The Chemical Composition and Functional Properties of Essential Oils from Four Species of Schisandra Growing Wild in the Qinling Mountains, China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Extraction Yield
2.2. Yield of Essential Oil
2.3. Essential Oils Composition
2.4. Antioxidant Activities of Essential Oils
3. Materials and Methods
3.1. Materials and the Extraction of Essential Oils
3.2. Optimization of Essential Oil Extraction
3.3. Analytical Procedures (GC/MS)
3.4. Composition Identification
3.5. Analyses of Antioxidant Activities
3.6. Reducing Power Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Editorial Committee of Flora of China. Flora of China; Science Press: Beijing, China, 1996; pp. 258–260. [Google Scholar]
- Saunders, R.M.K. Monograph of Schisandra (Schisandraceae). Syst. Bot. Monogr. 2000, 58, 1–146. [Google Scholar] [CrossRef]
- Smith, A.C. The families Illiciaceae and Schisandraceae. Sargentia 1947, 7, 1–244. [Google Scholar]
- Szopa, A.; Ekiert, R.; Ekiert, H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017, 16, 195–218. [Google Scholar] [CrossRef] [PubMed]
- The State Pharmacopoeia Commission of P. R. China. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015; p. 244. ISBN 9787506773379. [Google Scholar]
- Guo, Y.L.; Wei, H.Y.; Lu, C.Y.; Gao, B.; Gu, W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ 2016, 4, e2554. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Gu, W.; Dai, A.H.; Wei, H.Y. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecol. Model. 2012, 242, 105–115. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, M.; Liu, X.X.; Gu, W. Investigation of wild plant resources of Schisandra in Qinling Mountains. J. Plant Genet. Resour. 2014, 15, 236–241. [Google Scholar] [CrossRef]
- Li, X.N.; Pu, J.X.; Du, X.; Yang, L.M.; An, H.M.; Lei, C.; He, F.; Luo, X.; Zheng, Y.T.; Lu, Y.; et al. Lignans with anti-HIV activity from Schisandra propinqua var. sinensis. J. Nat. Prod. 2009, 72, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.X.; Li, X.S.; Fan, P.; Yang, G.Y.; Pu, J.X.; Sun, H.D.; Hu, Q.F.; Xiao, W.L. Dibenzocyclooctadiene lignans from the fruits of Schisandra rubriflora and their anti-HIV-1 activities. J. Asian Nat. Prod. Res. 2011, 13, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.L.; Gong, Y.Q.; Wang, R.R.; Weng, Z.Y.; Luo, X.; Li, X.N.; Yang, G.Y.; He, F.; Pu, J.X.; Yang, L.M.; et al. Bioactive nortriterpenoids from Schisandra grandiflora. J. Nat. Prod. 2009, 72, 1678–1681. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Wei, N.Y.; Wang, Z.Z. LC analysis of lignans from Schisandra sphenanthera Rehd. et Wils. Chromatographia 2008, 67, 979–983. [Google Scholar] [CrossRef]
- Liu, X.X.; Liu, F.; Gu, W. Determination of lignans in four fruits of Schisandra genus in Qinling Mountains. J. Chin. Med. Mater. 2013, 36, 1053–1055. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Donato, R.; Santomauro, F.; Bilia, A.R.; Flamini, G.; Sacco, C. Antibacterial activity of Tuscan Artemisia annua essential oil and its major components against some foodborne pathogens. LWT—Food Sci. Technol. 2015, 64, 1251–1254. [Google Scholar] [CrossRef]
- Venkanna, A.; Siva, B.; Poornima, B.; Vadaparthi, P.R.R.; Prasad, K.R.; Reddy, K.A.; Reddy, G.B.P.; Babu, K.S. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity. Fitoterapia 2014, 95, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Kunihiro, K.; Myoda, T.; Tajima, N.; Gotoh, K.; Kaneshima, T.; Someya, T.; Toeda, K.; Fujimori, T.; Nishizawa, M. Volatile Components of the Essential Oil of Artemisia montana and Their Sedative Effects. J. Oleo Sci. 2017, 66, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Ding, J.Y.; Tang, C.; Yin, C.H. Compositions and biological activities of essential oils of Kadsura longepedunculata and Schisandra sphenanthera. Am. J. Chin. Med. 2007, 35, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Formisano, C.; Rigano, D.; Cardile, V.; Arnold, N.A.; Senatore, F. Comparative phytochemical profile and antiproliferative activity on human melanoma cells of essential oils of three lebanese Salvia species. Ind. Crops Prod. 2016, 83, 492–499. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R.; Dambrauskienė, E.; Viškelis, P. Harvesting time influences the yield and oil composition of Origanum vulgare L. ssp. vulgare and ssp. hirtum. Ind. Crops Prod. 2013, 49, 43–51. [Google Scholar] [CrossRef]
- Boukhris, M.; Hadrich, F.; Chtourou, H.; Dhouib, A.; Bouaziz, M.; Sayadi, S. Chemical composition, biological activities and DNA damage protective effect of Pelargonium graveolens ĽHér. essential oils at different phenological stages. Ind. Crops Prod. 2015, 74, 600–606. [Google Scholar] [CrossRef]
- Samejo, M.Q.; Memon, S.; Bhanger, M.I.; Khan, K.M. Essential oils constituents in fruit and stem of Calligonum polygonoides. Ind. Crops Prod. 2013, 45, 293–295. [Google Scholar] [CrossRef]
- Asakawa, Y.; Tomiyama, K.; Sakurai, K.; Kawakami, Y.; Yaguchi, Y. Volatile Compounds from the Different Organs of Houttuynia cordata and Litsea cubeba (L. citriodora). J. Oleo Sci. 2017, 66, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, A.; Cook, C.M.; Lanaras, T.; Kokkini, S. The Oregano plants of Chios Island (Greece): Essential oils of Origanum onites L. growing wild in different habitats. Ind. Crops Prod. 2016, 82, 107–113. [Google Scholar] [CrossRef]
- Zhao, L.Q. Advanced research on terpenoids in Schisandra and their biological activity. Lishizhen Med. Mater. Med. Res. 2008, 19, 228–230. [Google Scholar] [CrossRef]
- Li, X.; Nie, J.; Gao, Z.D.; Li, Z.G.; Deng, F.T.; Wu, X.W. Analysis of volatile oils from fruits of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. by ultrasonic-microwave assisted steam distillation coupled with gas chromatography-mass spectrometry. Food Sci. 2014, 35, 269–274. [Google Scholar] [CrossRef]
- Ma, C.H.; Yang, L.; Zu, Y.G.; Liu, T.T. Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill. Food Chem. 2012, 134, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; Lou, F.M.; Zhang, Q.R.; Duan, X.L.; Li, M.M. Analysis of essential oil from root and stem of Schisandra propinqua (Wall.) Bail. var. sinensis Oliv. with GC-MS. Fine Chem. 2010, 27, 138–141. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Dong, Z.J.; Li, Z.H.; Yin, X.; Yang, X.Y.; Feng, T.; Wei, K.; Liu, J.K.; Zhao, B.H. Two new ylangene-type sesquiterpenoids from cultures of the fungus Postia sp. J. Asian Nat. Prod. Res. 2014, 16, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Sabulal, B.; Dan, M.; John, J.A.; Kurup, R.; Pradeep, N.S.; Valsamma, R.K.; George, V. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 2006, 67, 2469–2473. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, S.S.; Huang, D.Y.; Wang, C.F.; Wei, J.Y.; Li, Z.H.; Sun, J.S.; Bai, J.F.; Tian, Z.F.; Wang, P.J.; et al. Contact and Repellant Activities of Zerumbone and Its Analogues from the Essential Oil of Zingiber zerumbet (L.) Smith against Lasioderma serricorne. J. Oleo Sci. 2017, 66, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on elemol. Food Chem. Toxicol. 2008, 46, S147–S148. [Google Scholar] [CrossRef] [PubMed]
- Paksoy, M.Y.; Diraz, E.; Diğrak, M.; Tutar, E.; Karaman, Ş. Essential oil composition and antimicrobial activity of two endemic Kundmannia SCOP. species from Turkey. Ind. Crops Prod. 2016, 79, 39–46. [Google Scholar] [CrossRef]
- Khani, A.; Heydarian, M. Fumigant and repellent properties of sesquiterpene-rich essential oil from Teucrium polium subsp. capitatum (L.). Asian Pac. J. Trop. Med. 2014, 7, 956–961. [Google Scholar] [CrossRef]
- Bhatia, S.P.; McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance material review on cedrenol. Food Chem. Toxicol. 2008, 46, S97–S99. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Essenberg, M. Inhibitor and substrate activities of sesquiterpene olefins toward (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 monooxygenase (CYP706B1). Phytochemistry 2010, 71, 1825–1831. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, M.H.; Wang, X.B.; Li, T.X.; Kong, L.Y. Caryophyllene sesquiterpenoids from the endophytic fungus, Pestalotiopsis sp. Fitoterapia 2016, 109, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Ud-Daula, A.F.M.S.; Demirci, F.; Salim, K.A.; Demirci, B.; Lim, L.B.L.; Baser, K.H.C.; Ahmad, N. Chemical composition, antioxidant and antimicrobial activities of essential oils from leaves, aerial stems, basal stems, and rhizomes of Etlingera fimbriobracteata (K.Schum.) R.M.Sm. Ind. Crops Prod. 2016, 84, 189–198. [Google Scholar] [CrossRef]
- Feng, X.F.; Jing, N.; Li, Z.G.; Wei, D.; Lee, M.R. Ultrasound-Microwave Hybrid-Assisted Extraction Coupled to Headspace Solid-Phase Microextraction for Fast Analysis of Essential Oil in Dry Traditional Chinese Medicine by GC–MS. Chromatographia 2014, 77, 619–628. [Google Scholar] [CrossRef]
- Fan, S.P.; Chang, J.; Zong, Y.F.; Hu, G.S.; Jia, J.M. GC-MS Analysis of the Composition of the Essential Oil from Dendranthema indicum Var. Aromaticum Using Three Extraction Methods and Two Columns. Molecules 2018, 23, 576. [Google Scholar] [CrossRef]
- Wang, Y.G.; Li, X.R.; Jiang, Q.J.; Sun, H.N.; Jiang, J.F.; Chen, S.M.; Guan, Z.Y.; Fang, W.M.; Chen, F.D. GC-MS Analysis of the Volatile Constituents in the Leaves of 14 Compositae Plants. Molecules 2018, 23, 166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Jiang, L.; Tang, X.H.; Peng, L.X.; Li, X.; Zhao, G.; Zhong, L.Y. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules 2018, 23, 182. [Google Scholar] [CrossRef] [PubMed]
- Tajabadi, F.; Khalighi-Sigaroodi, F.; Rezazadeh, S. Improving Gas Chromatography–Mass Spectrometry Analysis of Essential Oils by Multivariate Curve Resolution: Full Identification of Co-eluting Compounds of Dracocephalum moldavica L. Chromatographia 2017, 80, 1069–1077. [Google Scholar] [CrossRef]
- Biois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Xu, C.; Liu, S.; Liu, Z.Q.; Song, F.R.; Liu, S.Y. Superoxide generated by pyrogallol reduces highly water-soluble tetrazolium salt to produce a soluble formazan: A simple assay for measuring superoxide anion radical scavenging activities of biological and abiological samples. Anal. Chim. Acta 2013, 793, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Kaur, S.; Mittal, S.; Batish, D.R.; Kohli, R.K. In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food Chem. Toxicol. 2010, 48, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Vamvakias, M.; Bardouki, H.; Galanis, A.; Chlichlia, K.; Kourkoutas, Y.; Panayiotidis, M.I.; Pappa, A. Chemical Composition and Evaluation of the Biological Properties of the Essential Oil of the Dietary Phytochemical Lippia citriodora. Molecules 2018, 23, 123. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Sample Name | Sources | Elevation (km) | Longitude | Latitude | Acquisition Time |
---|---|---|---|---|---|
S. grandiflora | Taibai, Baoji, Shaanxi | 2.03 | 107°30.576′ | 34°01.330′ | September 2013 |
S. rubriflora | Taibai, Baoji, Shaanxi | 1.95 | 107°17.705′ | 33°59.836′ | September 2013 |
S. sphenanthera | Taibai, Baoji, Shaanxi | 1.23 | 106°36.396′ | 32°50.795′ | September 2013 |
S. propinqua | Pingli, Ankang, Shaanxi | 0.60 | 109°18.392′ | 32°23.350′ | September 2013 |
Species | Compound Name | RC b (%) ± SD |
---|---|---|
SG | β-Sesquiphellandrene | 1.33 ± 0.43 |
β-Caryophyllene | 3.52 ± 0.31 | |
Isocaryophyllene | 12.50 ± 4.36 | |
α-Guaiene | 4.51 ± 0.22 | |
d-nerolidol | 1.45 ± 0.19 | |
Epiglobulol | 1.91 ± 1.57 | |
SR | δ-Elemene | 2.13 ± 1.10 |
α-Caryophyllene | 0.34 ± 0.05 | |
α-Ylangene | 1.14 ± 0.03 | |
4,5-dehydro- Isolongifolene | 3.73 ± 0.08 | |
α-Bulnesene | 2.71 ± 0.71 | |
α-Farnesene | 1.31 ± 0.19 | |
Humulane-1,6-dien-3-ol | 0.93 ± 0.03 | |
Muurolol | 0.64 ± 0.05 | |
Elemol | 15.08 ± 0.20 | |
SS | Cadinene | 0.38 ± 0.08 |
δ-Cadinene | 2.45 ± 0.13 | |
Germacrene d-4-ol | 0.68 ± 0.20 | |
Cedrenol | 10.43 ± 1.06 | |
Longiverbenone | 10.72 ± 1.35 | |
SP | α-Chamigrene | 1.34 ± 0.17 |
Oxidant | Sample | Regression Equation | EC50 (mg/mL) ± SD |
---|---|---|---|
DPPH | VC | y = 92.180 − 82.651/x | 1.960 × 10−3 ± 0.060 |
VE | y = 0.018x3 − 0.707x2 + 10.178x + 17.532 | 4.368 ± 0.052 | |
SG | y = 0.029x3 − 1.281x2 + 17.646x + 15.944 | 2.291 ± 0.036 | |
SR | y = 0.082x3 − 2.710x2 + 24.830x + 24.684 | 1.162 ± 0.054 | |
SS | y = 0.099x3 − 3.242x2 + 28.974x + 20.162 | 1.180 ± 0.013 | |
SP | y = 0.074x3 − 2.569x2 + 25.514x + 12.019 | 1.797 ± 0.023 | |
Superoxide anion | VC | y = −0.002x2 + 0.741x + 6.553 | 73.027 × 10−3 ± 2.036 |
VE | y = 0.002x3 − 0.141x2 + 3.430x + 0.716 | 44.362 ± 3.046 | |
SG | y = 0.019x3 − 0.618x2 + 5.528x + 27.319 | 21.625 ± 2.233 | |
SR | y = 0.010x3 − 0.385x2 + 5.078x + 18.510 | 21.860 ± 3.215 | |
SS | y = −0.048x2 + 2.156x + 8.444 | 25.510 ± 2.357 | |
SP | y = 0.021x3 − 0.690x2 + 6.909x + 22.863 | 19.257 ± 3.456 | |
Hydroxyl radical | VC | y = −0.034x2 + 1.918x + 41.245 | 5.009 × 10−3 ± 0.126 |
VE | y = 0.073x3 − 2.442x2 + 23.292x + 10.161 | 2.174 ± 0.079 | |
SG | y = 0.069x3 − 2.286x2 + 21.085x + 22.634 | 1.544 ± 0.043 | |
SR | y = 0.027x3 − 0.956x2 + 10.175x + 42.756 | 0.766 ± 0.032 | |
SS | y = 0.021x3 − 0.851x2 + 11.812x + 26.461 | 2.376 ± 0.069 | |
SP | y = 0.007x3 − 0.438x2 + 8.533x + 18.063 | 4.862 ± 0.147 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, Y.; Niu, Y.; Wang, N.; Gu, W. The Chemical Composition and Functional Properties of Essential Oils from Four Species of Schisandra Growing Wild in the Qinling Mountains, China. Molecules 2018, 23, 1645. https://doi.org/10.3390/molecules23071645
Wang X, Liu Y, Niu Y, Wang N, Gu W. The Chemical Composition and Functional Properties of Essential Oils from Four Species of Schisandra Growing Wild in the Qinling Mountains, China. Molecules. 2018; 23(7):1645. https://doi.org/10.3390/molecules23071645
Chicago/Turabian StyleWang, Xiaorui, Yan Liu, Yuanyuan Niu, Nongxue Wang, and Wei Gu. 2018. "The Chemical Composition and Functional Properties of Essential Oils from Four Species of Schisandra Growing Wild in the Qinling Mountains, China" Molecules 23, no. 7: 1645. https://doi.org/10.3390/molecules23071645
APA StyleWang, X., Liu, Y., Niu, Y., Wang, N., & Gu, W. (2018). The Chemical Composition and Functional Properties of Essential Oils from Four Species of Schisandra Growing Wild in the Qinling Mountains, China. Molecules, 23(7), 1645. https://doi.org/10.3390/molecules23071645