Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General
3.2. Representative Procedure for the Oxidation of Diarylmethane
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, B.C.; Zhou, P.; Davis, F.A.; Ciganek, E. Organic Reactions; Overman, L.E., Ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Wu, S.B.; Long, C.; Kennelly, E.J. Structural Diversity and Bioactivities of Natural Benzophenones. Nat. Prod. Rep. 2014, 31, 1158–1174. [Google Scholar] [CrossRef] [PubMed]
- Belluti, F.; de Simone, A.; Tarozzi, A.; Bartolini, M.; Djemil, A.; Bisi, A.; Gobbi, S.; Montanari, S.; Cavalli, A.; Andrisano, V.; et al. Fluorinated Benzophenone Derivatives: Balanced Multipotent Agents for Alzheimer’s Disease. Eur. J. Med. Chem. 2014, 78, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Vooturi, S.K.; Cheung, C.M.; Rybak, M.J.; Firestine, S.M. Design, Synthesis and Structure-Activity Relationships of Benzophenone-Based Tetraamides as Novel Antibacterial Agents. J. Med. Chem. 2009, 52, 5020–5031. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Yasuda, T.; Yang, Y.S.; Zhang, Q.; Adachi, C. Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full-Color Delayed Fluorescence OLEDs. Angew. Chem. Int. Ed. 2014, 53, 6402–6406. [Google Scholar] [CrossRef] [PubMed]
- Ryabchun, A.; Sakhno, O.; Wegener, M. Conventional Elastomers Doped with Benzophenone Derivatives as Effective Media for All-optical Fabrication of Tunable Diffraction Elements. RSC Adv. 2016, 6, 51791–51800. [Google Scholar] [CrossRef]
- Al-hunaiti, A.; Raisanen, M.; Repo, T. From DNA to Catalysis: A Thymine-Acetate Ligated Non-Heme Iron(III) Catalyst for Oxidative Activation of Aliphatic C-H Bonds. Chem. Commun. 2016, 52, 2043–2046. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Li, S.; Pan, Y.; Xu, Y.; Wang, H. The Indium-Catalysed Hydration of Alkynes Using Substoichiometric Amounts of PTSA as Additive. Tetrahedron 2013, 69, 3775–3781. [Google Scholar] [CrossRef]
- Iosub, A.V.; Stahl, S.S. Palladium-Catalyzed Aerobic Oxidative Dehydrogenation of Cyclohexenes to Substituted Arene Derivatives. J. Am. Chem. Soc. 2015, 137, 3454–3457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Ferrate, O.; Britovsek, G.J.; Claver, C.; van Leeuwen, P.W. C-H Benzylic Oxidation Promoted by Dinuclear Iron DBDOC Iminopyridine Complexes. Inorg. Chim. Acta 2015, 431, 156–160. [Google Scholar] [CrossRef]
- Sartori, G.; Maggi, R. Advances in Friedel–Crafts Acylation Reactions: Catalytic and Green Processes; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Tojo, G.; Fernández, M.I. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Colquhoun, H.; Thompson, D.; Twigg, M.V. Carbonylation: Direct Synthesis of Carbonyl Compounds; Springer Science & Business Media: New York, NY, USA, 1991. [Google Scholar]
- Beller, M.; Wu, X.-F. Transition-Metal-Catalyzed Carbonylation Reactions; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hughes, M.D.; Xu, Y.J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D.I.; Carley, A.F.; Attard, G.A.; Hutchings, G.J.; King, F.; et al. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation Under Mild Conditions. Nature 2005, 437, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Liu, M.J.; Wang, Y.Q.; Fan, H.Y.; Wu, J.; Huang, C.; Hou, H.W. Cu(I) Coordination Polymers as the Green Heterogeneous Catalysts for Direct C−H Bonds Activation of Arylalkanes to Ketones in Water with Spatial Confinement Effect. Inorg. Chem. 2017, 56, 13329–13336. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Liu, Y.; Ma, X.W.; Liu, P.; Gu, C.Z.; Dai, B. Cu(II)-Catalyzed Ligand-Free Oxidation of Diarylmethanes and Second Alcohols in Water. Chin. J. Chem. 2017, 35, 1391–1395. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Itami, K. Tert-Butoxide-Mediated C-H Bond Arylation of Aromatic Compounds with Haloarenes. ChemCatChem 2011, 3, 827–829. [Google Scholar] [CrossRef]
- Shirakawa, E.; Hayashi, T. Transition-Metal-Free Coupling Reactions of Aryl Halides. Chem. Lett. 2012, 41, 130–134. [Google Scholar] [CrossRef]
- Mehta, V.P.; Punji, B. Recent Advances in Transition-Metal-Free Direct C-C and C-Heteroatom Bond Forming Reactions. RSC Adv. 2013, 3, 11957–11986. [Google Scholar] [CrossRef]
- Jin, F.; Han, W. Transition-Metal-Free, Ambient-Pressure Carbonylative Cross-Coupling Reactions of Aryl Halides with Potassium Aryltrifluoroborates. Chem. Commun. 2015, 51, 9133–9136. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.S. Palladium-Catalyzed Oxidation of Organic Chemicals with O2. Science 2005, 309, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Que, L.; Tolman, W.B. Biologically Inspired Oxidation Catalysis. Nature 2008, 455, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chem. Rev. 2005, 105, 2329–2363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, C.; Jiao, N. Recent Advances in Copper-Catalyzed Dehydrogenative Functionalization via A Single Electron Transfer (SET) Process. Chem. Soc. Rev. 2012, 41, 3464–3484. [Google Scholar] [CrossRef] [PubMed]
- Pattillo, C.C.; Strambeanu, L.I.; Calleja, P.; Vermeulen, N.A.; Mizuno, T.; White, M.C. Aerobic Linear Allylic C-H Amination: Overcoming Benzoquinone Inhibition. J. Am. Chem. Soc. 2016, 138, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Saha, D.; Saha, D.; Guin, J. Aerobic Direct C(sp2)-H Hydroxylation of 2-Arylpyridines by Palladium Catalysis Induced with Aldehyde Auto-Oxidation. ACS Catal. 2016, 6, 6050–6054. [Google Scholar] [CrossRef]
- Anson, C.W.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S.S. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2016, 138, 4186–4193. [Google Scholar] [CrossRef] [PubMed]
- Brink, G.J.T.; Arends, I.W.C.E.; Sheldon, R.A. Green, Catalytic Oxidation of Alcohols in Water. Science 2000, 287, 1636–1639. [Google Scholar] [CrossRef] [PubMed]
- Brice, J.L.; Harang, J.E.; Timokhin, V.I.; Anastasi, N.R.; Stahl, S.S. Aerobic Oxidative Amination of Unactivated Alkenes Catalyzed by Palladium. J. Am. Chem. Soc. 2005, 127, 2868–2869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Yu, J.Q. Pd(II)-Catalyzed Hydroxylation of Arenes with 1 atm of O2 or Air. J. Am. Chem. Soc. 2009, 131, 14654–14655. [Google Scholar] [CrossRef] [PubMed]
- Chiba, S.; Zhang, L.; Lee, J.Y. Copper-Catalyzed Synthesis of Azaspirocyclohexadienones from Alpha-Azido-N-Arylamides under an Oxygen Atmosphere. J. Am. Chem. Soc. 2010, 132, 7266–7267. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Sterckx, H.; Sambiagio, C.; Maes, B.U.W. Copper-Catalyzed Aerobic Oxygenation of Benzylpyridine N-Oxides and Subsequent Post-Functionalization. Adv. Synth. Catal. 2017, 359, 3226–3236. [Google Scholar] [CrossRef]
- Nambo, M.; Keske, E.C.; Rygus, J.P.G.; Yim, J.C.H.; Crudden, C.M. Development of Versatile Sulfone Electrophiles for Suzuki-Miyaura Cross-Coupling Reactions. ACS Catal. 2016, 7, 1108–1112. [Google Scholar] [CrossRef]
- Li, S.; Zhu, B.; Lee, R.; Qiao, B.; Jiang, Z. Visible light-induced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate(III) complex catalyst. Org. Chem. Front. 2017, 5, 380–385. [Google Scholar] [CrossRef]
- Prebil, R.; Stavber, G.; Stavber, S. Aerobic Oxidation of Alcohols by Using a Completely Metal-Free Catalytic System. Eur. J. Org. Chem. 2014, 2014, 395–402. [Google Scholar] [CrossRef]
- Chinnagolla, R.K.; Jeganmohan, M. Regioselective Ortho-Arylation and Alkenylation of N-Alkyl Benzamides with Boronic Acids via Ruthenium-Catalyzed C–H Bond Activation: An Easy Route to Fluorenones Synthesis. Org. Lett. 2012, 14, 5246–5249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ji, X.; Jiang, S.S.; Liu, L.L.; Weeks, B.L.; Zhang, Z. Highly Efficient Synthesis of 9-Fluorenones from 9H-Fluorenes by Air Oxidation. Green Chem. 2011, 13, 1891–1896. [Google Scholar] [CrossRef]
- Yip, W.T.; Levy, D.H.; Kobetic, R.; Piotrowiak, P. Energy Transfer in Bichromophoric Molecules: The Effect of Symmetry and Donor/Acceptor Energy Gap. J. Phys. Chem. A 2009, 103, 10–20. [Google Scholar] [CrossRef]
- Valášek, M.; Edelmann, K.; Gerhard, L.; Fuhr, O.; Lukas, M.; Mayor, M. Synthesis of Molecular Tripods Based on A Rigid 9,9′-Spirobifluorene Scaffold. J. Org. Chem. 2014, 79, 7342–7357. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Oisaki, K.; Kanai, M. Chemoselective Aerobic Photo-Oxidation of 9H-Fluorenes for the Synthesis of 9-Fluorenones. Tetrahedron Lett. 2015, 46, 4736–4738. [Google Scholar] [CrossRef]
- Dufresne, S.; Callaghan, L.; Skene, W.G. Conjugated Fluorenes Prepared From Azomethines Connections-II: The Effect of Alternating Fluorenones and Fluorenes on the Spectroscopic and Electrochemical Properties. J. Phys. Chem. B 2009, 113, 15541–15549. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 2a–2n are available from the authors. |
Entry a | Base | Solvent | Temp [°C] | Yield [%] b |
---|---|---|---|---|
1 | – | THF | 60 °C | – |
2 | KHMDS | THF | 60 °C | 76 |
3 | NaHMDS | THF | 60 °C | 79 |
4 | LiHMDS | THF | 60 °C | 85 |
5 | KOtBu | THF | 60 °C | 11 |
6 | NaOtBu | THF | 60 °C | 6 |
7 | LiOtBu | THF | 60 °C | trace |
8 | CS2CO3 | THF | 60 °C | – |
9 | LiHMDS | dioxane | 60 °C | 23 |
10 | LiHMDS | toluene | 60 °C | 15 |
11 | LiHMDS | DME | 60 °C | 79 |
12 | LiHMDS | CPME | 60 °C | 56 |
13 | LiHMDS | CH2Cl2 | 60 °C | 11 |
14 | LiHMDS | THF | 80 °C | 84 |
15 | LiHMDS | THF | 40 °C | 35 |
16 c | LiHMDS | THF | 60 °C | – |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Zhou, B.; Chen, P.; Zou, D.; Luo, Q.; Ren, W.; Li, L.; Fan, L.; Li, J. Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes. Molecules 2018, 23, 1922. https://doi.org/10.3390/molecules23081922
Yang F, Zhou B, Chen P, Zou D, Luo Q, Ren W, Li L, Fan L, Li J. Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes. Molecules. 2018; 23(8):1922. https://doi.org/10.3390/molecules23081922
Chicago/Turabian StyleYang, Fan, Bihui Zhou, Pu Chen, Dong Zou, Qiannan Luo, Wenzhe Ren, Linlin Li, Limei Fan, and Jie Li. 2018. "Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes" Molecules 23, no. 8: 1922. https://doi.org/10.3390/molecules23081922
APA StyleYang, F., Zhou, B., Chen, P., Zou, D., Luo, Q., Ren, W., Li, L., Fan, L., & Li, J. (2018). Transition-Metal-Free C(sp3)–H Oxidation of Diarylmethanes. Molecules, 23(8), 1922. https://doi.org/10.3390/molecules23081922