A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010
Abstract
:1. Introduction
2. Sample Pretreatment Methods
2.1. Protein Precipitation, Centrifugation and Filtration
2.2. Ultrasonic Assisted Extraction
2.3. Liquid–Liquid Extraction
2.4. Dispersive Liquid–Liquid Micro-Extraction
2.5. Solid Phase Extraction
2.6. Supercritical Fluid Extraction
2.7. Brief Summary
3. Analysis Methods
3.1. Liquid Chromatography
3.1.1. LC Coupled with MS and Multiclass Analyses
3.1.2. Liquid Chromatography Coupled with Other Techniques
3.1.3. Summary
3.2. Electrophoretic Methods
3.3. Microbiological Assays
3.4. Biosensors
3.5. Spectrometry
3.6. Other Methods
3.7. Summary of Analysis Methods
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviation
LLE | Liquid–Liquid Extraction |
SPE | Solid-Phase Extraction |
UAE | Ultrasonic Assisted Extraction |
SFE | Supercritical Fluid Extraction |
DLLME | Dispersive Liquid–Liquid Microextraction |
SDME | Single-Drop Microextraction |
HF-LPME | Hollow Fibre Liquid Phase Microextraction |
QqLIT | Hybrid Triple Quadrupole-Linear Ion Trap |
UPLC or UHPLC | Ultra-High Performance Liquid Chromatography |
HPLC | High Performance Liquid Chromatography |
SFC | Supercritical Fluid Chromatography |
HPLC-MS/MS | High-Performance Liquid Chromatography-Tandem Mass Spectrometry |
UV | Ultraviolet |
PDA | Photodiode Array |
DAD | Diode Array Detector |
AA | Ascorbic Acid |
ELISA | Enzyme-Linked Immunosorbent Assays |
TLC | Thin-Layer Chromatography |
CE | Capillary Electrophoresis |
TOF | Time of Flight Mass Spectrometry |
MEKC | Micellar Electrokinetic Chromatography |
References
- Khayat, S.; Fanaei, H.; Ghanbarzehi, A. Minerals in Pregnancy and Lactation: A Review Article. J. Clin. Diagn. Res. 2017, 11, QE01–QE05. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Stankovic, B.; Draskovic, V.; Stevanovic, J.; Petrovic, T.; Lakic, N.; Stanimirovic, Z. Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PLoS ONE 2017, 12, e0187726. [Google Scholar] [CrossRef] [PubMed]
- Eggersdorfer, M.; Laudert, D.; Létinois, U.; McClymont, T.; Medlock, J.; Netscher, T.; Bonrath, W. One hundred years of vitamins—A success story of the natural sciences. Angew. Chem. Int. Ed. Engl. 2012, 51, 12960–12990. [Google Scholar] [CrossRef] [PubMed]
- Lounder, D.T.; Khandelwal, P.; Dandoy, C.E.; Jodele, S.; Grimley, M.S.; Wallace, G.; Lane, A.; Taggart, C.; Teusink-Cross, A.C.; Lake, K.E.; et al. Lower levels of vitamin A are associated with increased gastrointestinal graft-versus-host disease in children. Blood 2017, 129, 2801–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanbari, A.A.; Shabani, K.; Mohammad Nejad, D. Protective effects of vitamin E consumption against 3MT electromagnetic field effects on oxidative parameters in substantia nigra in rats. Basic Clin. Neurosci. 2016, 7, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Amundson, L.A.; Hernandez, L.L.; Laporta, J.; Crenshaw, T.D. Maternal dietary vitamin D carry-over alters offspring growth, skeletal mineralisation and tissue mRNA expressions of genes related to vitamin D, calcium and phosphorus homoeostasis in swine. Br. J. Nutr. 2016, 116, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Riva, N.; Vella, K.; Meli, S.; Hickey, K.; Zammit, D.; Calamatta, C.; Makris, M.; Kitchen, S.; Ageno, W.; Gatt, A. A comparative study using thrombin generation and three different INR methods in patients on Vitamin K antagonist treatment. Int. J. Lab. Hematol. 2017, 39, 482–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Monahan, F.J.; McNulty, B.A.; Gibney, M.J.; Gibney, E. Effect of vitamin E intake from food and supplement sources on plasma α-and γ-tocopherol concentrations in a healthy Irish adult population. Br. J. Nutr. 2014, 112, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Clugston, R.D.; Blaner, W.S. Vitamin A (retinoid) metabolism and actions: What we know and what we need to know about amphibians. Zoo Biol. 2014, 33, 527–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makarova, A.; Wang, G.; Dolorito, J.A.; Kc, S.; Libove, E.; Epstein, E.H., Jr. Vitamin D3 Produced by Skin Exposure to UVR Inhibits Murine Basal Cell Carcinoma Carcinogenesis. J. Investig. Dermatol. 2017, 137, 2613–2619. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J. Vitamin K in parenteral nutrition. Gastroenterology 2009, 137, S105–S118. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Murray, A.; Synnott, N.C.; O’Donovan, N.; Crown, J. Vitamin D analogues: Potential use in cancer treatment. Crit. Rev. Oncol. Hematol. 2017, 112, 190–197. [Google Scholar] [CrossRef] [PubMed]
- WebMD Medical Reference from Healthwise. Available online: https://www.webmd.com/food-recipes/vitamin-mineral-sources (accessed on 19 June 2018).
- Helliwel, K.E. The roles of B vitamins in phytoplankton nutrition: New perspectives and prospects. New Phytol. 2017, 216, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Vitamins. Available online: https://medlineplus.gov/vitamins.html (accessed on 19 June 2018).
- Hmami, F.; Oulmaati, A.; Amarti, A.; Kottler, M.L.; Bouharrou, A. Overdose or hypersensitivity to vitamin D? Arch. Pediatr. 2014, 21, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Mishra, S.K.; Mithal, A. Vitamin D toxicity resulting from overzealous correction of vitamin D deficiency. Clin. Endocrinol. 2015, 83, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.M.; Saleh, H.A.; Mustafa, H.N. Effect of sodium selenite and vitamin E on the renal cortex in rats: An ultrastructure study. Tissue Cell 2014, 46, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P. A 100-Year Review: From ascorbic acid to zinc—Mineral and vitamin nutrition of dairy cows. J. Dairy. Sci. 2017, 100, 10045–10060. [Google Scholar] [CrossRef] [PubMed]
- Dia, K.; Sarr, S.A.; Mboup, M.C.; Ba, D.M.; Fall, P.D. Overdose in Vitamin K antagonists administration in Dakar: Epidemiological, clinical and evolutionary aspects. Pan Afr. Med. J. 2016, 46, 186. [Google Scholar] [CrossRef]
- Péter, S.; Navis, G.; de Borst, M.H.; von Schacky, C.; van Orten-Luiten, A.C.B.; Zhernakova, A.; Witkamp, R.F.; Janse, A.; Weber, P.; Bakker, S.J.L.; et al. Public health relevance of drug–nutrition interactions. Eur. J. Nutr. 2017, 56, 23–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kartsova, L.A.; Koroleva, O.A. Simultaneous determination of water-and fat-soluble vitamins by high-performance thin-layer chromatography using an aqueous micellar mobile phase. J. Anal. Chem. 2007, 62, 255–259. [Google Scholar] [CrossRef]
- Viñas, P.; Balsalobre, N.; López-Erroz, C.; Hernández-Córdoba, M. Liquid chromatographic analysis of riboflavin vitamers in foods using fluorescence detection. J. Agric. Food. Chem. 2004, 52, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Cimpoiu, C.; Casoni, D.; Hosu, A.; Miclaus, V.; Hodisan, T.; Damian, G. Separation and identification of eight hydrophilic vitamins using a new TLC method andRaman spectroscopy. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2551–2559. [Google Scholar] [CrossRef]
- Perveen, S.; Yasmin, A.; Khan, K.M. Quantitative simultaneous estimation of water soluble vitamins, Riboflavin, Pyridoxine, Cyanocobalamin and Folic Acid in neutraceutical products by HPLC. Open Anal. Chem. J. 2009, 3, 1–5. [Google Scholar] [CrossRef]
- Gao, Y.L.; Guo, F.; Gokavi, S.; Chow, A.; Sheng, H.A.; Guo, M.R. Quantification of water-soluble vitamins in milk-based infant formulae using biosensor-based assays. Food Chem. 2008, 110, 769–776. [Google Scholar] [CrossRef]
- Ashraf-Khorassani, M.; Ude, M.; Doane-Weideman, T.; Tomczak, J.; Taylor, L.T. Comparison of gravimetry and hydrolysis/derivatization/gas chromatography-mass spectrometry for quantitative analysis of fat from standard reference infant formula powder using supercritical fluid extraction. J. Agric. Food. Chem. 2002, 50, 1822–1826. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.; Yagar, E.F.; Eggers, R.; Hofmann, T. Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J. Agric. Food. Chem. 2008, 56, 11114–11121. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.C.; Sharpless, K.E.; Sander, L.C. Improved liquid chromatography methods for the separation and quantification of biotin in NIST standard reference material 3280: Multivitamin/multielement tablets. J. Agric. Food. Chem. 2006, 54, 8710–8716. [Google Scholar] [CrossRef] [PubMed]
- Kostarnoi, A.V.; Golubitskii, G.B.; Basova, E.M.; Budko, E.V.; Ivanov, V.M. High-performance liquid chromatography in the analysis of multicomponent pharmaceutical preparations. J. Anal. Chem. 2008, 63, 516–529. [Google Scholar] [CrossRef]
- Ball, G.F.M. Vitamins in Foods: Analysis, Bioavailability, and Stability; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Park, Y.J.; Jang, J.H.; Park, H.K.; Koo, Y.E.; Hwang, I.K.; Kim, D.B. Determination of Vitamin B12 (Cyanocobalamin) in Fortified Foods by HPLC. Prev. Nutr. Food Sci. 2003, 8, 301–305. [Google Scholar] [CrossRef]
- Granado-Lorencio, F.; Herrero-Barbudo, C.; Blanco-Navarro, I.; Pérez-Sacristán, B. Suitability of ultra-high performance liquid chromatography for the determination of fat-soluble nutritional status (vitamins A, E, D, and individual carotenoids). Anal. Bioanal. Chem. 2010, 397, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Poongothai, S.; Ilavarasan, R.; Karrunakaran, C.M. Simultaneous and accurate determination of vitamins B1, B6, B12 and alpha-lipoic acid in multivitamin capsule by reverse-phase high performance liquid chromatographic method. Int. J. Pharm. Pharm. Sci. 2010, 2, 133–139. [Google Scholar]
- Barba, F.J.; Esteve, M.J.; Frígola, A. Determination of vitamins E (α-, γ- and δ-tocopherol) and D (cholecalciferol and ergocalciferol) by liquid chromatography in milk, fruit juice and vegetable beverage. Eur. Food Res. Technol. 2011, 232, 829–836. [Google Scholar] [CrossRef]
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC determination of water-soluble vitamins in honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Xia, L.; Li, Z.; Che, N.; Zou, D.; Hu, X. Rapid determination of thiamine, riboflavin, niacinamide, pantothenic acid, pyridoxine, folic acid and ascorbic acid in Vitamins with Minerals Tablets by high-performance liquid chromatography with diode array detector. J. Pharm. Biomed. Anal. 2012, 70, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Gershkovich, P.; Ibrahim, F.; Sivak, O.; Darlington, J.W.; Wasan, K.M. A simple and sensitive method for determination of vitamins D3 and K1 in rat plasma: Application for an in vivo pharmacokinetic study. Drug Dev. Ind. Pharm. 2014, 40, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, A.O.; Kartsova, L.A. Determination of water-soluble vitamin B and vitamin C in combined feed, premixes, and biologically active supplements by reversed-phase HPLC. J. Anal. Chem. 2010, 65, 71–76. [Google Scholar] [CrossRef]
- Petteys, B.J.; Frank, E.L. Rapid determination of vitamin B2 (riboflavin) in plasma by HPLC. Clin. Chim. Acta 2011, 421, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Khan, A.; Iqbal, Z.; Ahmad, L.; Shah, Y. Optimization and validation of RP-LC/UV–VIS detection method for simultaneous determination of fat-soluble anti-oxidant vitamins, all-trans-retinol and α-tocopherol in human serum: Effect of experimental parameters. Chromatographia 2010, 71, 577–586. [Google Scholar] [CrossRef]
- Dabre, R.; Azad, N.; Schwämmle, A.; Lämmerhofer, M.; Lindner, W. Simultaneous separation and analysis of water-and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV. J. Sep. Sci. 2011, 34, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska-Świgło, A.; Rybicka, I. Simultaneous determination of caffeine and water-soluble vitamins in energy drinks by HPLC with photodiode array and fluorescence detection. Food Anal. Methods 2015, 8, 139–146. [Google Scholar] [CrossRef]
- Momenbeik, F.; Roosta, M.; Nikoukar, A.A. Simultaneous microemulsion liquid chromatographic analysis of fat-soluble vitamins in pharmaceutical formulations: Optimization using genetic algorithm. J. Chromatogr. A 2010, 24, 3770–3773. [Google Scholar] [CrossRef] [PubMed]
- Leacock, R.E.; Stankus, J.J.; Davis, J.M. Simultaneous determination of caffeine and vitamin B6 in energy drinks by high-performance liquid chromatography (HPLC). J. Chem. Educ. 2010, 88, 232–234. [Google Scholar] [CrossRef]
- Bendryshev, A.A.; Pashkova, E.B.; Pirogov, A.V.; Shpigun, O.A. Determination of water-soluble vitamins in vitamin premixes, bioacitve dietary supplements, and pharmaceutical preparations using high-efficiency liquid chromatography with gradient elution. Moscow Univ. Chem. Bull. 2010, 65, 260–268. [Google Scholar] [CrossRef]
- Gleize, B.; Steib, M.; André, M.; Reboul, E. Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q10 and carotenoids in complex samples. Food Chem. 2012, 134, 2560–2564. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Tyagi, G.; Jangir, D.K.; Mehrotra, R. Rapid determination of polyphenol, vitamins, organic acids and sugars in Aegle marmelos using reverse phase-high performance liquid chromatography. J. Pharm. Res. 2011, 4, 717–719. [Google Scholar]
- Guggisberg, D.; Risse, M.C.; Hadorn, R. Determination of vitamin B12 in meat products by RP-HPLC after enrichment and purification on an immunoaffinity column. Meat Sci. 2012, 90, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.N.; Akhtaruzzaman, M.; Sultan, M.Z. Estimation of vitamins B-complex (B2, B3, B5 and B6) of some leafy vegetables indigenous to Bangladesh by HPLC method. J. Anal. Sci. Methods Instrum. 2013, 3, 24–29. [Google Scholar]
- Chamkouri, N. SPE-HPLC-UV for simultaneous determination of vitamins B group concentrations in Suaeda vermiculata. Tech. J. Eng. Appl. Sci. 2014, 4, 439–443. [Google Scholar]
- Patil, S.S.; Srivastava, A.K. Development and validation of rapid ion-pair RPLC method for simultaneous determination of certain B-complex vitamins along with vitamin C. J AOAC Int. 2012, 95, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Mendes, B.; Câmara, J.S.; Castilho, P.C. An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal. Bioanal. Chem. 2012, 403, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinova, M.; Lütjohann, D.; Westhofen, P.; Watzka, M.; Breuer, O.; Oldenburg, J. A Validated HPLC Method for the Determination of Vitamin K in Human Serum–First Application in a Pharmacological Study. Open Clin. Chem. J. 2011, 4, 17–27. [Google Scholar] [CrossRef]
- Klimczak, I.; Gliszczyńska-Świgło, A. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem. 2015, 175, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Reema, K.; Itishree, V.; Shantaram, N.; Jagdish, G. Method development and validation for the simultaneous estimation of b-group vitamins and atorvastatin in pharmaceutical solid dosage form by RP-HPLC. Int. J. Pharm. Chem. Biol. Sci. 2013, 3, 330–335. [Google Scholar]
- Berton, P.; Monasterio, R.P.; Wuilloud, R.G. Selective extraction and determination of vitamin B12 in urine by ionic liquid-based aqueous two-phase system prior to high-performance liquid chromatography. Talanta 2012, 97, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Development and validation of an HPLC method for the simultaneous determination of tocopherols, tocotrienols and carotenoids in cereals after solid-phase extraction. J. Sep. Sci. 2011, 34, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, D.; Van Berkel, G.J. Evaluation of flow-injection tandem mass spectrometry for rapid and high-throughput quantitative determination of B vitamins in nutritional supplements. J. Agric. Food Chem. 2012, 60, 8356–8362. [Google Scholar] [CrossRef] [PubMed]
- Viñas, P.; Bravo-Bravo, M.; López-García, I.; Hernández-Córdoba, M. Dispersive liquid–liquid microextraction for the determination of vitamins D and K in foods by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection. Talanta 2013, 115, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Plozza, T.; Trenerry, V.C.; Caridi, D. The simultaneous determination of vitamins A, E and β-carotene in bovine milk by high performance liquid chromatography–ion trap mass spectrometry (HPLC–MSn). Food Chem. 2012, 134, 559–563. [Google Scholar] [CrossRef]
- Tai, S.S.; Bedner, M.; Phinney, K.W. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2010, 82, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Dowell, D. Determination of vitamins D2 and D3 in infant formula and adult nutritionals by ultra-pressure liquid chromatography with tandem mass spectrometry detection (UPLC-MS/MS): First Action 2011.12. J. AOAC Int. 2012, 95, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Midttun, Ø.; Ueland, P.M. Determination of vitamins A, D and E in a small volume of human plasma by a high-throughput method based on liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 1942–1948. [Google Scholar] [CrossRef] [PubMed]
- Fenoll, J.; Martínez, A.; Hellín, P.; Flores, P. Simultaneous determination of ascorbic and dehydroascorbic acids in vegetables and fruits by liquid chromatography with tandem-mass spectrometry. Food Chem. 2011, 127, 340–344. [Google Scholar] [CrossRef]
- Santos, J.; Mendiola, J.A.; Oliveira, M.B.; Ibáñez, E.; Herrero, M. Sequential determination of fat-and water-soluble vitamins in green leafy vegetables during storage. J. Chromatogr. A 2012, 1261, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, D.L.; Black, C.K.; Denison, J.E.; Seipelt, C.T.; Baugh, S. Simultaneous determination of vitamins D2 and D3 by electrospray ionization LC/MS/MS in infant formula and adult nutritionals: First action 2012.11. J. AOAC Int. 2013, 96, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Gentili, A.; Caretti, F.; Bellante, S.; Ventura, S.; Canepari, S.; Curini, R. Comprehensive profiling of carotenoids and fat-soluble vitamins in milk from different animal species by LC-DAD-MS/MS hyphenation. J. Agric. Food Chem. 2013, 61, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Phinney, K.W.; Rimmer, C.A.; Thomas, J.B.; Sander, L.C.; Sharpless, K.E.; Wise, S.A. Isotope dilution liquid chromatography-mass spectrometry methods for fat-and water-soluble vitamins in nutritional formulations. Anal. Chem. 2011, 83, 92–98. [Google Scholar] [CrossRef] [PubMed]
- De Brouwer, V.; Storozhenko, S.; Stove, C.P.; Van Daele, J.; Van der Straeten, D.; Lambert, W.E. Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for the sensitive determination of folates in rice. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Higashi, T.; Suzuki, M.; Hanai, J.; Inagaki, S.; Min, J.Z.; Shimada, K.; Toyo’oka, T. A specific LC/ESI-MS/MS method for determination of 25-hydroxyvitamin D3 in neonatal dried blood spots containing a potential interfering metabolite, 3-epi-25-hydroxyvitamin D3. J. Sep. Sci. 2011, 34, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Ducros, V.; Pollicand, M.; Laporte, F.; Favier, A. Quantitative determination of plasma vitamin K1 by high-performance liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal. Biochem. 2010, 401, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Højskov, C.S.; Heickendorff, L.; Møller, H.J. High-throughput liquid–liquid extraction and LCMSMS assay for determination of circulating 25 (OH) vitamin D3 and D2 in the routine clinical laboratory. Clin. Chim. Acta 2010, 411, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, R.J.; Wolf, W.R. Simultaneous determination of water-soluble vitamins in SRM 1849 Infant/Adult Nutritional Formula powder by liquid chromatography–isotope dilution mass spectrometry. Anal. Bioanal. Chem. 2010, 397, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Trenerry, V.C.; Plozza, T.; Caridi, D.; Murphy, S. The determination of vitamin D3 in bovine milk by liquid chromatography mass spectrometry. Food Chem. 2011, 125, 1314–1319. [Google Scholar] [CrossRef]
- Márquez-Sillero, I.; Cárdenas, S.; Valcárcel, M. Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector. J. Chromatogr. A 2013, 1313, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.C.; Visentainer, J.V.; de Souza, N.E.; Oliveira, C.C. Micellar electrokinetic chromatography method for determination of the ten water-soluble vitamins in food supplements. Food Anal. Methods 2013, 6, 1592–1606. [Google Scholar] [CrossRef]
- Yin, C.; Cao, Y.; Ding, S.; Wang, Y. Rapid determination of water-and fat-soluble vitamins with microemulsion electrokinetic chromatography. J. Chromatogr. A 2008, 1193, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Aurora-Prado, M.S.; Silva, C.A.; Tavares, M.F.M.; Altria, K.D. Rapid determination of water-soluble and fat-soluble vitamins in commercial formulations by MEEKC. Chromatographia 2010, 72, 687–694. [Google Scholar] [CrossRef]
- Liu, Q.; Jia, L.; Hu, C. On-line concentration methods for analysis of fat-soluble vitamins by MEKC. Chromatographia 2010, 72, 95–100. [Google Scholar] [CrossRef]
- Panahi, H.A.; Kalal, H.S.; Rahimi, A.; Moniri, E. Isolation and quantitative analysis of B1, B2, B6 AND B12 vitamins using high-performance thin-layer chromatography. Pharm. Chem. J. 2011, 45, 125–129. [Google Scholar] [CrossRef]
- Elzanfaly, E.S.; Nebsen, M.; Ramadan, N.K. Development and validation of PCR, PLS, and TLC densitometric methods for the simultaneous determination of vitamins b1, b6 and b12 in pharmaceutical formulations. Pak. J. Pharm. Sci. 2010, 23, 409–415. [Google Scholar] [PubMed]
- Pieszko, C.; Baranowska, I.; Flores, A. Determination of energizers in energy drinks. J. Anal. Chem. 2010, 65, 1228–1234. [Google Scholar] [CrossRef]
- Mohamed, A.M.I.; Mohamed, H.A.; Abdel-Latif, N.M.; Mohamed, M.R.A. Spectrofluorimetric determination of some water-soluble vitamins. J. AOAC Int. 2011, 94, 1758–1769. [Google Scholar] [CrossRef] [PubMed]
- Zeeb, M.; Ganjali, M.R.; Norouzi, P. Dispersive liquid-liquid microextraction followed by spectrofluorimetry as a simple and accurate technique for determination of thiamine (vitamin B1). Microchim. Acta 2010, 168, 317–324. [Google Scholar] [CrossRef]
- Xiao, X.; Hou, Y.Y.; Du, J.; Sun, D.; Bai, G.; Luo, G.A. Determination of vitamins B2, B3, B6 and B7 in corn steep liquor by NIR and PLSR. Trans. Tianjin Univ. 2012, 18, 372–377. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Mushtakova, S.P.; Kolesnikova, S.S.; Astakhov, S.A. Chemometrics-assisted spectrophotometric method for simultaneous determination of vitamins in complex mixtures. Anal. Bioanal Chem. 2010, 397, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.; Mohamed, H.A.; Mohamed, N.A.; El-Zahery, M.R. Chemometric methods for the simultaneous determination of some water-soluble vitamins. J. AOAC Int. 2011, 94, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Negulescu, G.P.; Pisoschi, A. Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at Pt and carbon paste electrodes. Molecules 2011, 16, 1349–1365. [Google Scholar] [CrossRef] [PubMed]
- Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods 2015, 8, 549–557. [Google Scholar] [CrossRef]
- Revin, S.B.; John, S.A. Simultaneous determination of vitamins B2, B9 and C using a heterocyclic conducting polymer modified electrode. Electrochim. Acta 2012, 75, 35–41. [Google Scholar] [CrossRef]
- Baś, B.; Jakubowska, M.; Górski, Ł. Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2. Talanta 2011, 84, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Nie, T.; Xu, J.K.; Lu, L.M.; Zhang, K.X.; Bai, L.; Wen, Y.P. Electroactive species-doped poly (3,4-ethylenedioxythiophene) films: Enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C. Biosens. Bioelectron. 2013, 50, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT-Food Sci. Technol. 2014, 57, 679–685. [Google Scholar] [CrossRef]
- Bobreshova, O.V.; Parshina, A.V.; Agupova, M.V.; Polumestnaya, K.A. Determination of amino acids, vitamins, and drug substances in aqueous solutions using new potentiometric sensors with Donnan potential as analytical signal. Russ. J. Electrochem. 2010, 46, 1252–1262. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin B3) using molecularly imprinted hydrogel. Sens. Actuators B 2013, 177, 279–285. [Google Scholar] [CrossRef]
- Nie, T.; Zhang, K.X.; Xu, J.K.; Lu, L.M.; Bai, L. A facile one-pot strategy for the electrochemical synthesis of poly (3,4-ethylenedioxythiophene)/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. J. Electroanal. Chem. 2014, 717–718, 1–9. [Google Scholar] [CrossRef]
- Taguchi, K.; Fukusaki, E.; Bamba, T. Simultaneous analysis for water-and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. J. Chromatogr. A 2014, 1362, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.; Petrucka, P.; Buza, J. Determination of Vitamins A, C and D Status Using Serum Markers and a 24-Hour Dietary Recall among Maasai Women of Reproductive Age. Open Access Library J. 2014, 1, 1–7. [Google Scholar] [CrossRef]
- Zhang, H.; Lan, F.; Shi, Y.; Wan, Z.G.; Yue, Z.F.; Fan, F.; Lin, Y.K.; Tang, M.J.; Lv, J.Z.; Xiao, T.; et al. A “three-in-one” sample preparation method for simultaneous determination of B-group water-soluble vitamins in infant formula using VitaFast® kits. Food Chem. 2014, 153, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Yang, Y.H.; Shen, C.T.; Lai, S.M.; Chang, C.M.J.; Shieh, C.J. Recovery of vitamins B from supercritical carbon dioxide-defatted rice bran powder using ultrasound water extraction. J. Taiwan Inst. Chem. E 2011, 42, 124–128. [Google Scholar] [CrossRef]
- Liu, Z.; Kang, X.; Fang, F. Solid phase extraction with electrospun nanofibers for determination of retinol and α-tocopherol in plasma. Microchim. Acta 2010, 168, 59–64. [Google Scholar] [CrossRef]
Vitamin Name | Function | Dietary Sources |
---|---|---|
Vitamin A | Helps with (1) healthy mucous membranes; (2) skin, vision, tooth and bone growth; (3) health of the immune system. | From animal sources (retinol): liver, eggs, fortified margarine, butter, cream, cheese, fortified milk. |
From plant sources (beta-carotene): dark orange vegetables (pumpkin, sweet potatoes, winter squash, carrots), fruits (cantaloupe, apricots), dark green leafy vegetables. | ||
Vitamin K | Required for correct blood clotting. | Vegetables from the cabbage family, leafy green vegetables, milk; it is also produced in the intestinal tract by the bacteria. |
Vitamin E | Helps to protect the cell walls. | Nuts and seeds, egg yolks, liver, wholegrain products, wheat germ, leafy green vegetables and polyunsaturated plant oils. |
Vitamin D | Required to properly absorb calcium. | Fortified margarine, fortified milk, fatty fish, liver, egg yolks; the skin can also produce vitamin D when it is exposed to sunlight. |
Vitamin Name | Benefits | Dietary Sources |
---|---|---|
Ascorbic Acid (Vitamin C) | Ascorbic acid is an antioxidant, and it is a portion of an enzyme that is required for protein metabolism. It also helps with iron absorption and is important for the health of the immune system. | Found in vegetables and fruits, especially: kiwifruit, mangoes, papayas, lettuce, potatoes, tomatoes, peppers, strawberries, cantaloupe and so on. |
Thiamine (Vitamin B1) | Thiamine is a portion of an enzyme that is required for energy metabolism, and it is important for nerve function. | Found in moderate amounts in all nutritious foods: nuts and seeds, legumes, wholegrain/enriched cereals and breads, pork. |
Riboflavin (Vitamin B2) | Riboflavin is a portion of an enzyme that is required for energy metabolism. It is also important for skin health and normal vision. | Enriched, wholegrain cereals and breads, leafy green vegetables, milk products. |
Niacin (Vitamin B3) | Niacin is a portion of an enzyme that is required for energy metabolism. It is also important for skin health as well as the digestive and nervous systems. | Peanut butter, vegetables (particularly leafy green vegetables, asparagus and mushrooms), enriched or wholegrain cereals and breads, fish, poultry and meat. |
Pantothenic Acid (Vitamin B5) | Pantothenic acid is a portion of an enzyme that is required for energy metabolism. | It is widespread in foods. |
Pyridoxine (Vitamin B6) | Pyridoxine is a portion of an enzyme that is required for protein metabolism. It also helps with the production of red blood cells. | Fruits, vegetables, poultry, fish, meat. |
Folic Acid | Folic acid is a portion of an enzyme that is required for creating new cells and DNA. | Liver, orange juice, seeds, legumes, leafy green vegetables. It is now added to many refined grains. |
(Vitamin B9) | ||
Cobalamin (Vitamin B12) | Cobalamin is a portion of an enzyme required for the production of new cells, and it is important to the function of nerves. | Milk, milk products, eggs, seafood, fish, poultry, meat. It is not present in plant foods. |
Biotin (Vitamin H) | Biotin is a portion of any enzyme that is required for energy metabolism. | It is widespread in foods and can be produced by bacteria in the intestinal tract. |
Pretreatments | Determination Methods | Sample Matrix | Analytes | Ref. |
---|---|---|---|---|
liquid–liquid extraction (LLE) | liquid chromatography-ultraviolet detection (LC-UV) | Human serum | Vitamins A (retinol, retinyl esters), E (α- and γ-tocopherol) and D (25-OH vitamin D) | [33] |
ultrasonic assisted extraction (UAE), filtration | LC-UV | Multivitamin capsule | Benfotiamine (B1). Pyridoxine hydrochloride (B6), mecobalamin (B12) | [34] |
LLE | LC-UV | Milk, fruit juice and vegetable beverage | Vitamins E (a-, c- and d-tocopherol) and D (cholecalciferol and ergocalciferol) | [35] |
Dilute and shoot | LC-UV | Honey | Vitamin B2, riboflavin; vitamin B3, nicotinic acid; vitamin B5, pantothenic acid; vitamin B9, folic acid; and vitamin C, ascorbic acid | [36] |
UAE, filtration | LC-UV | Mineral tablets | Thiamine, riboflavin, niacinamide, pantothenic acid, pyridoxine, folic acid and ascorbic acid | [37] |
Protein precipitation, centrifugation and filtration | LC-UV | Rat plasma | Vitamins D3 and K1 | [38] |
supercritical fluid extraction (SPE) | LC-UV | Combined feed, premixes, and biologically active supplements | Ascorbic acid (C), nicotinic acid (B3 or PP), nicotinamide (B3 or PP), pyridoxine hydrochloride (B6), riboflavin (B2) and thiamine hydrochloride (B1) | [39] |
Protein precipitation, filtration | LC-FLD | Plasma | Vitamin B2 (riboflavin) | [40] |
LLE | LC-UV | Human serum | All-trans-retinol, retinyl acetate, a-tocopherol, a-tocopheryl acetate | [41] |
UAE | LC-UV | Vitamin tablets | 10 vitamins (7 water-soluble and 3 fat-soluble) | [42] |
UAE | LC-UV | Energy drinks | Caffeine and water-soluble vitamins | [43] |
LLE | LC-UV | Pharmaceutical formulations | Fat-soluble vitamins | [44] |
Dilute and shoot | LC-UV | Red bull and other energy drinks | Caffeine and vitamin B6 | [45] |
UAE | LC-UV | Vitamin premixes, bioactive dietary supplements and pharmaceutical preparations | 12 water-soluble vitamins | [46] |
UAE | LC-UV | Food samples, human plasma and human adipose tissue | Retinol, tocopherols, coenzyme Q10 and carotenoids | [47] |
Filtration, dilute and shoot | LC-UV | A.marmelos fruit juice | Vitamin C, polyphenols, organic acids and sugars | [48] |
SPE | LC-UV | Meat products | Vitamin B12 | [49] |
Extraction, filtration | LC-UV | Leafy vegetables | Riboflavin (vitamin B2), niacin (vitamin B3), pantothenic acid (vitamin B5) and pyridoxine (vitamin B6) | [50] |
SPE | LC-UV | Leaves of Suaeda vermiculata | Vitamin B group | [51] |
UAE | LC-UV | 12 multivitamin/multimineral pharmaceuticals and preparations and human serum | B-complex vitamins and vitamin C | [52] |
Extraction, filtration | LC-UV | Fruits and vegetables | L-ascorbic and dehydroascorbic acids | [53] |
LLE | LC-FLD | Human serum | Vitamin K | [54] |
Dilute and shoot | LC-UV | Fruit beverages and in pharmaceutical preparations | Vitamin C | [55] |
Dilute and shoot | LC-UV | Pharmaceutical solid dosage | B-group vitamins and atorvastatin | [56] |
LLE | LC-UV | Urine | Vitamin B12 | [57] |
SPE | LC-UV | Cereal samples | Tocopherols, tocotrienols and carotenoids | [58] |
Extraction, filtration | Flow-Injection MS/MS | Nutritional supplements | B vitamins | [59] |
dispersive liquid–liquid microextraction (DLLME) | LC-DAD-MS | Infant foods and several green vegetables | Vitamins D and K | [60] |
LLE | LC-MS | Bovine milk | Vitamins A, E and b-carotene | [61] |
LLE | LC-MS | Serum | 25-Hydroxyvitamin D3 and 25-hydroxyvitamin D2 | [62] |
LLE | LC-MS | Infant formula and adult nutritionals | Vitamins D2 and D3 | [63] |
LLE | LC-MS | Human plasma | Vitamins A, D and E | [64] |
Centrifugation and filtration | LC-MS | Vegetables and fruits | Ascorbic and dehydroascorbic acids | [65] |
UAE | LC-DAD-MS | Green leafy vegetables | Fat and water-soluble vitamins | [66] |
LLE | LC-MS | Infant formula and adult nutritionals | Vitamins D2 and D3 | [67] |
LLE | LC-DAD-MS | Milk | Carotenoids and fat-soluble vitamins | [68] |
UAE | LC-MS | Nutritional formulations | Fat- and water-soluble vitamins | [69] |
Centrifugation and filtration | LC-MS | Rice | Folates | [70] |
SPE | LC-MS | Neonatal dried blood spots | 25-Hydroxyvitamin D3 | [71] |
LLE | LC-MS | Blood | Vitamin K1 | [72] |
LLE | LC-MS | Serum | 25(OH) Vitamin D3 and D2 | [73] |
Centrifugation and filtration | LC-MS | SRM 1849 infant/adult nutritional formula powder | Water-soluble vitamins | [74] |
LLE | LC-MS | Milk | Vitamin D3 | [75] |
UAE | LC-corona-charged aerosol detector | Infant milk and dietary supplement | Water-soluble vitamins | [76] |
UAE | MEKC | Food supplements | Water-soluble vitamins | [77] |
UAE | MEKC | Commercial multivitamin pharmaceutical formulation | Water- and fat-soluble vitamins | [78] |
UAE | MEKC | Multivitamin formulation | Water- and fat-soluble vitamins | [79] |
LLE | MEKC | Multivitamin tablets and vitamin E soft capsules | Fat-soluble vitamins | [80] |
Dilute and shoot | HPTLC | Standard stock solutions | Vitamins B1, B2, B6 and B12 | [81] |
Extraction, dilute and shoot | PCR, PLS and TLC | Pharmaceutical formulations | Vitamins B1, B6 and B12 | [82] |
SPE | Spectrophotometry | Energy drinks | Caffeine and B vitamins | [83] |
Extraction, dilute and shoot | Spectrofluorimetry | Pharmaceuticals | Water-soluble vitamins | [84] |
DLLME | Spectrofluorimetry | Tablets and urine samples | Vitamin B1 | [85] |
Filtration | Spectrofluorimetry | Corn steep liquor | Vitamins B2, B3, B6 and B7 | [86] |
Dilute and shoot | Spectrofluorimetry | Multivitamin drugs, food additives and energy drinks | Fat- and water-soluble vitamins | [87] |
Dilute and shoot | Spectrofluorimetry | Dosage forms | Water-soluble vitamins | [88] |
Centrifugation | Voltammetry | Fruit juices and wine | Ascorbic acid content | [89] |
Centrifugation, UAE | Voltammetric Sensor | Food samples | Vitamin C and vitamin B6 | [90] |
Dilution | Electrode | Human plasma | Vitamins B2, B9 and C | [91] |
No previous preparation | Electrode | Pharmaceutical samples and fruit juices | Vitamins C, B1 and B2 | [92] |
Dilution | Electrode | Orange juice samples | Vitamins B2, B6 and C | [93] |
Centrifugation, filtration | Nanosensor | Food samples | Vitamins B9 | [94] |
No previous preparation | Sensor | Aqueous solutions | Vitamins B1, amino acids and drug substances | [95] |
Dilution | Sensors | Polymerization samples | Vitamin B3 | [96] |
Dilution | Nanocomposites | Honey samples | Vitamins B2, B6 and C | [97] |
Dilution | SFC-MS/MS | Standard stock solutions | Water- and fat-soluble vitamins | [98] |
Centrifugation | HPLC, ELISA | Serum | Vitamins A, C and D | [99] |
SPE | Microbiological assays | Infant formula | B group vitamins | [100] |
UAE | LC-UV | Rice bran powder | Vitamins B1, B2, B3, B6 and B12 | [101] |
SPE | LC-UV | Plasma | Retinol and α-tocopherol | [102] |
Analysis Time (min) | Instrument Analysis Methods | Column | Mobile Phase | Limit of Detection (LOD) | Limit of Quantification (LOQ) | Ref |
---|---|---|---|---|---|---|
45 min | Flow-Injection Tandem Mass Spectrometry (Linear Ion-Trap Mass Spectrometer) | Cadenza CD-C18 column (4.6 × 250 mm, 3 μm) | A: 20 mM aqueous ammonium formate (pH 4); B: methanol. Gradient | 0.04–48.2 ng/g | 0.13–160.6 ng/g | [59] |
15 min | HPLC-APCI-MS/MS | Zorbax Eclipse ODS (4.6 × 250 mm, 5 μm) | Acetonitrile, isopropanol and water. Gradient | 0.2–0.6 ng/mL | 0.8–2 ng/mL | [60] |
26 min | High Performance Liquid Chromatography–Ion Trap Mass Spectrometry (HPLC–Msn) | Polaris C18 column (2.1 × 150 mm, 5 μm) | A: water; B: methanol. Gradient | no report | 0.1 μg/100 mL for all trans-retinol and α-tocopherol and 1 μg/100 mL for β-carotene | [61] |
15 min | LC-MS/MS | Zorbax SB-CN column (4.6 × 250 mm, 5 μm) | 34% water and 66% methanol. Isocratic | ∼0.15 ng/g | no report | [62] |
3 min | Ultra-Pressure Liquid Chromatography with Tandem Mass Spectrometry Detection (UPLC-MS/MS) | UPLC HSS C18 column (2.1 × 100 mm, 1.8 μm) | A: 2 mM NH4COOH; B: 2 mM NH4COOH: MeOH. Gradient | The LODs for vitamin D2 were reported as 0.20 and 0.61 μg/100 g, | The reported LOQ values for vitamin D3 were 0.47 and 1.44 μg/100 g | [63] |
6 min | Liquid Chromatography/Tandem Mass Spectrometry | Ascentis Express C18 column (4.6 × 50 mm, 2.7 μm) | A: Ammonium formate in MeOH; B: H2O. Gradient | 0.1 μM for all-trans retinol, 3.3 nM for 25-OH VD2 and 25-OH VD3 | no report | [64] |
5 min | Liquid Chromatography with Tandem-Mass Spectrometry | Prontosil C18 analytical column (3 × 250 mm, 3 μm) | 0.2% (v/v) formic acid. Isocratic | 13 ng/mL for AA and 11 ng/mL for DHAA | 44 ng/mL for ascorbic acid (AA) and 38 ng/mL for dehydroascorbic acid (DHAA) | [65] |
30 min | HPLC-MS/MS | ACE-100 C18 (2.1 × 100 mm, 3 μm) | A: 10 mM ammonium acetate solution (pH 4.5); B: MeOH with 0.1% acetic acid; C: MeOH with 0.3% acetic acid. Gradient | 0.07–170 ng/mL | 0.2–520 ng/mL | [66] |
12 min | HPLC-MS/MS | HSS T3 (2.1 × 150 mm, 1.7 μm) | A: 2 mM ammonium formate in water; B: 2 mM ammonium formate in methanol. Gradient | 0.02 μg/100 g | 0.12 μg/100 g | [67] |
30 min | LC-DAD-MS/MS | a Supelcosil C18 (4.6 mm × 50 mm, 5 μm) and an Alltima C18 (4.6 mm × 250 mm, 5 μm) for fat-soluble vitamins, ProntoSIL C30 column (4.6 × 250 mm, 3 μm) for carotenoids | A: Methanol; B: isopropanol/hexane (50:50, v/v). Gradient | 0.9–15.6 μg/L | 2.7–46.8 μg/L | [68] |
45 min | LC-MS/MS | Cadenza CD-C18 stationary phase (4.6 × 250 mm, 3 μm particles) | A: 20 mM ammonium formate (pH 4.0); B: methanol. Gradient | no report | no report | [69] |
8 min | UPLC-MS/MS | HSS T3 column (2.1 × 150 mm, 1.8 μm) | A: 0.1% of formic acid in water; B: 0.1% of formic acid in acetonitrile. Gradient | 0.06–0.45 μg/100 g | 0.12–0.91 μg/100 g | [70] |
12 min | HPLC-MS/MS | Pro C18 RS column (2.0 × 150 mm, 5 μm) | Methanol–10 mM ammonium formate containing 5 mM methylamine. Isocratic | 1.5 ng/mL | 3 ng/mL | [71] |
24min | UPLC-MS/MS | Alltima C18 column (2.1 × 150 mm, 3 μm) | Methanol acidified with 0.1% formic acid. Isocratic | 14 ng/L | 36 ng/L | [72] |
4 min | LC-MS/MS | MAX-RP (2.0 × 50 mm, 4 μm) column | A: 85% methanol, B: 15% ammonium acetate. Isocratic | 10 nmol/L | no report | [73] |
27 min | LC-MS/MS | HydroRP (2.0 × 250 mm, 4 um) column | A: 0.1% formic acid in water; B: 0.1% formic acid in acetonitrile. Gradient | no report | no report | [74] |
24 min | LC-LIT-MS | Polaris C18 column (2.1 × 150 mm, 5 μm) | A: Methanol: B: water containing 5 mM ammonium (92:8 v/v). Isocratic | no report | 0.01 μg/100 g | [75] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, W.-e.; Yan, J.-q.; Liu, M.; Zhou, Y.; Shen, X.; Ma, Y.-l.; Feng, X.-s.; Yang, J.; Li, G.-h. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules 2018, 23, 1484. https://doi.org/10.3390/molecules23061484
Zhang Y, Zhou W-e, Yan J-q, Liu M, Zhou Y, Shen X, Ma Y-l, Feng X-s, Yang J, Li G-h. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules. 2018; 23(6):1484. https://doi.org/10.3390/molecules23061484
Chicago/Turabian StyleZhang, Yuan, Wei-e Zhou, Jia-qing Yan, Min Liu, Yu Zhou, Xin Shen, Ying-lin Ma, Xue-song Feng, Jun Yang, and Guo-hui Li. 2018. "A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010" Molecules 23, no. 6: 1484. https://doi.org/10.3390/molecules23061484
APA StyleZhang, Y., Zhou, W. -e., Yan, J. -q., Liu, M., Zhou, Y., Shen, X., Ma, Y. -l., Feng, X. -s., Yang, J., & Li, G. -h. (2018). A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules, 23(6), 1484. https://doi.org/10.3390/molecules23061484