Integrated Chemical and Transcriptomic Analysis Reveals the Distribution of Protopanaxadiol- and Protopanaxatriol-Type Saponins in Panax notoginseng
Abstract
:1. Introduction
2. Results
2.1. Analysis of Saponin Contents in P. notoginseng
2.2. Transcriptome Analysis in P. notoginseng
2.3. Functional Annotation of the Transcriptome
2.4. Differential Expression of Transcripts in the Six tissues of P. notoginseng
2.5. Analysis of Genes Involved in Triterpenoid Saponin Biosynthesis
2.6. Analysis of Putative Genes Involved in Saponin Distribution in P. notoginseng
2.7. Correlation Analysis of Saponin Content and Gene Expression
3. Discussion
4. Materials and Methods
4.1. Plant Samples
4.2. Saponin Extraction and HPLC analysis
4.3. RNA Extraction, Library Construction, and RNA Sequencing
4.4. Transcriptome Analysis
4.5. Real-Time qPCR Analysis of CYP716A47 and CYP716A53v2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AACT | Acetoacetyl-CoA acyltransferase |
CYP | Cytochrome |
DS | Dammarenediol-II synthase |
DXPS | 1-deoxy-O-xylulose 5-phosphate synthase |
DXPR | 1-deoxy-O-xylulose 5-phosphate reductoisomerase |
FPS | Farnesyl pyrophosphate synthase |
FPP | Farnesyl diphosphate |
FPKM | Fragments per kilobase of exon model per million mapped reads |
GDPS | Gerenyl diphosphatesynthase |
GO | Gene Ontology |
HPLC | High-performance liquid chromatography |
HMGS | 3-hydroxy-3-methylglutaryl-CoA synthase |
HMGR | 3-hydroxy-3-methylglutaryl-CoA reductase |
HDS | 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
IPPI | Isopentenyl pyrophosphate isomerase |
ISPD | 2-C-methylerythritol 4-phosphatecytidyl transferase |
ISPE | 4-(cytidine-5′-diphospho)-2-C-methylerythritol kinase |
IPP | Isoprenyl diphosphate |
ISPH | 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase |
MVDD | Mevalonate diphosphate decarboxylase |
MECPS | 2-C-methylerythritol-2,4-cyclophosphate synthase |
MEP | 2-C-methyl-d-erythritol-4-phosphate |
MVA | Mevalonate |
MVK | Mevalonate kinase |
NCBI Nr | NCBI Non-redundant protein |
ORF | Open read frame |
PTS | 20(S)-protopanaxatriol saponins |
PDS | 20(S)-protopanaxadiol saponins |
PMK | Phosphomevalonate kinase |
SS | Squalene synthase |
SE | Squalene epoxidase |
UGTs | UDP-glycosyltransferases |
References
- Hong, D.Y.; Lau, A.J.; Yeo, C.L.; Liu, X.K.; Yang, C.R.; Koh, H.L.; Hong, Y. Enetic diversity and variation of saponin contents in Panax notoginseng roots from a single farm. J. Agric. Food. Chem. 2005, 53, 8460–8467. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.; Thomas, G.N.; Tomlinson, B. Protective effects of trilinolein extracted from Panax notoginseng against cardiovascular disease. Acta. Pharm. Sin. B. 2002, 23, 1157–1162. [Google Scholar]
- Ng, T. Pharmacological activity of sanchi ginseng (Panax notoginseng). J. Pharm. Pharmacol. 2006, 58, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Liu, Y.; Zhang, B.; Huang, J.; Li, Y.; Yang, B.; Huang, Z.; Xiang, F.; Zhang, H. The antidepressant effects and mechanism of action of total saponins from the caudexes and leaves of Panax notoginseng in animal models of depression. Phytomedicine 2011, 18, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhao, S. Progress in understanding of ginsenoside biosynthesis. Plant. Biol. 2008, 10, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.H.; Ma, C.H.; Zhang, J.J.; Chen, J.W.; Tang, Q.Y.; He, M.H.; Xu, X.Z.; Jiang, N.H.; Yang, S.C. Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genom. 2015, 16, 159. [Google Scholar] [CrossRef] [PubMed]
- Tansakul, P.; Shibuya, M.; Kushiro, T.; Ebizuka, Y. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis in Panax ginseng. FEBS. Lett. 2006, 580, 5143–5149. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng. Res. 2012, 36, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dong, L.L.; Wei, G.F.; Hu, H.Y.; Zhu, G.W.; Zhang, J.; Chen, S.L. Identification and quality analysis of Panax notoginseng and Panax vietnamensis var. fuscidicus through integrated DNA barcoding and HPLC. Chin. Herb. Med. 2018, 10, 177–183. [Google Scholar] [CrossRef]
- National Pharmacopoeia Commission of People’s Republic of China. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Yoshikawa, M.; Morikawa, T.; Kashima, Y.; Ninomiya, K.; Matsuda, H. Structures of new dammarane-type triterpene saponins from the flower buds of P. notoginseng and hepatoprotective effects of principal ginseng saponins. J. Nat. Prod. 2003, 66, 922–937. [Google Scholar] [CrossRef] [PubMed]
- State Administration of Traditional Chinese Medicine. Chinese Materia Medica; Shanghai Science and Technology Press: Shanghai, China, 1999. [Google Scholar]
- Niu, Y.Y.; Luo, H.M.; Sun, C.; Yang, T.J.; Dong, L.L.; Huang, L.F.; Chen, S.L. Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 2014, 533, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.M.; Sun, C.; Sun, Y.Z.; Wu, Q.; Li, Y.; Song, J.Y.; Niu, Y.Y.; Cheng, X.; Xu, H.; Li, C.; et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genom. 2011, 12, S5. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.F.; Dong, L.L.; Yang, J.; Zhang, L.J.; Xu, J.; Yang, F.; Cheng, R.Y.; Xu, R.; Chen, S.L. Integrated metabolomic and transcriptomic analyses revealed the distribution of saponins in P. notoginseng. Acta. Pharm. Sin. B. 2018, 8, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Augustin, J.; Kuzina, V.; Andersen, S.; Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011, 72, 435–457. [Google Scholar] [CrossRef] [PubMed]
- Haralampidis, K.; Bryan, G.; Qi, X.; Papadopoulou, K.; Bakht, S.; Melton, R.; Osbourn, A. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. USA 2001, 98, 13431–13436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincken, J.P.; Heng, L.; Groot, A.; Gruppen, H. Saponin, classification and occurrence in the plant Kingdom. Phytochemistry 2007, 68, 275–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, W.Y.; Zhang, J.; Zuo, B.M.; Zhang, L.M.; Huang, L.Q. Advances in study of ginsenoside biosynthesis pathway in Panax ginseng C. A. Meyer. Acta Physiol. Plant 2012, 34, 397–403. [Google Scholar] [CrossRef]
- Fukushima, E.O.; Seki, H.; Ohyama, K.; Ono, E.; Umemoto, N.; Mizutani, M.; Saito, K.; Muranaka, T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol. 2011, 52, 2050–2061. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Y.; Kim, H.J.; Kwon, Y.S.; Choi, Y.E. The cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 2011, 52, 2062–2073. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Y.; Hwang, H.S.; Choi, S.W.; Kim, H.J.; Choi, Y.E. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 2012, 53, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Y.; Kim, M.J.; Ban, Y.W.; Hwang, H.S.; Choi, Y.E. The involvement of 3-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol. 2013, 54, 2034–2046. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chu, Y.; Liao, B.S.; Xiao, S.M.; Yin, Q.; Bai, R.; Su, H.; Dong, L.L.; Li, X.W.; Qian, Y. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 2017, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Yoo, D.S.; Xu, H.; Park, N.I.; Kim, H.H.; Choi, J.E.; Park, S.U. Ginsenoside content of berries and roots of three typical Korean ginseng (Panax ginseng) cultivars. Nat. Prod. Commun. 2009, 4, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Searels, J.M.; Keen, K.D.; Horton, J.L.; Clarke, H.D.; Ward, J.R. Comparing ginsenoside production in leaves and roots of wild American ginseng (Panax quinquefolius). Am. J. Plant. Sci. 2017, 4, 1252–1259. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.Z.; Chen, K.K.; Zhang, Y.J.; Yang, C.R. HPLC comparative analysis of ginsenoside saponins in different underground parts of Panax notoginseng. Acta Bot. Yunnanica 2005, 7, 685–690. [Google Scholar]
- Wan, J.B.; Yang, F.Q.; Li, S.P.; Wang, Y.T.; Cui, X.M. Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD. J. Pharm. Biomed. Anal. 2006, 41, 1596. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-H.; Yang, B.-R.; Cheung, W.-F.; Yang, K.Y.; Zhou, H.-F.; Kwok, J.S.-L.; Liu, G.-C.; Li, X.-F.; Zhong, S.; Lee, S.M.-Y.; et al. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genom. 2015, 16, 265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Su, H.; Zhang, L.; Liao, B.S.; Xiao, S.M.; Dong, L.L.; Hu, Z.G.; Wang, P.; Li, X.W.; Huang, Z.H. Comprehensive characterization for ginsenosides biosynthesis in ginseng root by integration analysis of chemical and transcriptome. Molecules 2017, 22, 889. [Google Scholar] [CrossRef] [PubMed]
- Li, C.F.; Zhu, Y.J.; Xu, G.; Sun, C.; Luo, H.M.; Song, J.Y.; Li, Y.; Wang, L.; Qian, J.; Chen, S.L. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. meyer. BMC Genom. 2013, 14, 245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, W.; Xia, E.; Zhang, Q.; Liu, Y.; Zhang, Y.; Tong, Y.; Zhao, Y.; Niu, Y.C.; Xu, J.H.; et al. The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution. Mol. Plant 2017, 10, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Jayakodi, M.; Lee, S.C.; Yun, S.L.; Park, H.S.; Kim, N.H.; Jang, W.; Lee, H.O.; Joh, H.J.; Yang, T.J. Comprehensive analysis of Panax ginseng root transcriptomes. BMC. Plant. Biol. 2015, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, S.J.; Liang, Y.L.; Wang, L.; Cao, H.J. Regulation and differential expression of protopanaxadiol synthase in Asian and American ginseng ginsenoside biosynthesis by RNA interferences. Plant Growth Regul. 2013, 71, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Kondo, N.; Marumoto, Y.; Shoji, I. Studies on the constituents of Panacis japonica rhizoma. IV. The structure of chikusetsu saponin. V. Chem. Pharm. Bull. 1971, 19, 1103–1107. [Google Scholar] [CrossRef]
- Komatsu, K.; Tohda, C.; Zhu, S. Ginseng drugs-molecular and chemical characteristics and possibility as antidementia drugs. Curr. Top. Nutraceut. R. 2005, 3, 47–64. [Google Scholar]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, L.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, M. De novo transcript sequence reconstruction from RNA-seq: Reference generation and analysis with Trinity. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Item | No. of Sequences |
---|---|
Clean reads (M) | 804.6882 |
clean bases (G) | 120.7032 |
No. Of contig > 500 bp | 1,325,735 |
Total unigenes | 158,551 |
Total length (bp) | 202,104,779 |
Average contig size (bp) | 1274 |
N50 contig size (bp) | 2012 |
GC (%) | 41.05 |
Genes | NG-R1 | G-Rg1 | G-Re | G-Rb1 | G-Rc | G-Rb2 | G-Rd | PTS | PDS | Total Saponins |
---|---|---|---|---|---|---|---|---|---|---|
CYP716A47 | −0.056 | −0.368 | −0.316 | −0.153 | 0.580* | 0.707** | −0.217 | −0.338 | 0.334 | −0.103 |
CYP716A53v2 | 0.956 ** | 0.991 ** | 0.999 ** | 0.918 ** | −0.579 * | −0.596 ** | 0.926 ** | 0.994 ** | 0.454 | 0.921 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, G.; Wei, F.; Yuan, C.; Chen, Z.; Wang, Y.; Xu, J.; Zhang, Y.; Dong, L.; Chen, S. Integrated Chemical and Transcriptomic Analysis Reveals the Distribution of Protopanaxadiol- and Protopanaxatriol-Type Saponins in Panax notoginseng. Molecules 2018, 23, 1773. https://doi.org/10.3390/molecules23071773
Wei G, Wei F, Yuan C, Chen Z, Wang Y, Xu J, Zhang Y, Dong L, Chen S. Integrated Chemical and Transcriptomic Analysis Reveals the Distribution of Protopanaxadiol- and Protopanaxatriol-Type Saponins in Panax notoginseng. Molecules. 2018; 23(7):1773. https://doi.org/10.3390/molecules23071773
Chicago/Turabian StyleWei, Guangfei, Fugang Wei, Can Yuan, Zhongjian Chen, Yong Wang, Jiang Xu, Yongqing Zhang, Linlin Dong, and Shilin Chen. 2018. "Integrated Chemical and Transcriptomic Analysis Reveals the Distribution of Protopanaxadiol- and Protopanaxatriol-Type Saponins in Panax notoginseng" Molecules 23, no. 7: 1773. https://doi.org/10.3390/molecules23071773
APA StyleWei, G., Wei, F., Yuan, C., Chen, Z., Wang, Y., Xu, J., Zhang, Y., Dong, L., & Chen, S. (2018). Integrated Chemical and Transcriptomic Analysis Reveals the Distribution of Protopanaxadiol- and Protopanaxatriol-Type Saponins in Panax notoginseng. Molecules, 23(7), 1773. https://doi.org/10.3390/molecules23071773