, Wang T-L, Liang J, Yang B-Y, Kuang H-X. A Modified GC-MS Analytical Procedure for Separation and Detection of Multiple Classes of Carbohydrates. Molecules. 2018; 23(6):1284. https://doi.org/10.3390/molecules23061284
Chicago/Turabian StyleXia, Yong-Gang, Hui-Min Sun, Tian-Long Wang, Jun Liang, Bing-You Yang, and Hai-Xue Kuang. 2018. "A Modified GC-MS Analytical Procedure for Separation and Detection of Multiple Classes of Carbohydrates" Molecules 23, no. 6: 1284. https://doi.org/10.3390/molecules23061284
APA StyleXia, Y. -G., Sun, H. -M., Wang, T. -L., Liang, J., Yang, B. -Y., & Kuang, H. -X. (2018). A Modified GC-MS Analytical Procedure for Separation and Detection of Multiple Classes of Carbohydrates. Molecules, 23(6), 1284. https://doi.org/10.3390/molecules23061284