(−)-Asarinin from the Roots of Asarum sieboldii Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity of the Extract and Solvent Fractions against Human Ovarian Cancer Cells
2.2. Identification of Compounds 1–8 from the Roots of A. sieboldii
2.3. Cytotoxicity of Compounds 1–8 against Human Ovarian Cancer Cells
2.4. (−)-Asarinin (1)-Induced Apoptotic Cell Death in Human Ovarian Cancer Cells
2.5. (−)-Asarinin (1) Induced Caspase-Dependent Cell Death in Human Ovarian Cancer Cells
3. Materials and Methods
3.1. General Procedures
3.2. Plant Meterial
3.3. Extraction and Isolation
3.4. Cell Culture
3.5. MTT Assay
3.6. Cell Cycle Analysis
3.7. Annexin V-FITC/PI Double Staining
3.8. Western Blot Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Drew, A.K.; Whyte, I.M.; Bensoussan, A.; Dawson, A.H.; Zhu, X.; Myers, S.P. Chinese herbal medicine toxicology database: Monograph on Herba Asari, “Xi Xin”. J. Toxicol. Clin. Toxicol. 2002, 40, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, M.; Kim, S.J. Phytochemical, toxicological and pharmacological studies of Asiasari Radix et Rhizoma: A Review. Trop. J. Pharm. Res. 2015, 14, 545–554. [Google Scholar] [CrossRef]
- Kim, H.M.; Moon, Y.S. Asiasari radix inhibits immunoglobulin E production on experimental models in vitro and in vivo. Immunopharm. Immunot. 1999, 21, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Kosuge, T.; Yokota, M.; Nukaya, H.; Gotoh, Y.; Nagasawa, M. Studies on antitussive principles of Asiasari radix. Chem. Pharm. Bull. 1978, 26, 2284–2285. [Google Scholar] [CrossRef]
- Han, A.R.; Kim, H.J.; Shin, M.; Hong, M.; Kim, Y.S.; Bae, H. Constituents of Asarum sieboldii with inhibitory activity on lipopolysaccharide (LPS)-induced NO production in BV-2 microglial cells. Chem. Biodivers. 2008, 5, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Zhang, C.G.; Lim, J.T. Mechanism of antinociceptive effects of Asarum sieboldii Miq. Radix: Potential role of bradykinin, histamine and opioid receptor-mediated pathways. J. Ethnopharmacol. 2003, 88, 5–9. [Google Scholar] [CrossRef]
- Lee, J.Y.; Moon, S.S.; Hwang, B.K. Isolation and antifungal activity of kakuol, a propiophenone derivative from Asarum sieboldii rhizome. Pest. Manag. Sci. 2005, 61, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Seo, S.J.; Hur, J.M.; Lee, H.S.; Lee, Y.E.; You, Y.O. Asarum sieboldii extracts attenuate growth, acid production, adhesion, and water-insoluble glucan synthesis of Streptococcus mutans. J. Med. Food 2006, 9, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Kim, S.J. Memory enhancing actions of Asiasari radix extracts via activation of insulin receptor and extracellular signal regulated kinase (ERK) I/II in rat hippocampus. Brain Res. 2003, 974, 193–201. [Google Scholar] [CrossRef]
- Oh, S.M.; Kim, J.; Lee, J.; Yi, J.M.; Oh, D.S.; Bang, O.S.; Kim, N.S. Anticancer potential of an ethanol extract of Asiasari radix against HCT-116 human colon cancer cells in vitro. Oncol. Lett. 2013, 5, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Park, J.D.; Baek, N.I.; Lee, Y.H.; Kim, S.I. Isolation of a cytotoxic agent from Asiasari Radix. Arch. Pharm. Res. 1996, 19, 559–561. [Google Scholar] [CrossRef]
- Hashimoto, K.; Katsuhara, T.; Itoh, H.; Ikeya, Y.; Okada, M.; Mitsuhashi, H. Monoterpenes from asiasari radix from Asiasarum sp. Phytochemistry 1990, 29, 3571–3574. [Google Scholar] [CrossRef]
- Hashimoto, K.; Katsuhara, T.; Niitsu, K.; Ikeya, Y.; Hayashi, K.; Maruno, M.; Fujita, T. Enantioexcess monoterpenes from roots of Asiasarum sieboldi. Phytochemistry 1994, 35, 969–973. [Google Scholar] [CrossRef]
- Wagner, H.; Bauer, R.; Melchart, D.; Xiao, P.G.; Staudinger, A. Radix et Rhizoma Asari—Xixin. In Chromatographic Fingerprint Analysis of Herbal Medicines; Springer: Vienna, Austria, 2011; pp. 45–57. ISBN 978-3-319-09298-0. [Google Scholar]
- Lo, C.F.; Chen, C.M. Determination of higenamine in plasma and urine by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B 1994, 655, 33–39. [Google Scholar] [CrossRef]
- Masaki, N.; Iizuka, H.; Yokota, M.; Ochiai, A. Crystal structure of higenamine [1, 2, 3, 4-tetrahydro-1-(4-hydroxybenzyl) isoquinoline-6, 7-diol] hydrobromide. J. Chem. Soc. Perkin 1 1977, 7, 717–719. [Google Scholar] [CrossRef]
- Takara, K.; Horibe, S.; Obata, Y.; Yoshikawa, E.; Ohnishi, N.; Yokoyama, T. Effects of 19 herbal extracts on the sensitivity to paclitaxel or 5-fluorouracil in HeLa cells. Biol. Pharm. Bull. 2005, 28, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Kim, H.M.; Kim, H.J.; Choi, J.H.; Jang, D.S. Kudsuphilactone B, a nortriterpenoid isolated from Schisandra chinensis fruit, induces caspase-dependent apoptosis in human ovarian cancer A2780 cells. Arch. Pharm. Res. 2017, 40, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.H.; Choi, J.Y.; Lee, J.G.; Oh, J.S.; Kim, D.C.; Lee, H.S.; Son, J.K.; Ryang, S.A.; Kim, J.A.; Lee, S.H. Isolation of melanin biosynthesis inhibitory compounds from the roots of Asarum sieboldii. Korean J. Pharmacogn. 2007, 38, 394–399. [Google Scholar]
- Roy, S.C.; Rana, K.K.; Guin, C. Short and stereoselective total synthesis of furano lignans (+/−)-dihydrosesamin, (+/−)-lariciresinol dimethyl ether, (+/−)-acuminatin methyl ether, (+/−)-sanshodiol methyl ether, (+/−)-lariciresinol, (+/−)-acuminatin, and (+/−)-lariciresinol monomethyl ether and furofuran lignans (+/−)-sesamin, (+/−)-eudesmin, (+/−)-piperitol methyl ether, (+/−)-pinoresinol, (+/−)-piperitol, and (+/−)-pinoresinol monomethyl ether by radical cyclization of epoxides using a transition-metal radical source. J. Org. Chem. 2002, 67, 3242–3248. [Google Scholar] [CrossRef] [PubMed]
- Musso, L.; Dallavalle, S.; Merlini, L.; Farina, G. Synthesis and Antifungal Activity of 2-Hydroxy-4, 5-methylenedioxyaryl Ketones as Analogues of Kakuol. Chem. Biodivers. 2010, 7, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Hofer, O.; Greger, H.; Robien, W.; Werner, A. 13C NMR and 1H lanthanide induced shifts of naturally occurring alkamides with cyclic amide moieties-amides from achilleafalcata. Tetrahedron 1986, 42, 2707–2716. [Google Scholar] [CrossRef]
- Bizzo, H.R.; Lopes, D.; Abdala, R.V.; Pimentel, F.A.; de Souza, J.A.; Pereira, M.V.; Bergter, L.; Guimarães, E.F. Sarisan from leaves of Piper affinis hispidinervum C. DC (long pepper). Flavour Fragr. J. 2001, 16, 113–115. [Google Scholar] [CrossRef]
- Lopes-Lutz, D.; Mudge, E.; Ippolito, R.; Brown, P.; Schieber, A. Purification of alkylamides from Echinacea angustifolia (DC.) Hell. roots by high-speed countercurrent chromatography. J. Agric. Food Chem. 2010, 59, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Truan, J.S.; Chen, J.M.; Thompson, L.U. Comparative effects of sesame seed lignan and flaxseed lignan in reducing the growth of human breast tumors (MCF-7) at high levels of circulating estrogen in athymic mice. Nutr. Cancer 2012, 64, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hirose, N.; Doi, F.; Ueki, T.; Akazawa, K.; Chijiiwa, K.; Sugano, M.; Akimoto, K.; Shimizu, S.; Yamada, H. Suppressive effect of sesamin against 7,12-dimethylbenz[a]-anthracene induced rat mammary carcinogenesis. Anticancer Res. 1992, 12, 1259–1265. [Google Scholar] [PubMed]
- Deng, P.; Wang, C.; Chen, L.; Wang, C.; Du, Y.; Yan, X.; Chen, M.; Yang, G.; He, G. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2. Biol. Pharm. Bull. 2013, 36, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Hibasami, H.; Fujikawa, T.; Takeda, H.; Nishibe, S.; Satoh, T.; Fujisawa, T.; Nakashima, K. Induction of apoptosis by Acanthopanax senticosus HARMS and its component, sesamin in human stomach cancer KATO III cells. Oncol. Rep. 2000, 7, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, M.; Konoshima, T.; Yasuda, I.; Hamano, T.; Tokuda, H. Inhibitory effects of shouseiryu-to on two-stage carcinogenesis. II. Anti-tumor-promoting activities of lignans from Asiasarum heterotropoides var mandshuricum. Biol. Pharm. Bull. 1997, 20, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Konoshima, T.; Takasaki, M. Anti-tumor-promoting activities (cancer chemopreventive activities) of natural products. Stud. Nat. Prod. Chem. 2000, 24, 215–267. [Google Scholar] [CrossRef]
- Ju, Y.; Still, C.C.; Sacalis, J.N.; Li, J.; Ho, C.T. Cytotoxic coumarins and ligmans from extracts of the northern prickly ash (Zanthoxylum americanum). Phytother. Res. 2001, 15, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Youle, R.J. The Role of Mitochondria in Apoptosis. Annu Rev. Genet. 2009, 42, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Kantari, C.; Walczak, H. Caspase-8 and Bid: Caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta 2011, 1813, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Creagh, E.M. Caspase crosstalk: Integration of apoptotic and innate immune signalling pathways. Trends Immunol. 2014, 35, 631–640. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Extract or Fractions | IC50 (μg/mL) * | |
---|---|---|
Human Ovarian Cancer Cells | ||
A2780 | SKOV3 | |
70% EtOH extract | 31.5 ± 16.83 | >200 |
EtOAc fraction | 19.89 ± 4.20 | 118.47 ± 19.78 |
Water fraction | 107.20 ± 15.80 | 139.30 ± 29.13 |
Compound | IC50 (μM) * | ||
---|---|---|---|
Human Ovarian Cancer Cells | Immortalized Ovarian Surface Epithelial Cells | ||
A2780 | SKOV3 | IOSE80PC | |
1 | 38.45 ± 2.78 | 60.87 ± 5.01 | >200 |
2 | 101.85 ± 13.55 | 173.82 ± 9.42 | 178.92 ± 3.30 |
3 | >200 | >200 | >200 |
4 | >200 | >200 | >200 |
5 | ND ** | ND ** | ND ** |
6 | >200 | >200 | >200 |
7 | >200 | >200 | >200 |
8 | 101.20 ± 10.35 | >200 | >200 |
Cisplatin *** | 8.77 ± 0.48 | 24.18 ± 0.28 | 45.62 ± 0.30 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, M.; Kim, H.M.; Lee, J.S.; Choi, J.-H.; Jang, D.S. (−)-Asarinin from the Roots of Asarum sieboldii Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells. Molecules 2018, 23, 1849. https://doi.org/10.3390/molecules23081849
Jeong M, Kim HM, Lee JS, Choi J-H, Jang DS. (−)-Asarinin from the Roots of Asarum sieboldii Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells. Molecules. 2018; 23(8):1849. https://doi.org/10.3390/molecules23081849
Chicago/Turabian StyleJeong, Miran, Hye Mi Kim, Jin Su Lee, Jung-Hye Choi, and Dae Sik Jang. 2018. "(−)-Asarinin from the Roots of Asarum sieboldii Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells" Molecules 23, no. 8: 1849. https://doi.org/10.3390/molecules23081849
APA StyleJeong, M., Kim, H. M., Lee, J. S., Choi, J. -H., & Jang, D. S. (2018). (−)-Asarinin from the Roots of Asarum sieboldii Induces Apoptotic Cell Death via Caspase Activation in Human Ovarian Cancer Cells. Molecules, 23(8), 1849. https://doi.org/10.3390/molecules23081849