A Short and Efficient Total Synthesis of Ficuseptamines A and B
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General Chemistry Experimental
4.2. Experimental Procedures for Chemical Synthesis and Characterization Data of Compounds
4.2.1. Synthesis of 1-(4-Hydroxy-3-methoxyphenyl)prop-2-en-1-one (9a)
4.2.2. Synthesis of Ficuseptamine A by a One-Pot Cross Metathesis/Hydrogenation Procedure (1a)
4.2.3. Synthesis of (2E)-1,3-Bis(3-Hydroxy-4-methoxyphenyl)prop-2-en-1-one (17)
4.2.4. Synthesis of 1-(3-Hydroxy-4-methoxyphenyl)prop-2-en-1-one (9b)
4.2.5. Synthesis of Ficuseptamine B by a One-Pot Cross Metathesis/Hydrogenation Procedure (1b)
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ueda, J.-Y.; Takagi, M.; Shin-ya, K. Aminocaprophenone- and pyrrolidine-type alkaloids from the leaves of Ficus septica. J. Nat. Prod. 2009, 72, 2181–2183. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, U.; Moody, C.J. A short synthesis of the triazolopyrimidine antibiotic essramycin. J. Nat. Prod. 2010, 73, 1938–1939. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zeng, Y.H.; Osman, K.; Shinde, K.; Rahman, M.; Gibbons, S.; Mu, Q. Norlignans, acylphloroglucinols, and a dimeric xanthone from Hypericum chinense. J. Nat. Prod. 2010, 73, 1815–1820. [Google Scholar] [CrossRef] [PubMed]
- Pais, G.C.G.; Zhang, X.; Marchand, C.; Neamati, N.; Cowansage, K.; Svarovskaia, E.S.; Pathak, V.K.; Tang, Y.; Nicklaus, M.; Pommier, Y.; et al. Structure activity of 3-aryl-1,3-diketo-containing compounds as HIV-1 integrase inhibitors. J. Med. Chem. 2002, 45, 3184–3194. [Google Scholar] [CrossRef] [PubMed]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Salyer, A.E.; Kim, E.H.; Jiang, X.; Jarrad, R.E.; Powers, M.S.; Kirchhoff, A.M.; Salvador, T.K.; Chester, J.A.; Hockerman, G.H.; et al. Evaluation of difluoromethyl ketones as agonists of the γ-aminobutyric acid type B (GABAB) receptor. J. Med. Chem. 2013, 56, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746–1787. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.A. Recent applications of ring-closing metathesis in the synthesis of lactams and macrolactams. Chem. Commun. 2010, 46, 9100–9106. [Google Scholar] [CrossRef] [PubMed]
- Connon, S.J.; Blechert, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed. 2003, 42, 1900–1923. [Google Scholar] [CrossRef] [PubMed]
- Hoveyda, A.H.; Zhugralin, A.R. The remarkable metal-catalysed olefin metathesis reaction. Nature 2007, 450, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 2005, 44, 4490–4527. [Google Scholar] [CrossRef] [PubMed]
- Fürstner, A. Metathesis in total synthesis. Chem. Commun. 2011, 47, 6505–6511. [Google Scholar] [CrossRef] [PubMed]
- Chatare, V.K.; Andrade, R.B. Total synthesis of (−)-albocycline. Angew. Chem. Int. Ed. 2017, 56, 5909–5911. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.B.; Marx, V.M.; Pederson, R.L.; Grubbs, R.H. Concise syntheses of insect pheromones using Z-selective cross metathesis. Angew. Chem. Int. Ed. 2013, 52, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.J.; Speed, A.W.H.; Schrock, R.R.; Amir, H.; Hoveyda, A.H. Catalytic Z-selective cross-metathesis with secondary silyl- and benzyl-protected allylic ethers: Mechanistic aspects and applications to natural product synthesis. Angew. Chem. Int. Ed. 2013, 52, 8395–8400. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.B.; Grubbs, R.H. Z-selective cross metathesis with ruthenium catalysts: Synthetic applications and mechanistic implications. Angew. Chem. Int. Ed. 2015, 54, 5018–5024. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.A.; Brown, F.K. A convenient approach to acyclic unsaturated amino acids via ring-closing metathesis. Chem. Commun. 2010, 46, 3013–3015. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Wenzel, A.G.; Salguero, T.T.; Day, M.W.; Grubbs, R.H. Decomposition of ruthenium olefin metathesis catalysts. J. Am. Chem. Soc. 2007, 129, 7961–7968. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.K.; Choi, T.-L.; Sanders, D.P.; Grubbs, R.H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc. 2003, 125, 11360–11370. [Google Scholar] [CrossRef] [PubMed]
- Boulard, L.; BouzBouz, S.; Cossy, J.; Franck, X.; Figadère, B. Two successive one-pot reactions leading to the expeditious synthesis of (−)-centrolobine. Tetrahedron Lett. 2004, 45, 6603–6605. [Google Scholar] [CrossRef]
- Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. 2016, 7, 866–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidange, J.; Fischmeister, C.; Bruneau, C. Ethenolysis: A green catalytic tool to cleave carbon—Carbon double bonds. Chem. Eur. J. 2016, 22, 12226–12244. [Google Scholar] [CrossRef] [PubMed]
- Petrov, O.; Ivanova, Y.; Gerova, M. SOCl2/EtOH: Catalytic system for synthesis of chalcones. Catal. Commun. 2008, 9, 315–316. [Google Scholar] [CrossRef]
- Clark, J.R.; French, J.M.; Diver, S.T. Alkene metathesis approach to β-unsubstituted anti-allylic alcohols and their use in ene-yne metathesis. J. Org. Chem. 2012, 77, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Sanders, D.P.; Lee, C.W.; Grubbs, R.H. Prevention of undesirable isomerization during olefin metathesis. J. Am. Chem. Soc. 2005, 127, 17160–17161. [Google Scholar] [CrossRef] [PubMed]
- Perrone, R.; Berardi, F.; Colabufo, N.A.; Lacivita, E.; Leopoldo, M.; Tortorella, V. Synthesis and structure-affinity relationships of 1-[ω-(4-aryl-1-piperazinyl) alkyl]-1-aryl ketones as 5-HT7 receptor ligands. J. Med. Chem. 2003, 46, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Leow, P.-C.; Bahety, P.; Boon, C.P.; Lee, C.Y.; Tan, K.L.; Yang, T.; Ee, P.-L.R. Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur. J. Med. Chem. 2014, 71, 67–80. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the author. |
E | Substrate 9a (equiv.) | Substrate 10 (equiv.) | Catalyst (Loading) | Solvent | T (°C) | Yield % a |
---|---|---|---|---|---|---|
1 | 2 | 1 | G I 4 (5 mol %) | CH2Cl2 | 40 | 22 |
2 | 2 | 1 | G I 4 (10 mol %) | CH2Cl2 | 40 | 15 |
3 | 2 | 1 | G II 5 (5 mol %) | CH2Cl2 | 40 | 37 |
4 | 2 | 1 | G II 5 (10 mol %) | CH2Cl2 | 40 | 41 |
5 | 2 | 1 | G II 5 (10 mol %) | Toluene | 80 | 47 |
6 | 2 | 1 | H-G II 7 (5 mol %) | CH2Cl2 | 40 | 68 |
7 | 2 | 1 | H-G II 7 (10 mol %) | CH2Cl2 | 40 | 76 |
8 | 2 | 1 | H-G II 7 (10 mol %) | Toluene | 80 | 52 |
9 | 1 | 2 | H-G II 7 (10 mol %) | CH2Cl2 | 40 | 42 |
Entry | Catalyst | Equivalent | Time (h) | Yield (%) a |
---|---|---|---|---|
1 | NaOH b | 2 | 16 | 46 |
2 | Cs2CO3 | 2 | 16 | 41 |
3 | SOCl2 | 1 | 4 | 83 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, H.M.A. A Short and Efficient Total Synthesis of Ficuseptamines A and B. Molecules 2018, 23, 1865. https://doi.org/10.3390/molecules23081865
Hassan HMA. A Short and Efficient Total Synthesis of Ficuseptamines A and B. Molecules. 2018; 23(8):1865. https://doi.org/10.3390/molecules23081865
Chicago/Turabian StyleHassan, Hani Mutlak A. 2018. "A Short and Efficient Total Synthesis of Ficuseptamines A and B" Molecules 23, no. 8: 1865. https://doi.org/10.3390/molecules23081865
APA StyleHassan, H. M. A. (2018). A Short and Efficient Total Synthesis of Ficuseptamines A and B. Molecules, 23(8), 1865. https://doi.org/10.3390/molecules23081865