Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Plant Collection and Extract Preparation
3.3. UHPLC-DAD-ESI/MSn
3.4. Phytochemical Analysis
3.5. Identification and Quantification of the Phenolic Compounds
3.6. Evaluation of Antioxidant Activity
3.6.1. DPPH Radical-Scavenging Assay
3.6.2. ABTS Assay
3.6.3. Reducing Power
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jachak, S.M.; Saklani, A. Challenges and opportunities in drug discovery from plants. Curr. Sci. 2007, 92, 1251–1257. [Google Scholar]
- Phillipson, J.D. Phytochemistry and pharmacognosy. Phytochemistry 2007, 68, 2960–2972. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Phcogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jasiewicz, A. Scabiosa. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, MA, USA, 1976; Volume 4, pp. 68–74. ISBN 978-0-521-08717-9. [Google Scholar]
- Carlson, S.E.; Linder, P.H.; Donoghue, M.J. The historical biogeography of Scabiosa (Dipsacaceae): Implications for Old World plant disjunctions. J. Biogeogr. 2012, 39, 1086–1100. [Google Scholar] [CrossRef]
- The Plant List. Available online: http://www.theplantlist.org/tpl1.1/search?q=Scabiosa (accessed on 25 May 2018).
- Quezel, P.; Santa, S. Nouvelle Flore de l’Algérie et des Régions Désertiques Méridionales; Tome II. Editions du CNRS: Paris, France, 1963; pp. 890–893. [Google Scholar]
- Rahmouni, N.; Pinto, D.C.G.A.; Santos, S.A.O.; Beghidja, N.; Silva, A.M.S. Lipophilic composition of Scabiosa stellata L.: An underexploited plant from Batna (Algeria). Chem. Pap. 2018, 72, 753–762. [Google Scholar] [CrossRef]
- Lehbili, M.; Magid, A.A.; Hubert, J.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Renault, J.-H.; Nuzillard, J.-M.; Morjani, H.; Abedini, A.; Gangloff, S.C.; et al. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia 2018, 125, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lehbili, M.; Magid, A.A.; Hubert, J.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Morjani, H.; Harakat, D.; Kabouche, Z. Triterpenoid saponins from Scabiosa stellata collected in North-eastern Algeria. Phytochemistry 2018, 150, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Bammi, J.; Douira, A. Les plantes médicinales dans la forêt de L’Achach (Plateau Central, Maroc). Acta Bot. Malacit. 2002, 27, 131–145. [Google Scholar]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef] [PubMed]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.D.; Silva, A.M.S.; Saraiva, S.C.; Sobral, A.J.F.N.; Cardoso, S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2018, 11, 62–69. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Packer, L. Flavonoids in Health and Disease; Marcel Dekker: New York, NY, USA, 1998; p. 199. ISBN 0-8247-4234-6. [Google Scholar]
- Hlila, B.M.; Mosbah, H.; Mssada, K.; Jannet, H.B.; Aouni, M.; Selmi, B. Acetylcholinesterase inhibitory and antioxidant properties of roots extracts from the Tunisian Scabiosa arenaria Forssk. Ind. Crops Prod. 2015, 67, 62–69. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Li, X.; Bi, K.; Zhang, Y.; Huang, J.; Zhang, R. Variation of active constituents and antioxidant activity in Scabiosa tschiliensis Grunning from different stages. J. Food Sci. Technol. 2017, 54, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Marques, V.; Farah, A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009, 113, 1370–1376. [Google Scholar] [CrossRef]
- Stalmach, A.; Mullen, W.; Nagai, C.; Crozier, A. On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed, paper-filtered coffee. Braz. J. Plant Physiol. 2006, 18, 253–262. [Google Scholar] [CrossRef]
- Bastos, D.H.M.; Saldanha, L.A.; Catharino, R.R.; Sawaya, A.C.H.F.; Cunha, I.B.S.; Carvalho, P.O.; Eberlin, M.N. Phenolic Antioxidants Identified by ESI-MS from Yerba Maté (Ilex paraguariensis) and Green Tea (Camelia sinensis) Extracts. Molecules 2007, 12, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Plazonić, A.; Bucar, F.; Maleš, Z.; Mornar, A.; Nigović, B.; Kujundžić, N. Identification and Quantification of Flavonoids and Phenolic Acids in Burr Parsley (Caucalis platycarpos L.), Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry. Molecules 2009, 14, 2466–2490. [Google Scholar] [CrossRef]
- Gouveia, S.; Castilho, P.C. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-(−)-ESI-MSn method. Food Chem. 2011, 129, 333–344. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod. 2016, 79, 188–194. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Erk, T.; Renouf, M.; Williamson, G.; Melcher, R.; Steiling, H.; Richling, E. Absorption and isomerization of caffeoylquinic acids from different foods using ileostomist volunteers. Eur. J. Nutr. 2014, 53, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Faustino, M.V.; Pinto, D.C.G.A.; Gonçalves, M.J.; Salgueiro, L.; Silveira, P.; Silva, A.M.S. Calendula L. species poçyphenolic profile and in vitro antifungal activity. J. Funct. Foods 2018, 45, 254–267. [Google Scholar] [CrossRef]
- Khan, M.K.A.; Ansari, I.A.; Khan, M.S.; Arif, J.M. Dietary phytochemicals as potent chemotherapeutic agents against breast cancer: Inhibition of NF-kB pathway via molecular interactions in rel homology domain of its precursor protein p105. Pharmacogn. Mag. 2013, 9, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, H.; Hu, J.; Li, J.; Fan, Y.-W.; Liu, X.-R.; Deng, Z.-Y. Qualitative and quantitative analysis of phenolics in Tetrastigma hemsleyanum and their antioxidant and antiproliferative activities. J. Agric. Food Chem. 2013, 61, 10507–10515. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B.; Valentão, P.; Tomás-Barberán, F.A. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Andrade, P.B.; Valentão, P.; Gil-Izquierdo, A. Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J. Chromatogr. A 2008, 1182, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Grosso, C.; Valentão, P.; Andrade, P.B. Approach to the study of C-glycosyl flavones acylated with aliphatic and aromatic acids from Spergularia rubra by high-performance liquid chromatography-photodiode array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Pereira, O.R.; Silva, A.M.S.; Domingues, M.R.M.; Cardoso, S.M. Identification of phenolic constituents of Cytisus multiflorus. Food Chem. 2012, 131, 652–659. [Google Scholar] [CrossRef]
- Barros, L.; Alves, C.T.; Dueñas, M.; Silva, S.; Oliveira, R.; Carvalho, A.M.; Henriques, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC-DAD-ESI/MS and evaluation of antifungal properties. Ind. Crops Prod. 2013, 44, 104–110. [Google Scholar] [CrossRef]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS Profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Magalhães, S.C.Q.; Gil-Izquierdo, A.; Valentão, P.; Cabrita, A.R.J.; Fonseca, A.J.M.; Andrade, P.B. HPLC-DAD-ESI/MSn profiling of phenolic compounds from Lathyrus cicera L. seeds. Food Chem. 2017, 214, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.S.; Zeid, A.H.A.; El-Kashoury, E.A.; Sleem, A.A.; Waly, D.A. A new flavonol glycoside and biological activities of Adenanthera pavonina L. leaves. Nat. Prod. Res. 2014, 28, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Teraminami, A.; Lee, J.-Y.; Ohyama, K.; Funakoshi, K.; Kim, Y.-I.; Hirai, S.; Uemura, T.; Yu, R.; Takahashi, N.; et al. Tiliroside, a glycoside flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. J. Nut. Biochem. 2012, 23, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Pereira, O.R.; Macias, R.I.R.; Perez, M.J.; Marin, J.J.G.; Cardoso, S.M. Protective effects of phenolic constituents from Cytisus multiflorus, Lamium album L. and Thymus citriodorus on liver cells. J. Funct. Foods 2013, 5, 1170–1179. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Fraction | Mass a | Total Phenolic Content b | DPPH (FRS50) c | ABTS Assay (FRS50) c | Reducing Power (EC50) c |
---|---|---|---|---|---|
DCMF | 12.3 | <1.00 | >250 | >250 | >50 |
EAF | 5.3 | 4.74 ± 0.01 * | 71.82 ± 0.04 * | 40.41 ± 0.02 * | 202.41 ± 0.10 * |
n-BF | 51.7 | 11.86 ± 0.05 * | 64.46 ± 0.01 * | 27.87 ± 0.01 *,# | 161.11 ± 0.08 *,# |
Reference | - | - | 8.21 ± 0.03 d | 12.07 ± 0.04 e | 18.03 ± 0.01 f |
Rt (min) | λmax | [M − H]− (m/z) ♦ | ESI-MS2; (MS3) (m/z) ♠ | Quantity ♣ | Compound |
---|---|---|---|---|---|
1.38 | 191, 267 | 387 | 341, 369; (179, 143, 161) | 8.24 ± 0.03 | 1-Caffeoylglucose derivative (b) |
1.74 | 193, 202 | 128 | 85, 109 | 4.30 ± 0.02 | Cyanuric acid (a) |
4.35 | 204, 324 | 353 | 191, 179, 135; (173, 127, 109) | nq | 1-O-Caffeoylquinic acid (c) |
5.30 | 211, 278, 323 | 223 | 205, 115, 143, 159 | 0.26 ± 0.01 | Sinapic acid (a) |
6.66 | 217, 298, 325 | 353 | 191, 179, 173, 135; (111, 93) | 26.41 ± 0.30 | 4-O-Caffeoylquinic acid (c) |
7.12 | 216, 299, 325 | 353 | 191, 179; (173, 127, 85) | 8.93 ± 0.12 | 3-O-Caffeoylquinic acid (a) |
8.40 | 206, 269, 348 | 609 | 489, 447, (357, 327, 285) | 1.84 ± 0.03 | Luteolin-6-C-glucoside-7-O-glucoside (b) |
8.55 | 199, 214, 270, 304 | 353 | 191, 179, 135; (173, 127, 85) | 1.47 ± 0.01 | 5-O-Caffeoylquinic acid (c) |
8.83 | 220, 274, 310 | 337 | 191, 173; (127, 110, 93) | tr | 5-O-p-Coumaroylquinic acid (c) |
9.83 | 230, 326 | 367 | 191; (173, 85) | 0.97 ± 0.02 | 5-O-Feruloylquinic acid (c) |
10.14 | 209, 269, 350 | 447 | 429, 357, 327; (309, 297, 285) | 66.31 ± 0.30 | Isoorientin (luteolin-6-C-glucoside) (a) |
10.40 | 211, 269, 350 | 579 | 561, 447, 357, 327; (309, 297, 285) | 9.78 ± 0.26 | Luteolin-2″-O-pentosyl-6-C-hexoside (b) |
10.65 | 211, 270, 346 | 461 | 371, 341, 313; (299, 231) | 13.97 ± 0.11 | Diosmetin-6(or 8)-C-glucoside (b) |
11.90 | 225, 270, 338 | 563 | 443, 431; (311, 283, 269) | 2.82 ± 0.01 | Apigenin-2″-O-pentosyl-8-C-glucoside (b) |
12.38 | 232, 256, 353 | 463 | 301; (268, 179, 151) | 0.97 ± 0.04 | Quercetin-3-O-glucoside (hyperoside) (b) |
13.99 | 220, 241, 327 | 515 | 353; (191, 173) | 16.03 ± 0.03 | 4,5-O-Dicaffeoylquinic acid (a) |
14.21 | 237, 267, 337 | 609 | 489, 369; (298, 285, 231) | 1.23 ± 0.01 | Lucenin 2 (luteolin-6,8-di-C-glucoside) (b) |
14.38 | 242, 326 | 515 | 353, 335; (173,111) | tr | 3,4-O-Dicaffeoylquinic acid (c) |
14.93 | 240, 268, 314 | 639 | 616, 315 | tr | Tamarixetin-O,O-dihexoside (b) |
15.18 | 242, 326 | 515 | 353; (191, 171, 127) | 3.74 ± 0.02 | 3,5-O-Dicaffeoylquinic acid (c) |
18.26 | 239, 270, 351 | 613 | 489, 447, 429; (369, 309, 285) | 0.43 ± 0.02 | Luteolin-6-C-glucoside derivative (b) |
19.02 | 243, 267, 314 | 593 | 447, 285 | 0.37±0.02 | Tiliroside (b) |
20.86 | 237, 267, 314 | 635 | 477, 315 | 14.49 ± 0.02 | Tamarixetin derivative (b) |
20.94 | 237, 267, 313 | 769 | 623, 477, 315 | nq | Tamarixetin glycoside (a) |
21.30 | 243, 269, 313 | 739 | 593, 447, 285 | 10.85 ± 0.01 | Kaempferol-3-O-rutinoside derivative (b) |
57.55 ± 0.11 ♥ | Total chlorogenic acids | ||||
108.20 ± 0.17 ♥ | Total flavonoids |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmouni, N.; Pinto, D.C.G.A.; Beghidja, N.; Benayache, S.; Silva, A.M.S. Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity. Molecules 2018, 23, 1285. https://doi.org/10.3390/molecules23061285
Rahmouni N, Pinto DCGA, Beghidja N, Benayache S, Silva AMS. Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity. Molecules. 2018; 23(6):1285. https://doi.org/10.3390/molecules23061285
Chicago/Turabian StyleRahmouni, Naima, Diana C. G. A. Pinto, Noureddine Beghidja, Samir Benayache, and Artur M. S. Silva. 2018. "Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity" Molecules 23, no. 6: 1285. https://doi.org/10.3390/molecules23061285
APA StyleRahmouni, N., Pinto, D. C. G. A., Beghidja, N., Benayache, S., & Silva, A. M. S. (2018). Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity. Molecules, 23(6), 1285. https://doi.org/10.3390/molecules23061285