Biotransformations of Flavones and an Isoflavone (Daidzein) in Cultures of Entomopathogenic Filamentous Fungi
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biotransformations of Flavone (1)
2.2. Biotransformations of 5-Hydroxyflavone (2)
2.3. Biotransformations of 6-Hydroxyflavone (3)
2.4. Biotransformations of 7-Hydroxyflavone (4)
2.5. Biotransformations of Daidzein (5)
2.6. Biotransformations of 7-Aminoflavone (6)
3. Materials and Methods
3.1. Chemicals
3.1.1. Flavone (1)
3.1.2. 5-Hydroxyflavone (2)
3.1.3. 6-Hydroxyflavone (3)
3.1.4. 7-Hydroxyflavone (4)
3.1.5. 4′,7-Dihydroxyisoflavone (Daidzein) (5)
3.1.6. 7-Aminoflavone (6)
3.2. Microorganism
3.3. Analysis
3.4. Screening Procedure
3.5. Scaled-Up Biotransformations
3.5.1. Flavone 2′-O-β-d-(4′′-O-Methyl)-glucopyranoside (1a)
3.5.2. Flavone 4′-O-β-d-(4′′-O-Methyl)-glucopyranoside (1b)
3.5.3. 3′-Hydroxyflavone 4′-O-β-d-(4′′-O-Methyl)-glucopyranoside (1c)
3.5.4. 5-Hydroxyflavone 4′-O-β-d-(4′′-O-Methyl)-glucopyranoside (2a)
3.5.5. Flavone 6-O-β-d-(4′′-O-Methyl)-glucopyranoside (3a)
3.5.6. Flavone 7-O-β-d-(4′′-O-Methyl)-glucopyranoside (4a)
3.5.7. 4′-Hydroxyisoflavone 7-O-β-d-(4′′-O-Methyl)-glucopyranoside (5a)
3.5.8. 7-Acetamidoflavone (6a)
3.5.9. 7-Acetamido-4′-hydroxyflavone (6b)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dymarska, M.; Grzeszczuk, J.; Urbaniak, M.; Janeczko, T.; Stępień, Ł.; Kostrzewa-Susłow, E. Glycosylation of 6-methylflavone by the strain Isaria fumosorosea KCH J2. PLoS ONE 2017, 12, e0184885. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Tsatsakis, A.; Mamoulakis, C.; Teodoro, M.; Briguglio, G.; Caruso, E.; Tsoukalas, D.; Margina, D.; Dardiotis, E.; Kouretas, D.; et al. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017, 110, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Naeimi, A.F.; Alizadeh, M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci. Technol. 2017, 70, 34–44. [Google Scholar] [CrossRef]
- Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem. 2017, 142, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Seleem, D.; Pardi, V.; Mendonça, R. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol. 2017, 76, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Jaeger, B.N.; Parylak, S.L.; Gage, F.H. Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol. Asp. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa-Susłow, E.; Dymarska, M.; Białońska, A.; Janeczko, T. Enantioselective conversion of certain derivatives of 6-hydroxyflavanone. J. Mol. Catal. B Enzym. 2014, 102, 59–65. [Google Scholar] [CrossRef]
- Vavříková, E.; Langschwager, F.; Jezova-Kalachova, L.; Křenková, A.; Mikulová, B.; Kuzma, M.; Křen, V.; Valentová, K. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties. Int. J. Mol. Sci. 2016, 17, 899. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Clifford, M.N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem. Pharmacol. 2017, 139, 24–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.P.; Wang, J.H.; Liu, X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora—Implications for health. Mol. Nutr. Food Res. 2007, 51, 765–781. [Google Scholar] [CrossRef] [PubMed]
- Day, A.J.; Dupont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.C.; Morgan, M.R.A.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett. 1998, 436, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Hollman, P.C.H. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol. 2004, 42, 74–83. [Google Scholar] [CrossRef]
- Viskupičová, J.; Ondrejovic, M.; Sturdik, E. Bioavailability and metabolism of flavonoids. J. Food Nutr. Res. 2008, 47, 151–162. [Google Scholar]
- Thilakarathna, S.H.; Vasantha Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004, 36, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Thiem, J. Glycosylation employing bio-systems: From enzymes to whole cells. Chem. Soc. Rev. 1997, 26, 463–473. [Google Scholar]
- Kostrzewa-Susłow, E.; Dymarska, M.; Janeczko, T. Microbial transformations of 3-methoxyflavone by strains of Aspergillus niger. Polish J. Microbiol. 2014, 63, 111–114. [Google Scholar]
- Penso, J.; Cordeiro, K.C.F.A.; Carla, R.M.; Patricia, F.; Castro, S.; Martins, D.R.; Lião, L.M. Vasorelaxant activity of 7-β-O-glycosides biosynthesized from flavonoids. Eur. J. Pharmacol. 2014, 733, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Sordon, S.; Popłoński, J.; Huszcza, E.W.A. Microbial Glycosylation of Flavonoids. Pol. J. Microbiol. 2016, 65, 137–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.Q.; Fan, N.; Yu, B.Y.; Wang, Q.Q.; Zhang, J. Biotransformation of quercetin by Gliocladium deliquescens NRRL 1086. Chin. J. Nat. Med. 2017, 15, 615–624. [Google Scholar] [CrossRef]
- Tronina, T.; Bartmańska, A.; Milczarek, M.; Wietrzyk, J.; Popłoński, J.; Rój, E.; Huszcza, E. Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg. Med. Chem. Lett. 2013, 23, 1957–1960. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Gallou, A.; Serna-Domínguez, M.G.; Berlanga-Padilla, A.M.; Ayala-Zermeño, M.A.; Mellín-Rosas, M.A.; Montesinos-Matías, R.; Arredondo-Bernal, H.C. Species clarification of Isaria isolates used as biocontrol agents against Diaphorina citri (Hemiptera: Liviidae) in Mexico. Fungal Biol. 2016, 120, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Patt, J.M.; Chow, A.; Meikle, W.G.; Gracia, C.; Jackson, M.A.; Flores, D.; Sétamou, M.; Dunlap, C.A.; Avery, P.B.; Hunter, W.B.; et al. Efficacy of an autodisseminator of an entomopathogenic fungus, Isaria fumosorosea, to suppress Asian citrus psyllid, Diaphorina citri, under greenhouse conditions. Biol. Control 2015, 88, 37–45. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Chen, C.; Teng, J.; Wang, C.; Luo, D. Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genet. Biol. 2015, 81, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, E.; Dymarska, M.; Kostrzewa-Susłow, E.; Janeczko, T. Isaria fumosorosea KCh J2 entomopathogenic strain as an effective biocatalyst for steroid compound transformations. Molecules 2017, 22, 1511. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, E.; Urbaniak, M.; Grzeszczuk, J.; Hoc, N.; Sycz, J.; Dymarska, M.; Kostrzewa-Susłow, E.; Stępień, Ł.; Pląskowska, E.; Janeczko, T. Biotransformation of steroids by entomopathogenic strains of Isaria farinosa. Microb. Cell Fact. 2018, 17. [Google Scholar] [CrossRef] [PubMed]
- Zi, J.; Valiente, J.; Zeng, J.; Zhan, J. Metabolism of quercetin by Cunninghamella elegans ATCC 9245. J. Biosci. Bioeng. 2011, 112, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, K.; Kubota, N.; Taniuchi, K.; Sato, D.; Nakajima, N.; Hamada, H.; Hamada, H. Biotransformation of naringin and naringenin by cultured Eucalyptus perriniana cells. Phytochemistry 2010, 71, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Tang, P.; Liu, L. Molecular structure—Affinity relationship of Flavonoids in Lotus leaf (Nelumbo nucifera Gaertn.) on Binding to Human serum albumin and Bovine serum albumin by Spectroscopic Method. Molecules 2017, 22, 1036. [Google Scholar] [CrossRef] [PubMed]
- Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Microbial glycosylation of daidzein, genistein and biochanin A: Two new glucosides of biochanin A. Molecules 2017, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.L.; He, Y.Q.; Huang, B.; Li, C.R.; Fan, M.Z.; Li, Z.Z. Secondary metabolites in a soybean fermentation broth of Paecilomyces militaris. Food Chem. 2009, 116, 198–201. [Google Scholar] [CrossRef]
- Kostrzewa-Susłow, E.; Dorynek, M.; Janeczko, T. Microbial Transformations of 7-Aminoflavone. In Flavonoids and Their Application; Kopacz, M., Pusz, J., Eds.; Rzeszów University of Technology Publishing House: Rzeszów, Poland, 2012; pp. 241–248. [Google Scholar]
- Stompor, M. 6-Acetamidoflavone obtained by microbiological and chemical methods and its antioxidant activity. J. Biotechnol. 2016, 237, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Bapat, B.Y.D.S. Potential antitubercular compounds. Proc. Indian Acad. Sci. Sect. A 1955, 42, 336–341. [Google Scholar]
- SIGMA—ALDRICH. Available online: https://www.sigmaaldrich.com/poland.html (accessed on 16 April 2018).
- Kostrzewa-Susłow, E.; Dmochowska-Gładysz, J.; Janeczko, T.; Środa, K.; Michalak, K.; Palko, A. Microbial transformations of 6- and 7-methoxyflavones in Aspergillus niger and Penicillium chermesinum cultures. Z. Naturforsch. Sect. C J. Biosci. 2012, 67C, 411–417. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1, 1a, 1b, 1c, 2, 2a, 3, 3a, 4, 4a, 5, 5a, 6, 6a, 6b are available from the authors. |
Proton | Compound | ||||||
---|---|---|---|---|---|---|---|
1 | 1a | 1b | 1c | 6 | 6a | 6b | |
H-3 | 6.91 (s) | 7.15 (s) | 6.83 (s) | 6.81 (s) | 6.69 (s) | 6.84 (s) | 6.70 (s) |
H-5 | 8.17 (dd) J5,6 = 7.9, J = 1.6 | 8.16 (d) J5,6 = 8.0 | 8.15 (d) J5,6 = 7.8 | 8.15 (d) J5,6 = 7.8 | 7.86 (d) J5,6 = 8.4 | 8.05 (d) J5,6 = 8.6 | 8.03 (d) J5,6 = 8.6 |
H-6 | 7.54 (t) J = 7.5 | 7.52 (t) J = 7.5 | 7.52 (t) J = 7.4 | 7.52 (t) J = 7.4 | 6.83 (d) J8,6 = 2.0 | 7.46 (dd) J6,5 = 8.6, J6,8 = 2.0 | 7.42 (dd) J6,5 = 8.6, J6,8 = 1.9 |
H-7 | 7.86 (m) | 7.84 (t) J = 7.7 | 7.84 (t) J = 7.7 | 7.85 (t) J = 7.8 | - | - | - |
H-8 | 7.79 (d) J8,7 = 8.4 | 7.73 (d) J8,7 = 8.4 | 7.76 (d) J8,7 = 8.4 | 7.79 (d) J8,7 = 8.4 | 6.82 (t) J = 2.7 | 8.40 (d) J8,6 = 1.9 | 8.37 (d) J8,6 = 1.8 |
H-2′ | 8.14 (m) | - | 8.09 (d) J2′,3′ = 7.9 | 7.63 (s) | 8.05 (dd) J = 6.6, 3.0 | 8.13 (m) | 7.08 (m) |
H-3′ | 7.65 (m) | 7.44 (d) J = 8.3 | 7.28 (d) J3′,2′ = 7.9 | - | 7.61 (dd) J = 6.5, 3.5 | 7.64 (m) | 8.00 (m) |
H-4′ | 7.65 (m) | 7.57 (t) J = 7.7 | - | - | 7.61 (dd) J = 6.5, 3.5 | 7.64 (m) | - |
H-5′ | 7.65 (m) | 7.27 (t) J = 7.5 | 7.28 (d) J5′,6′ = 7.9 | 7.38 (d) J5′,6′ = 8.3 | 7.61 (dd) J = 6.5, 3.5 | 7.64 (m) | 8.00 (m) |
H-6′ | 8.14 (m) | 7.99 (d) J = 7.8 | 8.09 (d) J6,5′ = 7.9 | 7.60 (d) J6′,5′ = 8.4 | 8.05 (dd) J = 6.6, 3.0 | 8.13 (m) | 7.08 (m) |
H-1′′ | - | 5.23 (d) J = 7.6 | 5.14 (d) J = 7.7 | 5.00 (d) J = 7.8 | - | - | - |
H-2′′ | - | 3.61 (m) | 3.56 (t) J = 8.4 | 3.58 (m) | - | - | - |
H-3′′ | - | 3.69 (m) | 3.70 (t) J = 9.0 | 3.71 (t) J = 9.1 | - | - | - |
H-4′′ | - | 3.29 (t) J = 9.2 | 3.28 (t) J = 9.3 | 3.29 (t) J = 9.1 | - | - | - |
H-5′′ | - | 3.61 (m) | 3.59 (m) | 3.58 (m) | - | - | - |
H-6′′ | - | 3.89 (d) J = 12.2, 3.74 (dd) J = 13.6, 3.9 | 3.90 (d) J = 11.9, 3.75 (dd) J = 11.6, 4.0 | 3.91 (d) J = 11.5, 3.76 (dd) J = 11.3, 3.8 | - | - | - |
C-4′′-OCH3 | - | 3.61 (m) | 3.62 (s) | 3.61 (s) | - | - | - |
-COCH3 | - | - | - | - | - | 2.21 (s) | 2.21 (s) |
-NH2 | - | - | - | - | 5.82 (s) | - | - |
-NH- | - | - | - | - | - | 9.78 (s) | 9.73 (s) |
-OH | - | - | - | - | - | - | 9.27 (s) |
Carbon | Compound | ||||||
---|---|---|---|---|---|---|---|
1 | 1a | 1b | 1c | 6 | 6a | 6b | |
C-2 | 163.9 | 161.6 | 163.8 | 163.7 | 162.5 | 163.8 | 164.1 |
C-3 | 108.0 | 113.4 | 106.8 | 107.2 | 107.6 | 107.9 | 106.0 |
C-4 | 178.0 | 178.3 | 177.8 | 177.8 | 177.1 | 177.2 | 177.1 |
C-4a | 124.8 | 124.7 | 124.8 | 124.8 | 115.1 | 120.2 | 120.2 |
C-5 | 126.0 | 125.9 | 126.0 | 125.9 | 127.3 | 126.6 | 126.5 |
C-6 | 126.2 | 125.9 | 126.0 | 126.0 | 114.2 | 117.4 | 117.1 |
C-7 | 134.9 | 134.7 | 134.7 | 134.7 | 155.1 | 145.4 | 145.1 |
C-8 | 119.3 | 119.3 | 119.2 | 119.2 | 99.7 | 107.5 | 107.4 |
C-8a | 157.1 | 157.5 | 157.1 | 157.1 | 159.4 | 158.0 | 157.9 |
C-1′ | 132.8 | 122.6 | 126.2 | 127.9 | 133.2 | 132.9 | 123.9 |
C-2′ | 127.2 | 156.7 | 128.8 | 114.5 | 126.9 | 127.1 | 129.1 |
C-3′ | 130.0 | 116.7 | 117.7 | 148.7 | 129.9 | 130.0 | 116.8 |
C-4′ | 132.5 | 133.3 | 161.4 | 148.9 | 131.9 | 132.3 | 161.6 |
C-5′ | 130.0 | 123.0 | 117.7 | 118.3 | 129.9 | 130.0 | 116.8 |
C-6′ | 127.2 | 130.1 | 128.8 | 119.3 | 126.9 | 127.1 | 129.1 |
C-1′′ | - | 101.6 | 101.2 | 107.2 | - | - | - |
C-2′′ | - | 74.7 | 74.8 | 74.7 | - | - | - |
C-3′′ | - | 78.1 | 77.9 | 77.3 | - | - | - |
C-4′′ | - | 80.00 | 80.1 | 80.0 | - | - | - |
C-5′′ | - | 77.2 | 77.2 | 77.4 | - | - | - |
C-6′′ | - | 61.9 | 61.9 | 61.9 | - | - | - |
C-4′′-OCH3 | - | 60.6 | 60.6 | 60.6 | - | - | - |
-COCH3 | - | - | - | - | - | 169.9 | 169.8 |
-COCH3 | - | - | - | - | - | 24.5 | 24.5 |
Proton | Compound | |||||||
---|---|---|---|---|---|---|---|---|
2 | 2a | 3 | 3a | 4 | 4a | 5 | 5a | |
H-2 | - | - | - | - | - | - | 8.16 (s) | 8.24 (s) |
H-3 | 6.96 (s) | 6.87 (s) | 6.85 (s) | 6.88 (s) | 6.79 (s) | 6.84 (s) | - | - |
H-5 | - | - | 7.53 (d) J5,7 = 3.0 | 7.73 (d) J5,7 = 1.9 | 8.02 (d) J5,6 = 8.7 | 8.07 (d) J5,6 = 8.8 | 8.09 (d) J5,6 = 8.7 | 8.15 (d) J5,6 = 8.7 |
H-6 | 6.84 (d) J6,7 = 8.2 | 6.81 (d) J6,7 = 8.4 | - | - | 7.03 (dd) J6,5 = 8.7, J6,8 = 2.2 | 7.19 (d) J6,5 = 8.8 | 7.02 (d) J6,5 = 8.8 | 7.18 (d) J6,5 = 8.8 |
H-7 | 7.72 (t) J = 8.3 | 7.69 (t) J = 8.3 | 7.36 (dd) J7,8 = 9.0, J7,5 = 3.0 | 7.57 (dd) J7,8 = 8.8, J7,5 = 2.0 | - | - | - | - |
H-8 | 7.21 (d) J8,7 = 8.4 | 7.18 (d) J8,7 = 8.4 | 7.68 (d) J8,7 = 9.0 | 7.76 (d) J8,7 = 9.0 | 7.11 (d) J8,6 = 2.2 | 7.40 (s) | 6.93 (m) | 7.22 (s) |
H-2′ | 8.16 (m) | 8.10 (d) J2′,3′ = 8.6 | 8.12 (m) | 8.14 (d) J = 7.1 | 8.10 (dd) J = 6.5, 2.9 | 8.10 (d) J = 7.3 | 7.51 (d) J = 8.3 | 7.52 (d) J2′,3′ = 8.0 |
H-3′ | 7.67 (m) | 7.29 (d) J3′,2′ = 8.6 | 7.64 (m) | 7.64 (m) | 7.63 (m) | 7.64 (d) J = 5.9 | 6.91 (m) | 6.93 (d) J3′,2′ = 7.9 |
H-4′ | 7.67 (m) | - | 7.64 (m) | 7.64 (m) | 7.63 (m) | 7.64 (d) J = 5.9 | - | - |
H-5′ | 7.67 (m) | 7.29 (d) J5′,6′ = 8.6 | 7.64 (m) | 7.64 (m) | 7.63 (m) | 7.64 (d) J = 5.9 | 6.91 (m) | 6.93 (d) J5′,6′ = 7.9 |
H-6′ | 8.16 (m) | 8.10 (d) J6′,5′ = 8.6 | 8.12 (m) | 8.14 (d) J = 7.1 | 8.10 (dd) J = 6.5, 2.9 | 8.10 (d) J = 7.3 | 7.51 (d) J = 8.3 | 7.52 (d) J6′,5′ = 8.0 |
H-1′′ | - | 5.15 (d) J = 7.7 | - | 5.11 (d) J = 7.8 | - | 5.24 (d) J = 7.7 | - | 5.21 (d) J = 7.7 |
H-2′′ | - | 3.56 (m) | - | 3.54 (m) | - | 3.58 (t) J = 8.4 | - | 3.57 (t) J = 8.2 |
H-3′′ | - | 3.70 (m) | - | 3.73 (m) | - | 3.72 (t) J = 9.3 | - | 3.71 (m) |
H-4′′ | - | 3.27 (m) | - | 3.31 (t) J = 9.4 | - | 3.30 (t) J = 9.3 | - | 3.28 (t) J = 9.3 |
H-5′′ | - | 3.58 (m) | - | 3.60 (dd) J = 9.9, 2.5 | - | 3.65 (m) | - | 3.67 (m) |
H-6′′ | - | 3.89 (m) 3.76 (m) | - | 3.89 (t) J = 10.7 3.67 (m) | - | 3.92 (d) J = 11.3 3.75 (m) | - | 3.92 (m) 3.75 (m) |
C-4′′-OCH3 | - | 3.61 (s) | - | 3.62 (s) | - | 3.62 (s) | - | 3.62 (s) |
-OH | 12.74 | - | 9.14 | - | 9.86 | - | - | - |
Carbon | Compound | |||||||
---|---|---|---|---|---|---|---|---|
2 | 2a | 3 | 3a | 4 | 4a | 5 | 5a | |
C-2 | 164.7 | 165.4 | 163.6 | 163.8 | 163.4 | 163.7 | 153.1 | 153.5 |
C-3 | 105.7 | 105.3 | 107.0 | 102.7 | 107.7 | 107.9 | 125.2 | 124.2 |
C-4 | 183.6 | 184.3 | 177.9 | 177.7 | 177.3 | 177.3 | 175.7 | 175.7 |
C-4a | 110.6 | 111.3 | 125.7 | 125.5 | 118.0 | 119.6 | 118.3 | 120.2 |
C-5 | 160.8 | 161.7 | 108.9 | 111.1 | 127.7 | 127.4 | 128.4 | 128.1 |
C-6 | 111.1 | 111.8 | 155.9 | 156.0 | 115.6 | 116.3 | 115.8 | 116.4 |
C-7 | 135.8 | 136.4 | 123.7 | 124.9 | 163.5 | 162.9 | 163.6 | 162.6 |
C-8 | 107.2 | 108.0 | 120.6 | 120.6 | 103.6 | 104.9 | 103.1 | 104.4 |
C-8a | 156.5 | 157.3 | 151.1 | 152.5 | 158.9 | 158.5 | 158.1 | 158.3 |
C-1′ | 131.2 | 125.5 | 133.0 | 132.8 | 132.9 | 132.8 | 124.4 | 125.4 |
C-2′ | 126.6 | 129.2 | 127.1 | 127.2 | 127.0 | 127.1 | 131.1 | 131.1 |
C-3′ | 129.2 | 117.7 | 130.0 | 130.0 | 129.9 | 130.0 | 115.8 | 115.9 |
C-4′ | 132.2 | 161.8 | 132.3 | 132.5 | 132.2 | 132.4 | 158.9 | 158.4 |
C-5′ | 129.2 | 117.7 | 130.0 | 130.0 | 129.9 | 130.0 | 115.8 | 115.9 |
C-6′ | 126.6 | 129.2 | 127.1 | 127.2 | 127.0 | 127.1 | 131.1 | 131.1 |
C-1′′ | - | 101.1 | - | 102.2 | - | 101.3 | - | 101.3 |
C-2′′ | - | 74.9 | - | 74.89 | - | 74.8 | - | 74.8 |
C-3′′ | - | 77.9 | - | 77.6 | - | 77.8 | - | 77.9 |
C-4′′ | - | 80.1 | - | 79.9 | - | 80.0 | - | 80.0 |
C-5′′ | - | 77.2 | - | 77.1 | - | 77.3 | - | 77.3 |
C-6′′ | - | 62.0 | - | 61.9 | - | 61.9 | - | 62.0 |
C-4′′-OCH3 | - | 60.6 | - | 60.6 | - | 60.6 | - | 60.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. Biotransformations of Flavones and an Isoflavone (Daidzein) in Cultures of Entomopathogenic Filamentous Fungi. Molecules 2018, 23, 1356. https://doi.org/10.3390/molecules23061356
Dymarska M, Janeczko T, Kostrzewa-Susłow E. Biotransformations of Flavones and an Isoflavone (Daidzein) in Cultures of Entomopathogenic Filamentous Fungi. Molecules. 2018; 23(6):1356. https://doi.org/10.3390/molecules23061356
Chicago/Turabian StyleDymarska, Monika, Tomasz Janeczko, and Edyta Kostrzewa-Susłow. 2018. "Biotransformations of Flavones and an Isoflavone (Daidzein) in Cultures of Entomopathogenic Filamentous Fungi" Molecules 23, no. 6: 1356. https://doi.org/10.3390/molecules23061356