Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products
Abstract
:1. Introduction
2. Extraction of Active Component Groups from Plants by ILs
2.1. The Flavonoids Fraction
2.2. The Polysaccharides Fraction
3. Extraction of Single Compounds from Plants by ILs
3.1. Flavonoids (Compounds 1–65)
3.2. Alkaloids (Compounds 66–129)
3.3. Terpenoids (Compounds 130–187)
3.4. Phenylpropanoids (Compounds 188–215)
3.5. Quinones (Compounds 216–233)
3.6. Others (Compounds 234–236)
4. Summary
Supplementary Materials
Funding
Conflicts of Interest
References
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L.; Edradaebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Gragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–681. [Google Scholar] [CrossRef] [PubMed]
- John, J.E. Natural products-based drug discovery: Some bottlenecks and considerations. Curr. Sci. 2009, 96, 753–754. [Google Scholar]
- Simon, P. A resurgence in natural product-based drug discovery. Pharmtech 2018, 13. Available online: http://www.pharmtech.com/resurgence-natural-product-based-drug-discovery (accessed on 24 January 2018).
- Miller, L.H.; Su, X. Artemisinin: Discovery from the Chinese herbal garden. Cell 2011, 146, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 2011, 17, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Wolfender, J.L. HPLC in natural product analysis: The detection issue. Planta Med. 2009, 75, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Larsson, J.; Gottfries, J.; Muresan, S.; Backlund, A. Tuned for navigation in biologically relevant chemical space. J. Nat. Prod. 2007, 70, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Antoinette, Y.O.; Darci, J.T.; Erin, E.C. Chemoselective enrichment for natural products discovery. Chem. Sci. 2011, 2, 760–764. [Google Scholar] [Green Version]
- Tucker, M.; Jonathan, I.T.; Graham, A.H.; Guo, X.H.; Tai, H.C.; Douglas, A.M. Targeting reactive carbonyls foe identidying natural products and their biosynthetic origins. J. Am. Chem. Soc. 2017, 46, 138–148. [Google Scholar]
- Seddon, K.R. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 2015, 68, 351–356. [Google Scholar] [CrossRef]
- Dai, Y.; Van, S.J.; Verpoorte, R.; Choi, Y.H. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.S.; Moniruzzaman, M.; Bustam, M.A.; Lotfi, M. Recent advances of ionic liquids in extarction of biologically active compounds: A review. Am. J. Chem. 2015, 5, 7–12. [Google Scholar]
- Tang, B.; Bi, W.; Tian, M.; Row, K.H. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J. Chromatogr. B 2012, 904, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Dionysiou, D.D. Photolytic degradation of chlorinated phenols in room temperature ionic liquids. J. Photochem. Photobiol. A 2004, 165, 229–240. [Google Scholar] [CrossRef]
- Kumar, S.; Sheth, P.N.; Suraj, K.; Zade, S. Ionic liquids as green solvents for extraction of organic compounds, metals, and biocompounds: A brief review. In Proceedings of the International Conference on Sustainable Manufacturing 2011, Pilani, India, 10–12 November 2011. [Google Scholar]
- Li, N.; Zhang, P.; Wu, H.; Wang, J.; Zhang, P.; Wang, W. Natural flavonoids function as chemopreventive agents from Gancao (Glycyrrhiza inflata Batal). J. Funct. Foods 2015, 19, 563–574. [Google Scholar] [CrossRef]
- Zhu, K.M.; Liu, J.N.; Gu, S.J.; Zhao, L. Progress on chemical constitutents, pharmacological effects and clinical application from Broussonetia papyrifera. Chin. Exp. Trad. Med. Formul. 2011, 17, 198–202. [Google Scholar]
- Chu, F.B.; Wu, X.Y.; Ding, L.X. Process optimization of extracting and separating flavonoids from Broussonetia papyrifera Leaves. J. Anhui Agric. Sci. 2015, 43, 84–88. [Google Scholar]
- Wang, Y.; Jin, G.; Guo, B.; Zhou, Y. Study on the ionic liquid-based extraction technology of total flavonoids from Broussonetia papyrifera leave. Chem. Ind. Eng. Process. 2016, 35, 328–331. [Google Scholar]
- Lin, X.; Wang, Y.; Liu, X.; Huang, S.; Zeng, Q. Ils-based microwave-assisted extraction coupled with aqueous two-phase for the extraction of useful compounds from Chinese medicine. Analyst 2012, 137, 4076–4085. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.H.; Zhang, X.; Fang, Y.H.; Ye, J.N. Determination of active ingredients of Apocynum venetum by capillary electrophoresis with electrochemical detection. Mikrochim. Acta 2001, 137, 57–62. [Google Scholar] [CrossRef]
- Ma, M.; Hong, C.L.; An, S.Q.; Li, B. Seasonal, spatial, and interspecific variation in quercetin in Apocynum venetum and Poacynum hendersonii, Chinese traditional herbal teas. J. Agric. Food Chem. 2003, 51, 2390–2393. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.J.; Yi, Y.J.; Wang, H.Y.; Zhou, W.L.; Wang, C.Y. Extraction, Preconcentration and isolation of flavonoids from Apocynum venetum L. leaves using ionic liquid-based ultrasonic-assisted extraction coupled with an aqueous biphasic system. Molecules 2016, 3, 262. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Ren, H.L. The optimal extracting technology of flavonoids in Apocynum venetum L. by means of orthogonal design of L16(45). Food. Sci. Technol. 2011, 11, 214–218. [Google Scholar]
- Ge, Y.R.; Pan, R.; Fu, H.Z.; Wu, Y.; Fu, W.Y.; Yan, Y.S.; Qi, Y. Separation/richment total flavonoids in Phellinus Igniarius by ionic liquid/salt aqueous two-phase flotation. Chin. J. Anal. Chem. 2012, 2, 317–320. [Google Scholar] [CrossRef]
- Xu, W.; Chu, K.D.; Li, H.; Zhang, Y.Q.; Zheng, H.Y.; Chen, R.L.; Chen, L.D. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth. Molecules 2012, 17, 14323–14335. [Google Scholar] [CrossRef] [PubMed]
- Du, F.Y.; Deng, B.W.; Gao, L.G.; Xiang, Y.L.; Zhang, J. Optimization of microwave-assisted extraction technology of total flavovine from Malus micromalus Makino using ionic liquids and response surface methodology. Sci. Tech. Food. Ind. 2013, 33, 222–225. [Google Scholar]
- Wang, R.P.; Chang, Y.N.; Tan, Z.J.; Li, F.F. Applications of choline amino acid ionic liquid in extraction and separation of flavonoids and pectin from ponkan peels. Sep. Sci. Technol. 2016, 7, 1093–1102. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Lou, Z.X.; Kou, X.R.; Ke, Y.Q.; Jia, Q.H.; He, G.H.; Wang, H.X. Study on ultrasonic and microwave synergistic extraction of total flavonoids and scopolamine from Dendrobium nobile Lindera. J. Chin. Med. Mater. 2017, 1, 152–157. [Google Scholar]
- Zhang, L.; Zhang, Y.; Zhang, H.; Tang, Y.M.; Huang, H.; Liu, Q.; Hu, Z.Q. The application of ionic liquid in extracting and purifying Ginkgo Biloba flavonoids. Guangdong Chem. Ind. 2017, 44, 73–75. [Google Scholar]
- Wang, Z.Y.; Zhang, L.H.; Wang, Y.H.; Dai, B.; Wang, F.; Wang, J.L. Microwave assisted extraction of total flavonoids from fermented pomegranate seeds by ionic liquid and the application of total flavonoids inhibiting of nitrosation. Chin. Trad. Patent Med. 2018, 40, 213–218. [Google Scholar]
- Zhang, Y.F.; Gan, L.; Chi, R.A.; Zhang, M. Separation total flavonoids in Rhizoma Smilacis Glabrae by Ionic Liquid. Mater. Med. Rev. 2010, 8, 1975–1977. [Google Scholar]
- Zhang, X.F.; Luo, G.H.; Zhang, F.Q.; Cui, W. Aqueous two-phase system based on [Bmim]Cl-Na2SO4 for isolation of total flavonoids from Borage seed. Food Sci. 2015, 26, 50–54. [Google Scholar]
- Li, Q.; Zhang, Y.F.; Zhong, L.; Chi, R.A.; Zhao, H.P. Microwave-assisted extraction of flavonoids in Radix Puerariae with ionic liquids solution. J. Wuhan Inst. Technol. 2011, 33, 31–42. [Google Scholar]
- Gong, Y.J.; Niu, S.T.; Huang, X.F.; Wang, J. Study on the extraction of hawthorn flavonoids and polysaccharide in ionic liquid aqueous two-phase system. Chem. Bioeng. 2014, 33, 27–29. [Google Scholar]
- Li, D.; Qian, Y.; Tian, Y.J.; Yuan, S.M.; Wei, W.; Wang, G. Optimization of ionic liquid-assisted extraction of biflavonoids from Selaginella doederleinii and evaluation of its antioxidant and antitumor activity. Molecules 2017, 22, 586. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Ma, Z.G.; Yao, S. Bioactivity-guided systematic extraction and purification supported by multitechniques forsugarcane flavonoids and anthocyanins. Food Bioprod. Process. 2015, 94, 547–554. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, Z.; Li, Y.L.; Chi, R. Optimization of ionic liquid-based microwave-assisted extraction of isoflavones from Radix puerariae by response surface methodology. Sep. Purif. Technol. 2014, 129, 71–79. [Google Scholar] [CrossRef]
- Usov, A.I.; Smirnova, G.P.; Klochkova, N.G. Polysaccharides of algae: 55 Polysaccharide composition of several brown algae from Kamchatka. Russ. J. Bioorg. Chem. 2001, 27, 395–399. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Wang, F.; Wang, X.M.; Lui, X.L.; Hou, Y.; Zhang, Q.B. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym. 2010, 82, 118–121. [Google Scholar] [CrossRef]
- Chang, X.L.; Wang, C.H.; Feng, Y.M.; Liu, Z.P. Effects of heat treatments on the stabilities of polysaccharides substances and barbaloin in gel juice from Aloe vera Miller. J. Food Eng. 2006, 75, 245–251. [Google Scholar] [CrossRef]
- Chang, X.L.; Feng, Y.M.; Wang, W.H. Comparison of the polysaccharides isolated from skin juice, gel juice and flower of Aloe arborescens tissues. J. Taiwan Inst. Chem. Eng. 2011, 42, 13–19. [Google Scholar] [CrossRef]
- Li, F.F.; Xing, J.M. Separation and purification of aloe polysaccharides by a combination of membrane ultrafiltration and aqueous two-phase extraction. Appl. Biochem. Biotechnol. 2009, 158, 11–19. [Google Scholar]
- Tan, Z.J.; Li, F.F.; Xu, X.L.; Xing, J.M. Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 2012, 286, 389–393. [Google Scholar] [CrossRef]
- Fukaya, Y.; Asai, R.I.; Kadotani, S.; Nokami, T.; Itoh, T. Extraction of polysaccharides from japanese cedar using phosphonate-derived polar ionic liquids having functional groups. Bull. Chem. Soc. Jpn. 2016, 89, 879–886. [Google Scholar] [CrossRef]
- Zhang, H.; Row, K.H. Application of ionic liquid modified silica for solid-phase extraction of olysaccharides from Laminaria japonica. J. Carbohydr. Chem. 2014, 33, 225–237. [Google Scholar] [CrossRef]
- Kou, X.R.; Ke, Y.Q.; Wang, X.Q.; Rhaman, M.R.T.; Xie, Y.Z.; Chen, S.W.; Wang, H.X. Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem. 2018, 257, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Fuyaka, Y.; Ohno, H. Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature. Green Chem. 2010, 12, 1274–1280. [Google Scholar] [CrossRef]
- Bucar, F.; Wube, A.; Schmid, M. Natural product isolation—How to get from biological material to pure compounds. Nat. Prod. Rep. 2013, 30, 525–545. [Google Scholar] [CrossRef] [PubMed]
- Maltese, F.; Van, D.K.; Verpoorte, R. Solvent derived artifacts in natural products chemistry. Nat. Prod. Commun. 2009, 4, 447–454. [Google Scholar] [PubMed]
- Farid, C.; Maryline, A.V. Alternative Solvents for Natural Products Extraction; Springer: Berlin/Heidelberg, Germnay, 2014; pp. 127–166. [Google Scholar]
- Zhao, C.J.; Lu, Z.C.; Li, C.Y.; He, X.; Li, Z.; Shi, K.M.; Yang, L.; Zu, Y.G. Optimization of ionic liquid based simultaneous ultrasonic- and microwave-assisted extraction of rutin and quercetin from leaves of velvetleaf (Abutilon theophrasti) by response surface methodology. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; OuYang, X.K.; Yang, L.Y.; Li, Q.L. Microwave-assisted extraction of Rutin from Tamarix Chinensis with Ionic Liquid. J. Chem. Eng. Chin. 2011, 3, 411–415. [Google Scholar]
- Lei, Y.N.; Cao, X.B. Study on extraction of rutin in Sophora japonica L. by refluxing with ethanol. J. Shaanxi Agric. Sci. 2017, 63, 46–47. [Google Scholar]
- Li, Y.P. Optimization of extraction technology of rutin by alkali solution and acid precipitation method from Sophora japonica. J. Shaanxi Agric. Sci. 2015, 43, 751–753. [Google Scholar]
- Han, D.; Row, K.H. Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. J. Sci. Food Agric. 2011, 91, 2888–2892. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.M.; Xu, L.L.; Li, A.F.; Sun, A.L. Preparative isolation of flavonoid compounds from Oroxylum indicum by high-speed counter-current chromatography by using ionic liquids as the modifier of two phase solvent system. J. Sep. Sci. 2010, 33, 1058–1063. [Google Scholar] [PubMed]
- Ma, W.W.; Row, K.H. Optimized extraction of bioactive compounds from Herba Artemisiae Scopariae with ionic liquids and deep eutectic solvents. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 459–466. [Google Scholar] [CrossRef]
- Ma, W.W.; Lee, Y.; Li, G.Z.; Row, K.H. An effective separation and purification of rutin and scoparone from Herba Artemisiae Scopariae by solid-phase extraction cartridges packed with an ionic liquid-based silica. Sep. Sci. Technol. 2017, 38, 1183–1189. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, Y.Z.; Kong, J.H.; Nie, C.; Yuan, Y. Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants. Talanta 2010, 83, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.W.; Lee, Y.; Li, G.Z.; Row, K.H. Comparison of three multi-dimensional solid-phase extraction methods with IL-based silica sorbent for separation of rutin quercetin, and scoparone from Herba Artemisiae Scopariae. Bull. Korean Chem. Soc. 2017, 38, 1183–1189. [Google Scholar] [CrossRef]
- Liu, X.J.; Huang, X.; Wang, Y.Z.; Huang, S.Y.; Lin, X. Design and performance evaluation of ionic liquid-based microwave-assisted simultaneous extraction of kaempferol and quercetin from Chinese medicinal plants. Anal. Methods 2013, 5, 2591–2601. [Google Scholar] [CrossRef]
- Yao, H.H.; Du, X.X.; Yang, L.; Wang, W.J.; Yang, F.J.; Zhao, C.J.; Meng, X.D.; Zhang, L.; Zu, Y.G. Hydrolysis for determination of flavonol glycosides in Ginkgo Foliage using Brönsted acidic ionic-liquid [HO3S(CH2)4mim]HSO4 aqueous solutions. Int. J. Mol. Sci. 2012, 13, 8775–8788. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.Y.; Chen, F.L.; Zhang, Q.; Zang, J. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves. J. Chromatogr. B 2016, 1014, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Li, C.Y.; Zhang, L.; Wei, Z.F. Ionic liquid-based microwave-assisted extraction for the determination of flavonoid glycosides in pigeon pea leaves by highperformance liquid chromatography-diode array detector with pentafluorophenyl column. J. Sep. Sci. 2012, 35, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Magiera, S.; Sobik, A. Ionic liquid-based ultrasound-assisted extraction coupled with liquid chromatography to determine isoflavones in soy foods. J. Food Compos. Anal. 2017, 57, 94–101. [Google Scholar] [CrossRef]
- Duan, M.H.; Luo, M.; Zhao, C.J.; Wang, W.; Zu, Y.G.; Zhang, D.Y.; Yao, X.H.; Fu, Y.J. Ionic liquid-based negative pressure cavitation-assisted extraction of three main flavonoids from the pigeonpea roots and its pilot-scale application. Sep. Purif. Technol. 2013, 107, 26–36. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, F.Q.; Li, C.H.; Zhang, Q.; Xia, Z.N.; Yang, F.Q. Determination of eight isoflavones in Radix Puerariae by capillary zone electrophoresis with an ionic liquid as an additive. Anal. Methods 2015, 7, 1098–1103. [Google Scholar] [CrossRef]
- Andrei, M.; Simone, C.; Marcello, L.; Daniela, S.; Stefania, C.; Andriano, M.; Simona, R.; Andrea, A.; Claudiu, T.S.; Christian, C.; et al. Bioactive isoflavones from Pueraria lobata root and starch: Different extraction techniques and carbonic anhydrase inhibition. Food Chem. Toxicol. 2018, 112, 441–447. [Google Scholar]
- Cao, Y.F.; Xing, H.B.; Yang, Q.W.; Bao, Z.B.; Su, B.G.; Yang, Y.W.; Ren, Q.L. Separation of Soybean Isoflavone Aglycone Homologues by Ionic Liquid-Based Extraction. J. Agric. Food Chem. 2012, 60, 3432–3440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.S.; Hu, S.; Chen, X.; Bai, X.H.; Li, Q.S. A new ionic liquid-water-organic solvent three phase microextraction for simultaneous preconcentration flavonoids and anthraquinones from traditional Chinese prescription. J. Pharm. Biomed. Anal. 2013, 86, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.S.; Soares, C.M.F.; Paltram, R.; Halbwirth, H.; Bica, K. Extraction and consecutive purification of anthocyanins from grape pomace using ionic liquid solutions. Fluid Phase Equilib. 2017, 451, 68–78. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, D.T.; Cai, P.F.; Cheng, G.F.; Huang, C.B.; Pan, Y.J. Special effect of ionic liquids on the extraction of flavonoid glycosides from Chrysanthemum morifolium Ramat by microwave assistance. Molecules 2015, 20, 7683–7699. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, Y.; Liu, C.M.; Chen, L.; Zhang, Y.C. Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis and subsequent screening and isolation of potential glucosidase inhibitors by ultrafiltration and semi-preparative high-performance liquid chromatography. J. Sep. Sci. 2017, 40, 2565–2590. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.T.; Tian, M.L.; Row, K.H. Combined application of ionic liquid and hybrid poly (ionic liquid)-bonded silica: An alternative method for extraction, separation and determination of flavonoids from plants. Anal. Lett. 2013, 46, 416–428. [Google Scholar] [CrossRef]
- Bi, W.C.; Yoon, C.H.; Row, K.H. Ultrasonic-assisted enzymatic ionic liquid-based extraction and separation of flavonoids from Chamaecyparis Obtusa. J. Liq. Chromatogr. Relat. Technol. 2013, 14, 2029–2043. [Google Scholar]
- Tang, B.K.; Lee, Y.J.; Lee, Y.R.; Row, K.H. Examination of 1-methylimidazole series ionic liquids in the extraction of flavonoids from Chamaecyparis obtuse leaves using a response surface methodology. J. Chromatogr. B 2013, 933, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.L.; Qiao, J.D.; Row, K.H. Facile preparation of an ionic liquid composite mesoporous polymer as a solid phase extraction adsorbent for the separation and purification of flavonoids from Chamaecyparis Obtusa. Anal. Lett. 2013, 9, 1331–1341. [Google Scholar] [CrossRef]
- Irfan, M.; Moniruzzaman, M.; Ahmad, T.; Mandal, P.C.; Bhattacharjee, S.; Abdullah, B. Ionic liquid based extraction of flavonoids from Elaeis guineensis leaves and their applications for gold nanoparticles synthesis. J. Mol. Liq. 2017, 241, 270–278. [Google Scholar] [CrossRef]
- Ma, S.F.; Hu, L.M.; Ma, C.Y.; Lv, W.P.; Wang, H.X. Application and recovery of ionic liquids in the preparative separation of four flavonoids from Rhodiola rosea by on-line three-dimensional liquid chromatography. J. Sep. Sci. 2014, 17, 2314–2321. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Ma, C.Y.; Fu, Q.Y.; Hu, L.M.; Lou, Z.X.; Wang, H.X.; Tao, G.J. Application of ionic liquids in an online ultrasonic assisted extraction and solid-phase trapping of Rhodiosin and Rhodionin from Rhodiola rosea for UPLC. Chromatographia 2013, 76, 195–200. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, X.H.; Sun, A.L.; Liu, R.M. Preparative isolation of baicalin and wogonoside from scutellariae radix by high speed counter-current chromatography by using ionic liquids as the modifier of two-phase solvent system. J. Liq. Chromatogr. Relat. Technol. 2014, 16, 2275–2286. [Google Scholar] [CrossRef]
- Bi, W.C.; Tian, M.L.; Row, K.H. Evaluation of molecularly imprinted anion-functionalized poly(ionic liquid)s by multi-phase dispersive extraction of flavonoids from plant. J. Chromatogr. B 2013, 2, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Y.; Hu, L.M.; Fu, Q.Y.; Gu, X.H.; Tao, G.J.; Wang, H.X. Separation of four flavonoids from Rhodiola rosea by on-linecombination of sample preparation and counter-currentchromatography. J. Chromatogr. A 2013, 1306, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, S.H.; Chen, J.; Zhang, L.W. Application of ionic liquid-based microwave-assisted extraction of flavonoids from scutellaria baicalensis georgi. J. Chromatogr. B 2015, 1002, 411–438. [Google Scholar] [CrossRef] [PubMed]
- Ćurko, N.; Tomašević, M.; Bubalo, M.C.; Gracin, L.; Redovniković, I.R.; Ganić, K.K. Extraction of proanthocyanidins and anthocyanins from grape skin by using ionic liquids. Food. Tech. Biotechnol. 2017, 55, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Yang, R.; Ye, L.H.; Cao, J.; Cao, W.; Hu, S.S.; Peng, L.Q. Application of ionic liquids for elution of bioactive flavonoid glycosides from lime fruit by miniaturized matrix solid-phase dispersion. Food Chem. 2016, 204, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.L.; Mo, K.L.; Liu, Z.Z.; Yang, F.J.; Hou, K.X.; Li, S.Y.; Zu, Y.G.; Yang, L. Followed by Macroporous Resin Enrichment for the Separation of the Three Glycosides Salicin, Hyperin and Rutin from Populus Bark. Molecules 2014, 19, 9689–9711. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Pei, F.; Huang, X.Y.; Feng, Z.F.; Di, D.L. Effect of Ionic Liquids on Preparative separation of flavonoid compounds in the extract from Brassica Napus L. Pollen using high-performance counter-current chromatography. Sep. Purif. Technol. 2013, 48, 2890–2899. [Google Scholar]
- Raffauf, R.F. Alkaloids: A Guide to Their Discovery and Distribution; Hawkworth Press: New York, NY, USA, 1996. [Google Scholar]
- Long, L.H.; Wu, P.F.; Chen, X.L.; Zhang, Z.; Chen, Y.; Li, Y.Y.; Jin, Y.; Chen, J.G.; Wang, F. HPLC and LC-MS analysis of sinomenine and its application in pharmacokinetic studies in rats. Acta Pharmacol. Sin. 2010, 31, 1508–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.N.; Wu, P.F.; Chen, X.L.; Zhang, Z.; Gu, J.; Gu, Y.J.; Xiong, Q.J.; Ni, L.; Wang, F.; Chen, J.G. Sinomenine protects against ischaemic brain injury: Involvement of coinhibition of acid-sensing ion channel 1a and L-type calcium channels. Br. J. Pharmacol. 2011, 164, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P. Study on the optimum extraction process of sinomenine existed in Miao Medicine named diploclisia affinis. Guide China Med. 2013, 11, 30–31. [Google Scholar]
- Wang, X.L.; Wen, P.H.; Feng, L.M. Optimization of extraction process of Sinomenine. Chin. Trad. Herb. Drugs 2001, 32, 703–704. [Google Scholar]
- Zhang, A.L.; Yi, W.B. Optimization of extraction technology of Sinomenium in Bushen Jiangu Tablets. China Pharm. 2011, 22, 2534–2535. [Google Scholar]
- Yang, M.M.; Zhang, Y.; Liu, X.Y.; Guo, S.Y. Optimization of extracting technology of Qufeng Tongluo capsule by orthogonal test. Chin. Exp. Trad. Med. Formul. 2011, 17, 45–46. [Google Scholar]
- Li, Q.; Wu, S.G.; Wang, C.Y.; Yi, Y.J.; Zhou, W.L.; Wang, H.Y.; Li, F.F.; Tan, Z.J. Ultrasonic-assisted extraction of sinomenine from Sinomenium acutum using magnetic ionic liquids coupled with further purification by reversed micellar extraction. Process Biochem. 2017, 58, 282–288. [Google Scholar] [CrossRef]
- Dong, B.; Tang, J.; Yonannes, A.; Yao, S. Hexafluorophosphate salts with tropine-type cations in the extraction of alkaloids with the same nucleus from radix physochlainae. RSC Adv. 2018, 8, 262–277. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.F.; Zhang, Z.Z. Technics optimization of total alkaloid extraction from Phellodendron amurense. J. Jinggangshan Univ. 2010, 31, 112–117. [Google Scholar]
- Li, L.Q.; Huang, M.Y.; Shao, J.L.; Lin, B.K.; Shen, Q. Rapid determination of alkaloids in Macleaya cordata using ionic liquid extraction followed by multiple reaction monitoring UPLC–MS/MS analysis. J. Pharm. Biomed. Anal. 2017, 135, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhu, J.J.; Long, J.K.; Duan, G.L.; Yu, Y.J. Ionic-liquid-based infrared-assisted extraction (IL-IRAE) coupled with HPLC–MS: A green and convenient tool for determination of TCMs. Chromatographia 2017, 80, 335–340. [Google Scholar] [CrossRef]
- Yi, B.; Yang, F.; Yang, X.R. CE-electrochemiluminescence with ionic liquid for the facile separation and determination of diester-diterpenoid aconitum alkaloids in traditional Chinese. Electrophoresis 2011, 32, 1515–1521. [Google Scholar]
- Wang, W.C.; Li, Q.Y.; Liu, Y.H.; Chen, B.B. Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface. Ultrason. Sonochem. 2015, 24, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Z.; Wang, X.Q.; Row, K.H. Magnetic solid-phase extraction with Fe3O4/molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids for the rapid purification of alkaloid isomers (theobromine and theophylline) from green tea. Molecules 2017, 22, 1061. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Xie, H.H.; Fang, Y.T.; Liu, Y.Y.; Xi, X.J.; Chu, Q.; Dong, G.L.; Lun, T.; Wei, Y. Isolation and purification of alkaloids from lotus leaves by ionic-liquid-modified high-speed countercurrent chromatography. J. Sep. Sci. 2018, 41, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Svinyarov, I.; Keremedchieva, R.; Bogdanov, M.G. Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. IV. New HPLC method for quantitative determination of galantamine in Leucojum aestivum L. (Amaryllidaceae). Sep. Sci. Technol. 2016, 51, 2691–2699. [Google Scholar] [CrossRef]
- Bogdanov, M.G.; Keremedchieva, R.; Svinyarov, I. Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. III. Ionic liquid regeneration and glaucine recovery from ionic liquidaqueous crude extract of Glaucium flavum Cr. (Papaveraceae). Sep. Purif. Technol. 2015, 155, 13–19. [Google Scholar] [CrossRef]
- Fang, Y.T.; Li, Q.; Wang, B.H.; Wei, Y.A. General ionic liquid pH-zone-refining countercurrent chromatography method for separation of alkaloids from Nelumbo nucifera Gaertn. J. Chromatogr. A 2017, 1507, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Yeh, Y.Y.; Chang, L.C.; Hsu, M.C.; Wu, Y.T. Rapid determination of oxindole alkaloids in Cat’s claw by HPLC using ionic liquid-based microwave-assisted extraction and silica monolithic column. Biomed. Chromatogr. 2017, 31, e3925. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Z.; Li, X.W.; Li, L.J.; Li, M.; Wu, Q.; Liu, Y.; Yang, J.; Jin, Y.R. Green determination of aconitum alkaloids in Aconitum carmichaeli (Fuzi) by an ionic liquid aqueous two-phase system and recovery of the ionic liquid coupled with in situ liquid–liquid microextraction. Anal. Methods 2016, 8, 6566–6572. [Google Scholar] [CrossRef]
- Bi, W.T.; Tian, M.L.; Row, K.H. Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid. J. Chromatogr. B 2012, 880, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Zu, Y.G.; Zhao, C.J.; Zhang, L.; Chen, X.Q.; Zhang, Z.H. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J. 2011, 172, 705–712. [Google Scholar] [CrossRef]
- Onda, S.; Usuki, T.; Fujita, M.Y.; Rikukawa, M. Ionic liquid-mediated extraction of bilobalide from Ginkgo biloba leaves. Chem. Lett. 2015, 44, 1641–1643. [Google Scholar] [CrossRef]
- Ryoiti, M. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur. J. Pharmacol. 2017, 815, 405–415. [Google Scholar]
- Helen, P.; Mara, G.F.; Joao, A.P.C. Ionic liquids solutions as extractive solvents of value-added compounds from biomass. Green Chem. 2014, 16, 4786–4815. [Google Scholar]
- Zhang, Z.Q.; Tian, G.L.; Feng, X.L.; Wei, X.G.; Su, Z.G. Study on initial separation of paclitaxel from the Taxus Yunnanensis extrac. Chin. Biochem. Pharm. 1999, 20, 58–61. [Google Scholar]
- Mohammad, T.; Alireza, G.; Zahra, T.; Ali, R.; Lila, D. Optimization of the extraction of paclitaxel from Taxus baccata L. by the use of microwave energy. J. Sep. Sci. 2004, 27, 1130–1136. [Google Scholar]
- Li, H.; Li, M.; Zhen, Z.J.; Wu, B.L.; Chen, J.M. The application of supercritical fluid extraction for extracting and separating Taxol. J. Fudan Univ. 2003, 42, 543–556. [Google Scholar]
- Fang, W.S.; Wu, Y.; Zhou, J.Y. Determination of 10-deacetyl baccatin III and baccatin III in Taxus yunnanensis. J. Chin. Pharm. Sci. 1995, 4, 47–50. [Google Scholar]
- Kopycki, W.J.; Elsohly, H.N.; Mcchesney, J.D. HPLC Determination of taxol and related compounds in Taxus plant extracts. J. Liq. Chromatogr. 1994, 17, 2569–2591. [Google Scholar] [CrossRef]
- Glowniak, K.; Zgrka, A.; Furmanowa, M. Sample preparation for taxol and cephalomannine determination in various organs of Taxus sp. J. Pharm. Biomed. Anal. 1996, 14, 1215–1220. [Google Scholar] [CrossRef]
- Ketchum, R.E.B.; Luong, J.V.; Gibson, D.M. Efficient extraction of paclitaxel and related taxoids from leaf tissue of taxus using a potable solvent system. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1715–1732. [Google Scholar] [CrossRef]
- Tian, Z.J.; Li, Q.; Wang, C.Y.; Zhou, W.L.; Yang, Y.R.; Wang, H.Y.; Yi, Y.J.; Li, F.F. Ultrasonic assisted extraction of paclitaxel from Taxus media using ionic liquids as adjuvants: Optimization of the process by response surface methodology. Molecules 2017, 22, 1483–1494. [Google Scholar]
- Michalczyk, A.; Cienieckarosłonkiewicz, A.; Cholewińska, M. Application of ionic liquids in the ultrasound-assisted extraction of antimicrobial compounds from the bark of Cinnamomum Cassia. J. Chil. Chem. Soc. 2015, 60, 2698–2703. [Google Scholar] [CrossRef]
- Cao, X.J.; Qiao, J.F.; Wang, L.P.; Ye, X.M.; Zheng, L.B.; Jiang, N.; Mo, W.M. Screening of glycoside isomers in P. scrophulariiflora using ionic liquid-based ultrasonic-assisted extraction and ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Usuki, T.; Munakata, K. Extraction of essential oils from the flowers of Cornus officinalis Sieb. et Zucc. var. aurantiacus using an ionic liquid. Bull. Chem. Soc. Jpn. 2017, 90, 1105–1110. [Google Scholar] [CrossRef]
- Murata, C.; Fujita, M.Y.; Rikuawa, M.; Usuki, T. extraction of essential oils of Lemon Grass using ionic liquid. Asian J. Chem. 2017, 2, 309–312. [Google Scholar] [CrossRef]
- Koki, M.; Masahiro, Y.F.; Masahiro, R.; Toyonobu, U. Improved extraction yield of citral from Lemon Myrtle using a cellulose-dissolving ionic liquid. Aust. J. Chem. 2017, 70, 699–704. [Google Scholar]
- Faria, E.L.P.; Gomes, M.V.; Cláudio, A.F.M.; Freire, C.S.R.; Silverstre, A.J.D.; Freire, M.G. Extraction and recovery processes for cynaropicrin from Cynara cardunculus L. using aqueous solutions of surface-active ionic liquids. Biophys. Rev. 2018, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.L.; Mo, K.L.; Zhang, Q.; Fei, S.M.; Zu, Y.G.; Yang, L. A novel approach for distillation of paeonol and simultaneous extraction of paeoniflorin by microwave irradiation using an ionic liquid solution as the reaction medium. Sep. Sci. Technol. 2017, 183, 73–82. [Google Scholar] [CrossRef]
- Harde, S.M.; Lonkar, S.L.; Degani, M.S.; Singhal, R.S. Ionic liquid based ultrasonic-assisted extraction of forskolin from Coleus forskohlii roots. Ind. Crops Prod. 2014, 61, 258–264. [Google Scholar] [CrossRef]
- Murata, C.; Tran, Q.T.; Onda, S.G.; Usuki, T. Extraction and isolation of ganoderic acid ∑ from Ganoderma lucidum. Tetrahedron Lett. 2016, 57, 5368–5371. [Google Scholar] [CrossRef]
- Faria, E.L.P.; Shabudin, S.V.; Claúdio, F.M.; Válega, M.; Domingues, F.M.J.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G. Aqueous Solutions of Surface-Active Ionic Liquids: Remarkable Alternative Solvents To Improve the Solubility of Triterpenic Acids and Their Extraction from Biomass. ACS Sustain. Chem. Eng. 2017, 5, 7344–7351. [Google Scholar] [CrossRef]
- Morais, T.R.; Coutinho, A.P.R.; Camilo, F.F.; Martins, T.S.; Sartorelli, P.; Massaoka, M.H.; Figueiredo, C.R.; Lago, J.H. Application of an ionic liquid in the microwave assisted extraction of cytotoxic metabolites from fruits of Schinus terebinthifolius Raddi (Anacardiaceae). J. Braz. Chem. Soc. 2017, 3, 492–497. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Coelho, M.A.Z.; Marrucho, I.M. Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. Eur. Food Res. Technol. 2013, 237, 965–975. [Google Scholar] [CrossRef]
- Li, H.M.; Zhang, Y.G.; Han, M.; Yang, L.M. Aqueous ionic liquid based ultrasonic assisted extraction of eight ginsenosides from ginseng root. Ultrason. Sonochem. 2012, 20, 680–684. [Google Scholar]
- Wang, Y.; Ji, L.; Hang, S.; Shun, Y. New ionic liquid-based preparative method for diosgenin from Rhizoma dioscoreae nipponicae. Pharmacogn. Mag. 2013, 9, 250–255. [Google Scholar]
- Du, K.Z.; Li, J.; Bai, Y.; An, M.R.; Gao, X.M.; Chang, Y.X. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus Corni by ultrahigh performance liquid chromatography. Food Chem. 2018, 244, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Sá, R.C.S.; Andrade, L.N.; Oliveira, R.S.R.B.J.; de Sousa, D.D. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 2014, 19, 1459–1480. [Google Scholar]
- Zhang, H.G.; Zhu, J.H.; Qi, S.D.; Chen, X.G.; Hu, Z.D. Separation and determination of psoralen and isopsoralen by microemulsion electrokinetic chromatography. Biomed. Chromatogr. 2007, 21, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gu, C.B.; Wang, S.X.; Kou, P.; Jiao, J.; Fu, Y.J. Simultaneous extraction, transformation and purification of psoralen from fig leaves using pH-dependent ionic liquid solvent based aqueous two-phase system. J. Clean. Prod. 2018, 172, 827–836. [Google Scholar] [CrossRef]
- Sha, K.; Zhang, Z.J. Study on extraction of psoralen from Ficus carica leaves by microwave-assisted method. Food. Sci. Technol. 2010, 35, 244–246. [Google Scholar]
- Yan, Y.; Pan, X.M.; Xiao, G.M. Optimization of ultrasonic of psoralen. J. Southeast. Univ. 2012, 42, 516–520. [Google Scholar]
- Yang, Y.; Zhang, J.; Chen, Y.T. Handbook of Compositions from Crude Drug, Extraction, Separation and Purification; Chinese Traditional Medicine Press: Beijing, China, 2002; p. 140. [Google Scholar]
- Liu, Z.Z.; Gu, H.Y.; Yang, L. An approach of ionic liquids/lithium salts based microwave irradiationpretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini. J. Chromatogr. A 2015, 1417, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.S.; Xiang, D.X. Extraction of aesculine form Cortex Fraxini. Center South Pharm. 2013, 4, 271–275. [Google Scholar]
- Dong, W.; Yu, S.J.; Deng, Y.W.; Pan, T. Screening of lignan patterns in Schisandra species using ultrasonic assisted temperature switch ionic liquid microextraction followed by UPLC-MS/MS analysis. J. Chromatogr. B 2016, 1008, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.R.; Zhang, W.; He, A.; Yao, S. Ionic liquid-modified silica gel as adsorbents for adsorption and separation of water-soluble phenolic acids from Salvia militiorrhiza Bunge. Sep. Purif. Technol. 2015, 155, 2–12. [Google Scholar] [CrossRef]
- Ma, C.H.; Zu, Y.G.; Yang, L.; Li, J. Two solid-phase recycling method for basic ionic liquid [C4mim]Ac bymacroporous resin and ion exchange resin from (Turcz.) Baill.fruits extract. J. Chromatogr. A 2015, 976, 1–5. [Google Scholar]
- Zhang, L.X.; Wang, X. Hydrophobic ionic liquid-based ultrasound assisted extraction of magnolol and honokiol from cortex Magnoliae officinalis. J. Sep. Sci. 2010, 33, 2035–2038. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, Y.Z.; Xu, R.; Huang, M.D.; Zeng, H. Application of ionic liquids in the microwave-assisted extraction of podophyllotoxin from Chinese herbal medicine. Analyst 2011, 136, 2294–2305. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Y.; Zu, Y.G.; Zhao, C.J.; Zhang, L.; Chen, X.Q.; Zhang, Z.H. Optimize the process of ionic liquid-based ultrasonic-assisted extraction of aesculin and aesculetin from Cortex fraxini by response surface methodology. Chem. Eng. J. 2011, 175, 539–547. [Google Scholar] [CrossRef]
- Li, L.H.; Zhang, H.F.; Hu, S.; Bai, X.H.; Li, S. Dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for determination of coumarin compounds in Radix Angelicae Dahuricae. Chromatographia 2012, 75, 131–137. [Google Scholar] [CrossRef]
- Guan, L.Y.; Luo, Q.; Shi, J.Y.; Yu, W. Application of ionic-liquid-magnetized stirring bar liquid-phase microextraction coupled with HPLC for the determination of naphthoquinones in Zicao. J. Sep. Sci. 2017, 41, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Shi, H.M.; Zhang, Q.Y. Study on optimization of extraction technology of tanshinone IIA from Salviamiltiorrhiza Bunge with ultracsonic extraction method based on HPLC. J. Anhui Agric. Sci. 2010, 38, 4058–4059. [Google Scholar]
- Zha, D.C.; Jia, S.Y. A technology probe into extraction of tanshinone IIA. Mater. Med. Res. 2007, 17, 110. [Google Scholar]
- Liu, F.; Wang, D.; Liu, W.; Wang, X.; Bai, A.Y.; Huang, L.Q. Ionic liquid-based ultrahigh pressure extraction of five tanshinones from Salvia miltiorrhiza Bunge. Sep. Purif. Technol. 2013, 110, 86–92. [Google Scholar] [CrossRef]
- Tian, Z.J.; Li, F.F.; Xu, X.L. Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep. Purif. Technol. 2012, 98, 150–157. [Google Scholar]
- Tian, M.L.; Row, K.H. SPE of tanshinones from Salvia miltiorrhiza Bunge by using imprinted functionalized ionic liquid-modified silica. Chromatographia 2011, 73, 25–31. [Google Scholar] [CrossRef]
- Zhang, H.F.; Shi, Y.P. Temperature-assisted ionic liquid dispersive liquid–liquid microextraction combined with high performance liquid chromatography for the determination of anthraquinones in Radix et Rhizoma Rhei samples. Talanta 2010, 82, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.X.; Wang, H.X.; Lv, W.P.; Ma, C.Y.; Xu, P.; Zhu, J.; Xie, J.; Liu, B.; Zhou, Q.L. Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC for the determination of anthraquinones in Rhubarb. Chromatographia 2011, 74, 139–144. [Google Scholar] [CrossRef]
- Feng, X.T.; Song, H.; Dong, B.; Yang, Y.; Yao, S. Sequential extraction and separation using ionic liquids for stilbene glycoside and anthraquinones in Polygonum multiflorum. J. Mol. Liq. 2017, 241, 27–36. [Google Scholar] [CrossRef]
- Xiong, H.T. Optimization of extraction technology of Aloe-emodin from Aloe vera L. Modern Chem. Res. 2015, 5, 21. [Google Scholar]
- Chi, Y.S.; Zhang, Z.D.; Li, C.P.; Liu, Q.S.; Yan, P.F.; Urs, W.B. Microwave-assisted extraction of lactones from Ligusticum chuanxiong Hort. using protic ionic liquids. Green Chem. 2011, 13, 666–670. [Google Scholar]
- Liu, J.L.; Zheng, S.L.; Fan, Q.J.; Yuan, J.C.; Yang, S.M.; Kong, F.L. Optimization of high-pressure ultrasonic-sssisted simultaneous extraction of six major constituents from Ligusticum chuanxiong Rhizome using response surface methodology. Molecules 2014, 19, 1887–1911. [Google Scholar] [CrossRef] [PubMed]
Name | Acronym | Name | Acronym |
---|---|---|---|
benzothiazole | HBth+ | methanesulfonic acid | CH3SO3− |
1-alkyl-3-methylimidazolium | Cnmim+ | dicyanamide | N(CN)2− |
1-hydroxyethyl-3-methylimidazolium | C2OHmim+ | tetrafluoroborate | BF4− |
choline alanine | Ch+ | bromide | Br− |
1-butyl-3-methylimidazolium | Bmim+ | tetrachloroferrate | FeCl4- |
1-hexyl-3-methylimidazolium | Hmim+ | bromotrichloroferrate | Fecl3Br− |
1-octyl-3-methylimidazolium | Omim+ | Leu | leucine− |
2,2′-bipyridyl | BPy+ | chloride | Cl− |
3-methylimidazolium | Mim+ | hexafluorophosphate | PF6− |
1-(4-sulfonylbutyl)-3-methylimidazolium | HO3S(CH2)4mim+ | hydrogenosulphate | HSO4− |
1-ethyl-3-methylimidazolium | Emim+ | acetic acid | OAc− |
1-methylimidazolium-p-sulfonate | Pr mim+ | bistrifluorosulfonimide | NTf2− |
N-alkyl-hexafluorophosphate | Cntr+ | L-aspartic acid | L-ASP− |
tri-n-butylamine | TBA+ | 1-ethyl-3-methylimidazolium methylphosphonate | (MeO)(H)PO2− |
1-butyl-3-methylimidazolium | CnCnim+ | methoxyacetate | MOAc− |
N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium | DEME+ | p-toluenesulfonic acid | p-TSA− |
1-dodecyl-3-methylimidazole | Domim+ | ||
1-methyl-3-(3-sulfopropyl)-imidazolium | PSmim+ | ||
1-butyl-1-methylpyrrolidinium | C4C1pyr+ |
Active Fraction | Types of ILs | Method of Extraction | Sources | References |
---|---|---|---|---|
flavonoids fraction | [HBth][CH3S03] | MAE | Broussonetia Papyrifera (L.) L′ Hér. ex Vent. | [21] |
[C4mim][N(CN)2] | IL-UAE coupled with IL-ABS and back-extraction | Apocynum venetum L. | [25] | |
[C4mim]Cl | aqueous two-phase system | Phellinus igniarius (L. ex Fr.) Quel | [27] | |
[Bmim]Br | MAE | Bauhinia Championii (Benth.) Benth. | [28] | |
[Bmim]Br | MAE | Malus Micromalus Makino | [29] | |
[Ch][Leu] | maceration | Citrus reticulata Blanco cv. Ponkan | [30] | |
[Bmim]BF4 | UMAE | Dendrobium nobile L. | [31] | |
[C8mim]BF4, [C4mim] BF4 | aqueous two-phase system | Ginkgo biloba L. | [32] | |
[Bmim]Cl | MAE | Punica granatum L. | [33] | |
[Bmim]Br | MAE | Smilax glabra Roxb. | [34] | |
[Bmim]Cl | aqueous two-phase system | Cynoglossum zeylanicum (Vahl) Thunb. ex Lehm. | [35] | |
[Bmim]Br | MAE | Pueraria lobata (Willd.) Ohwi | [36] | |
[Bmim]BF4 | aqueous two-phase system | Crataegus Pinnatifida Bunge | [37] | |
(Hmim)(PF6) | aqueous two-phase system | Selaginella doederleinii Hieron trachyphylla (Warb.) X.C.Zhang | [38] | |
[C4MIM][PF6] | liquid−liquid extraction | Crataegus Pinnatifida Bunge | [39] | |
[Bmim]Br | MAE | Pueraria lobata (Willd.) Ohwi | [40] |
Active Fraction | Types of ILs | Method of Extraction | Sources | References |
---|---|---|---|---|
polysaccharide fraction | [Bmim]BF4 | aqueous two-phase system | Crataegus Pinnatifida Bunge | [37] |
[Bmim]BF4 | aqueous two-phase system | Aloe vera (Haw.) Berg | [46] | |
1-(3-methoxypropyl)-3-methylimidazolium ethyl ethylphosphonate | liquid−liquid extraction | Cryptomeria fortunei Hooibrenk ex Otto et Dietr. | [47] | |
SilprImNH2Cl | maceration | Laminaria Japonica | [48] | |
[C4mim]BF4 | UAE | Zingiber officinale Roscoe | [49] | |
1-alkyl-3-methylimidazolium phosphonate and phosphinate-type ionic liquids | liquid−liquid extraction | Boehmeria gracilis C. H. Wright | [50] |
Compounds | Types of ILs | Methods of Extraction | Sources | References |
---|---|---|---|---|
rutin (1) | SilprBImCl, [Bmim]Br, [C4mim]Br, [Bmim]BF4[Hmim]Br, [Hmim]BF, | SPE, MAE, UMAE | Artemisia capillaris Thunb, Saururus chinensis (Lour.) Bail., Xanthium sibiricum Patr., Tamarix Chinensis Lour. | [54,55,56,59,60,61,62] |
baicalein-7-O-glucoside (24), baicalein-7-O-diglucoside (25) | [C4mim][PF6] | aqueous two-phase system | Veratrum stenophyllum Diels | [59] |
quercetin (2) | SilprBImCl, SilprImNH2, SilprPy, SilmPS, SiImBr, [C4mim]Br, [Bmim] Br, [Hmim] Br, [BPy]Br [HO3S(CH2)4mim]-HSO4 | MDSPE, UMAE, MAE | Artemisia capillaris Thunb, Xanthium sibiricum Patr, Toona sinensis (A. Juss.) Roem., Ginkgo bilobe L. | [54,63,64,65] |
kaempferol-3-O-β-D-glucoside (5) | Mim, [Bmim] Br, [Hmim] Br, [BPy]Br, [HO3S(CH2)4mim]HSO4 | MAE | Hippophae rhamnoides L., Toona sinensis (A. Juss.) Roem, Ginkgo bilobe L. | [64,65] |
isorhamnetin (22) | [HO3S(CH2)4mim]HSO4 | MAE, | Ginkgo biloba L. | [65] |
hesperidin (3), hyperoside (4) | [C6mim][BF4] | MAE | Sorbus tianschanica Rupr. | [66] |
orientin (6), vitexin (7), genistin (8), isovitexin (9), luteolin-6-C-β-D-glucopyranosyl-8-C-a-L-arabinopyranoside (10), luteolin-6-O-α-L-arabinopyranosyl-8-O-α-D-glucopyranoside (11), apigenin-6,8-di-O-α-L-arabinopyranoside (12), apigenin-8-O-α-L-arabinoside (13) | [C4MIM]Br, [C6MIM]Br, [C8mim]Br | MAE, cavitation-assisted extraction | Cajanus cajan (L.) Millsp., Glycine max (L.) Merr. | [67,68,69] |
ononin (14), daidzin (15), biochanin A (16), formononetin (17), puerarin (18), genistein (19), daidzein (20) | BMImBF4, 1-butyl-3-methylimidazolium bromide, [Bmim][PF6], [Hmim][PF6], [Omim][PF6], [Bmim][NTf2], [C6min]Br, [C8mim]Br | MAE, liquid−liquid extraction, UAE, cavitation-assisted extraction | Pueraria lobata (Willd.) Ohwi, Glycine max (L.) Merr., Cajanus cajan (L.) Millsp. | [68,69,70,71,72] |
glycitein (42) | [BMIm][PF6], [HMIm][PF6], [OMIm][PF6], [BMIm][NTf2], | liquid−liquid extraction | Glycine max (L.) Merr. | [72] |
fisetin (21), kaempferide (23) | [C4mim][PF6], [C6mim][PF6], [C8mim][PF6], 1-butyl-3-methylimidazolium bromide | three phase micro extraction, MAE | Rheum officinale Baill., Coptis chinensis Franch., Pueraria lobata (Willd.) Ohwi | [71,73] |
pelargonin (26), cyanidin (27), peonidin (28), petunidin (29), malvidin (30) | [C2mim]OAc | aqueous two-phase systems | Vitis vinifera L. | [74] |
luteolin (31), apigenin (32) | [Bmim][MS], [C12mim]Br, [C8mim]Br | UAE, cavitation-assisted extraction | Apium graveliens L., Chrysanthemum morifolium Ramat, Cajanus cajan L. Millsp | [58,69,75] |
kaempferide (53), acacetin (54) | [C12mim]Br | UAE | Chrysanthemum morifolium Ramat. | [75] |
tectorigenin (33), iristectorigenin A (34), irigenin (35), irisflorentin (36) | [Emim][BF4] | UAE | Belamcanda chinensis (L.) Redouté | [76] |
myricetin (37), amentoflavone (38) | 1-oxyl-3-methylimidazolium bromide, [Emim][Cl], [Bmim][Cl], [Hmim][Cl], [Omim][Cl], [Dmim]Br, 1-bromodecane, 1-vinylimidazole | MPDE, SPE, UAE, SPE | Chamaecyparis obtuse (Sieb.et Zucc) Endl | [77,78,79,80] |
dihydrokaempferol (60) | [Dmim]Br | UAE | Chamaecyparis obtuse (Sieb.et Zucc) Endl | [79] |
catechin (39), epigallocatechin (40), epigallocatechin gallate (41) | [C2mim][Br] | heat extraction | Elaeis guineensis Jacq. | [81] |
rhodiosin (43), rhodionin (44), herbacetin (45) | [BMIM]Cl, EMIMB | aqueous two-phase systems, UAE | Rhodiola rosea L. | [82,83] |
baicalin (46), wogonoside (47) | [C4mim][PF6] | aqueous two-phase systems | Scutellaria baicalensis Georgi | [84] |
quercitrin (48) | molecularly imprinted anion-functionalized poly(ionic liquid)s, [Emim][Cl], [Bmim][Cl], [Hmim][Cl], [Omim][Cl], [DMIM]Br, 1-bromodecane, 1-vinylimidazole | MPDE, SPE | Chamaecyparis obtuse (Sieb.et Zucc)Endl | [78,79,80,85] |
herbacetin-3-O-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside (49), kaempferol-3-O-β-d-glucopyranosyl-7-O-α-l-rhamn-opyranoside (50), kaempferol 3-O-β-d-glucopyranoside-(2→1)-α-d-xylopyranoside (51), herbacetin-8-O-β-d–glucopyranoside (52) | 1-ethyl-3-methylimidazoliumbromide | SPE | Rhodiola rosea L. | [86] |
baicalein (55), wogonin (56) | [C8mim]Br | UAE | Scutellaria baicalensis Georgi. | [87] |
procyanidin(57), anthocyanin-3-O-acetylmonoglucosides (58), anthocyanin-3-(6-O-p-coumaroyl)monoglucosides (59) | [C4mim][Br], [C2mim][Br], [mim][HSO4], [sC4mim][HSO4] | liquid−liquid extraction | Vitis vinifera L. | [88] |
neohesperidin (61), naringin (62) | [Bmim]BF4, [Ch][Bic] | SPE, liquid−liquid extraction | Vaccinium Spp | [89] |
hyperin (63) | [C4mim]BF4 | MAE | Populus euphratica Oliv. | [90] |
kaempferol-3,4′-di-O-β-D-glucoside (64), kaempferol-3-O-β-D-(2-O-β-D-glucosyl)-glucopyranoside (65) | [E mim][Cl], [Pr mim ][Cl], [B mim][Cl], [C5 mim][Cl], [E mim ][Br], [Pr mim][Br], [B mim][Br], [C5 mim ][Br], [EMIM][BF4], [Pr mim][BF4], [B mim ][BF4] and [C5mim][BF4] | aqueous two-phase systems | Brassica napus L. | [91] |
Compounds | Types of ILs | Methods of Extraction | Sources | References |
---|---|---|---|---|
sinomenine (66) | [C2OHmim]FeCl4 | UAE | Adenia chevalieri Gagnep | [99] |
anisodamine (85), atropine (86), scopolamine (87), aposcopolamine (88), scopoline (89) | [C3tr][PF6] | maceration | Physochlainae infundibularis Kuang (Solanaceae) | [100] |
protopine (67), allocryptopine (68), sanguinarine (69), chelerythrine (70), dihydrochelerythrine (71), dihydrosanguinarine (72) | [C6mim][BF4], [K][PF6], 1-butyl-3-methylimidazole tetrafluoroborate | UAE, IAE | Macleaya cordata (Willd.) R. Br., Dicranostigma leptopodum (Maxim.) Fedde | [102,103] |
quinine (96), cinchonidine (97), lycorine chloride (112) | [C4MIM]Cl | IAE | (Howard) Moens ex Trim. | [103] |
aconitine (73), mesaconitine (74), hypaconitine (75) | 1-ethyl-3-methylimidazolium tetrafluoroborate | UAE | Aconitum carmic-haeli Debx. | [104] |
coptisine (76), palmatine (77), berberine (78), boldine (79), chelidonine (80), papaverine (81), emetine (82), columbamine (83), magnoflorine (84) | 1-butyl-3-methylimidazolium Tetrafluoroborate, 1-butyl-3-methylimidazole tetrafluoroborate, 1-butyl-3-methylimidazolium bromide | IAE, UAE | Coptis chinensis Franch., Dicranostigma leptopodum (Maxim.) Fedde, Phellodendron amurense Rupr. | [99,105] |
jatrorrhizine (123) | 1-butyl-3-methylimidazolium bromide | UAE | Phellodendron amurense Rupr | [105] |
theobromine (90), theophylline (91) | 1-methylimidazole based IL | SPE | Camellia sinensis (L.) O. Ktze. | [106] |
pronuciferine (92), N-nornuciferine (93), nuciferine (94), roemerine (95) | [C4mim][BF4] | aqueous two-phase system | Nelumbo nucifera Gaertn | [107] |
galantamine (98), narwedine (99), N-desmethylgalantamine (100), ungiminorine (101) | [C4C1im]Cl | SPE | Leucojum aestivum L. (Amaryllidaceae) | [108] |
brucine (102), cinchonine (103), glaucine (104), codeine (105), laudanosine (106), noscapine (107) | 1-butyl-2,3-dimethylimidazolium tetrafluoroborate, [C4C1im][Ace] | IAE, maceration | Glaucium flavum Cr. | [103,109] |
liensinine (108), isoliensinine (109), romerine (110), neferine (111) | [C4mim][PF6] | aqueous two-phase systems | Nelumbo nucifera Gaertn | [110] |
rhynchophylline (113), pteropodine (114), isomitraphylline (115), isopteropodine (116) | Bmim | MAE | Ranunculus ternatus Thunb. | [111] |
benzoylmesaconine (117), benzoylaconine (118), benzoylhypaconine (119), mesaconitine (120), hypaconitine (121), aconitine (122) | [C6mim]Br | aqueous two-phase system | Aconitum carmichaeli Debx | [112] |
matrine (124), oxymatrine (125) | silica-confined ionic liquids | SPE | Sophora flavescens Ait | [113] |
vinblastine (126), catharanthine (127), vindoline (128) | [Amim]Br | UAE | Catharanthus roseus | [114] |
bilobalide (129) | [C4mim]Cl | maceration | Ginkgo biloba L. | [115] |
Compounds | Types of ILs | Methods of Extraction | Sources | References |
---|---|---|---|---|
paclitaxel (169) | MIL [C4mim]FeCl3Br | UAE | Taxus chinensis (Pilger) Rehd. | [125] |
α-pinene (130), 1,8-cineole (131), linalool (132), terpinen-4-ol (133), Borneol (134), α-terpineol (135), bornyl acetate (136), cubebene (149), α-copaene (150), bergamotene (151), β-caryophyllene (152), humulene (153), calamenene (154), cadina-1,4-diene (155) | Benzalconium lactate, Didecyldimethyl lactate, Benzalconium nitrate, Didecyldimetthyl nitrate, Tris(2-hydroxyethyl)methylamonium methylsulfate | UAE | Cinnamomum cassia Presl | [126] |
scroside B (137), hemiphroside A (138), scroside A (139), scroside C (140), scroside D (141), scroside I (142), picroside (158), picroside III (159), picroside I (160), picroside II (161), specioside (162), 6-O-E-feruloyl catalpol (163), 2-O-β-D-glucopyranosyl-3,16,20, 25-tetrahydroxy-9-methyl-19-norlanosta-5,23-dien-22-one (170), 2-O-β-D-glucopyranosyl-3,16,20-trihydroxy-25-acetoxy-9-methyl-19-norlanosta-5,23-dien-22-one (171) | [BMIM][BF4] | UAE | Picrorhiza scrophulariiflora Pennell | [127] |
ionone (143), linalool oxide pyranoid (144), linalool oxide furanoid (145) | [C2mim][(MeO)(H)PO2)] | maceration | Osmanthus fragrans (Thunb.) Lour. Cv. Aurantiacus | [128] |
geranial (146), neral (147), geraniol (148) | [C4mim]Cl [C2mim][(MeO)(H)PO2)], [C2mim][(MeO)(H)PO2], [DEME]Cl, [DEME][MOAc]. | maceration | Cymbopogon citratus (D. C.) Stapf, Backhousia citriodora | [129,130] |
cynaropicrin (156) | 1-alkyl-3-methylimidazolium chloride | liquid-liquid extraction | Cynara, cardunculus L. | [131] |
paeoniflorin (157) | [Bmim]Br | MAE | Paeonia suffruticosa Andr | [132] |
forskolin (168) | tetramethyl guanidium lactate | UAE | Coleus forskohlii (Willd.) Briq | [133] |
ganoderic-acid ∑ (172) | [C4mim]Cl [C2mim][(MeO)(H)PO2)] | UAE | Ganoderma lucidum (Leyss. Ex Fr.) Karst. | [134] |
ursolic (173), ursolic (174), betulinic acids (175) | [C4C1im][N(CN)2], [C4C1im][TOS], [C4C1im][SCN], [C4C1im][C2H5SO4], [C4C1py][N(CN)2], and [C4C1pyr]Cl, | liquid-liquid extraction | Malus pumila Mill. | [135] |
3-oxotirucalla-7,24Z-dien-27-oic acid (176), 3α-hydroxytirucalla-7,24Z-dien-27-oic acid (177), 3α-acetoxytirucalla-7,24Z-dien-27-oic acid (178) | BmimBr | MAE | Schinus terebinthifolius Raddi | [136] |
dongnoside E (179) | ChCl | deep eutectic solvents extraction | Agave americana L. | [137] |
insenoside Rg1 (180), ginsenoside Re (181), ginsenoside Rf (182), ginsenoside Rb1 (183), ginsenoside Rc (184), ginsenoside Rb2 (185), ginsenoside Rd (186) | [C3mim]Br | UAE | Panax ginseng C. A. Meyer | [138] |
sgenin (187) | [PSmim]HSO4 | UAE | Dioscorea opposita Thunb. | [139] |
morroniside (164), sweroside (165), loganin (166), cornuside (167) | [Domim]HSO4 | maceration | Cornus officinalis Sieb. et Zucc. | [140] |
Compounds | Types of ILs | Methods of Extraction | Sources | References |
---|---|---|---|---|
schisandrin (188), schisantherin (189), deoxyschisandrin (190), γ-schisandrin (191) | Bmim-BF4 | aqueous two-phase system | Schisandra chinensis (Turcz.) Baill. | [143] |
psoralen (203) | [Bmim]Br | liquid-liquid extraction | Ficus carica L. | [145] |
schisandrol B (192), schisanhenol (193), deoxyshisandrin (194), schisandrin C (195) | [C4mim][BF4] | UAE | Schisandra chinensis (Turcz.) Baill. | [149] |
rosmarinic acid (196), sodium danshensu (197), lithospermic acid (198), salvianolic acid B (199) | SiO2.Im+.PF6 | SPE | Salvia miltiorrhiza Bunge | [150] |
schizandrin (200), schisantherin A (201), γ-schizandrin (202) | [C4mim]Ac | maceration | Schisandra chinensis (Turcz.) Baill. | [151] |
magnolol (204), honokiol (205) | [Bmim][BF4] | UAE | Magnolia officinalis Rehd. et Wils. | [152] |
podophyllotoxin (206) | [Amim][BF4] | MAE | Dysosma versipellis (Hance) M. Cheng ex Ying, Sinopodophyllum hexandrum (Royle) Ying | [153] |
aesculin (207), aesculetin (208) | [C4mim]Br | ultrasound-microwave synergistic extraction | Fraxinus chinensis Roxb | [147,154] |
isopsoralen (209), bergapten (210), isobergapten (211), oxypeucedanin (212), imperatorin (213), osthole (214), isoimperatorin (215) | [C6mim][PF6] | liquid–liquid micro extraction | Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. ex Franch. et Sav. | [155] |
Compounds | Types of ILs | Methods of Extraction | Sources | References |
---|---|---|---|---|
rhein (225), danthron (226), emodin (227), chrysophanol (228) | [Bmim]Cl, [Bmim]Br, [Bmim]BF4 | UAE, MAE | Rheum officinale Baill. | [155] |
dihydrotanshinone (231), miltirone (232) | 1-octyl-3-methylimidazolium hexafluoro-phosphate | ultrahigh pressure extraction | Salvia miltiorrhiza Bunge | [159] |
emodin (216), aloe-emodin (217), rhein (218), aloin (221) | [C4mim]BF4 | liquid–liquid extraction | Aloe vera L. | [160] |
tashinone IIA (224) | (3-aminopropyl)trimethoxysilane, 1-octyl-3-methylimidazolium hexafluoro-phosphate | imprinted functionalized ionic liquid-modified silica, ultrahigh pressure extraction | Salvia miltiorrhiza Bunge | [159,161] |
cryptotanshinone (222), tanshinone I (223) | (3-aminopropyl)trimethoxysilane | imprinted functionalized ionic liquid-modified silica | Salvia miltiorrhiza Bunge | [161] |
chrysophanol (219), physcion (221) | 1-hexyl-3-methylimidazolium hexafluorophosphate | liquid–liquid micro extraction | Rheum officinale Baill | [162] |
shikonin (229), β,β′-dimethylacrylshikonin (230) | [C6mim][PF6] | UMAE | Lithospermum erythrorhizon Sieb. et Zucc. | [163] |
stibene glycoside (233) | [Bth][Br], [HBth][p-TSA] | liquid–liquid extraction | Fallopia multiflora (Thunb.) Harald. | [164] |
Compounds | Types of ILs | Methods of Extraction | Sources | References |
---|---|---|---|---|
senkyunolide I (compound 234), senkyunolide H (compound 235), Z-ligustilide (compound 236) | N,N-dimethyl-N-(2-hydroxyethoxyethyl)ammonium propionate, N,N-dimethyl(cyanoethyl)ammonium propionate | MAE | Ligusticum chuanxiong Hort. | [166] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Chen, G.; Li, N. Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products. Molecules 2018, 23, 1765. https://doi.org/10.3390/molecules23071765
Xiao J, Chen G, Li N. Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products. Molecules. 2018; 23(7):1765. https://doi.org/10.3390/molecules23071765
Chicago/Turabian StyleXiao, Jiao, Gang Chen, and Ning Li. 2018. "Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products" Molecules 23, no. 7: 1765. https://doi.org/10.3390/molecules23071765
APA StyleXiao, J., Chen, G., & Li, N. (2018). Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products. Molecules, 23(7), 1765. https://doi.org/10.3390/molecules23071765