Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Metabolites in P. offcinalis Extract
2.2. Structural Characterization of the New Compounds
2.3. The Main Phytochemical Constituents of P. officinalis
2.4. Seasonal Fluctuation in Phytochemical Composition of P. officinalis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Instruments
3.4.1. Semi-Preparative HPLC
3.4.2. High-Resolution LC-MS and Qualitative Analysis
3.4.3. Untargeted Metabolomics Analyses.
3.4.4. NMR Spectroscopy
3.4.5. Optical Rotation [α]
3.4.6. Circular Dichroism Spectroscopy
3.4.7. Characteristic Data of Lungwort Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hawrył, M.A.; Waksmundzka-Hajnos, M. Micro 2D-TLC of selected plant extracts in screening of their composition and antioxidative properties. Chromatographia 2013, 76, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Rashid, A. Anti-coagulant activity of plants: Mini review. J. Thromb. Thrombolysis 2017, 44, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, D.; Gerova, D.; Chervenkov, T.; Yankova, T. Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J. Ethnopharmacol. 2005, 96, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Newton, S.M.; Lau, C.; Gurcha, S.S.; Besra, G.S.; Wright, C.W. The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J. Ethnopharmacol. 2002, 79, 57–67. [Google Scholar] [CrossRef]
- Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Šarić-Kundalić, B.; Dobeš, C.; Klatte-Asselmeyer, V.; Saukel, J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J. Ethnopharmacol. 2010, 131, 33–55. [Google Scholar] [CrossRef] [PubMed]
- Leporatti, M.L.; Ivancheva, S. Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J. Ethnopharmacol. 2003, 87, 123–142. [Google Scholar] [CrossRef]
- Tiţǎ, I.; Mogoşanu, G.D.; Tiţǎ, M.G. Ethnobotanical inventory of medicinal plants from the South-West of Romania. Farmacia 2009, 57, 141–156. [Google Scholar]
- Pielesz, A.; Paluch, J. Opatrunki aktywne—Biomateriały w badaniach glikacji kolagenu Therapeutically active dressings—Biomaterials in a study of collagen glycation. Polim. Med. 2012, 115–120. [Google Scholar] [CrossRef]
- Malinowska, P. Effect of flavonoids content on antioxidant activity of commercial cosmetic plant extracts. Herba Pol. 2013, 59. [Google Scholar] [CrossRef]
- Dweck, A.C. The function and substantiation of same natural plant materials. Herb. Arch. Lect. Soc. Cosmet. Sci. 1992, 1–43. Available online: http://www.dweckdata.com/Lectures/scs_nov_1992.pdf (accessed on 27 July 2018).
- Łuczaj, Ł.; Szymański, W.M. Wild vascular plants gathered for consumption in the Polish countryside: A review. J. Ethnobiol. Ethnomed. 2007, 3, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Dreon, A.L.; Paoletti, M.G. The wild food (plants and insects) in Western Friuli local knowledge (Friuli-Venezia Giulia, North Eastern Italy). Contrib. Nat. Hist. 2009, 12, 461–488. [Google Scholar]
- Puusepp, L.; Koff, T. Pollen analysis of honey from the Baltic region, Estonia. Grana 2014, 53, 54–61. [Google Scholar] [CrossRef]
- Affek, A.N. Indicators of ecosystem potential for pollination and honey production. Ecol. Indic. 2016. [Google Scholar] [CrossRef]
- Brantner, A.; Kartnig, T. Flavonoid glycosides from aerial parts of Pulmonaria officinalis. Planta Med. 1995, 61, 582. [Google Scholar] [CrossRef] [PubMed]
- Neagu, E.; Radu, G.L.; Albu, C.; Paun, G. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts. Saudi J. Biol. Sci. 2015, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowska-Kowalczyk, J.; Kolodziejczyk-Czepas, J.; Kowalczyk, M.; Pecio, Ł.; Nowak, P.; Stochmal, A. Yunnaneic acid B, a component of Pulmonaria officinalis extract, prevents peroxynitrite-induced oxidative stress in vitro. J. Agric. Food Chem. 2017, 65, 3827–3834. [Google Scholar] [CrossRef] [PubMed]
- Kuczkowiak, U.; Petereit, F.; Nahrstedt, A. Hydroxycinnamic acid derivatives obtained from a commercial Crataegus extract and from authentic Crataegus spp. Sci. Pharm. 2014, 82, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Parveen, I.; Winters, A.; Threadgill, M.D.; Hauck, B.; Morris, P. Extraction, structural characterisation and evaluation of hydroxycinnamate esters of orchard grass (Dactylis glomerata) as substrates for polyphenol oxidase. Phytochemistry 2008, 69, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kang, S.-J.; Lee, S.-H.; Ro, J.; Lee, K.; Kinghorn, A.D. Phenolic compounds from the leaves of Cornus controversa. Phytochemistry 2000, 53, 405–407. [Google Scholar] [CrossRef]
- Hahn, R.; Nahrstedt, A. Hydroxycinnamic acid derivatives, caffeoylmalic and new caffeoylaldonic acid esters, from Chelidonium majus. Planta Med. 1993, 59, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Agata, I.; Kusakabe, H.; Hatano, T.; Nishibe, S.; Ookuda, T. Melitric acids A and B, new trimeric caffeic acid derivatives from Melissa officinalis. Chem. Pharm. Bull. 1993, 41, 1608–1611. [Google Scholar] [CrossRef]
- Murata, T.; Watahiki, M.; Tanaka, Y.; Miyase, T.; Yoshizaki, F. Hyaluronidase inhibitors from Takuran, Lycopus lucidus. Chem. Pharm. Bull. 2010, 58, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Ruan, M.; Li, Y.; Li, X.; Luo, J.; Kong, L. Qualitative and quantitative analysis of the major constituents in Chinese medicinal preparation Guan-Xin-Ning injection by HPLC–DAD–ESI-MSn. J. Pharm. Biomed. Anal. 2012, 59, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.; Barros, L.; Pereira, C.; Calhelha, R.C.; Garcia, P.A.; Castro, M.Á.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food Funct. 2016, 7, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Cho, J.Y.; Moon, J.H. Chemical conversions of salvianolic acid B by decoction in aqueous solution. Fitoterapia 2012, 83, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Exarchou, V.; Takis, P.G.; Malouta, M.; Vervoort, J.; Karali, E.; Troganis, A.N. Four new depsides in Origanum dictamnus methanol extract. Phytochem. Lett. 2013, 6, 46–52. [Google Scholar] [CrossRef]
- Basli, A.; Delaunay, J.-C.; Pedrot, E.; Bernillon, S.; Madani, K.; Monti, J.-P.; Mérillon, J.M.; Chibane, M.; Richard, T. New cyclolignans from Origanum glandulosum active against β-amyloid aggregation. Rec. Nat. Prod. 2014, 8, 208–216. [Google Scholar]
- Scher, J.M.; Zapp, J.; Becker, H. Lignan derivatives from the liverwort Bazzania trilobata. Phytochemistry 2003, 62, 769–777. [Google Scholar] [CrossRef]
- Parker, C.C.; Parker, M.L.; Smith, A.C.; Waldron, K.W. Thermal stability of texture in Chinese water chestnut may be dependent on 8,8′-diferulic acid (aryltetralyn form). J. Agric. Food Chem. 2003, 51, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Agata, I.; Hatano, T.; Nishibe, S.; Okuda, T. Rabdosiin, a new rosmarinic acid dimer with a lignan skeleton, from Rabdosia japonica. Chem. Pharm. Bull. 1988, 36, 3223–3225. [Google Scholar] [CrossRef]
- Castañar, L.; Sistaré, E.; Virgili, A.; Williamson, R.T.; Parella, T. Suppression of phase and amplitude J(HH) modulations in HSQC experiments. Magn. Reson. Chem. 2015, 53, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; van Ingen, H.; Vivekanandan, S.; Rademacher, C.; Norris, S.E.; Freedberg, D.I. More accurate 1JCH coupling measurement in the presence of 3JHH strong coupling in natural abundance. J. Magn. Reson. 2012, 215, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.H.; Gao, J.M.; Liu, H.Q.; Fu, J.X. A new disaccharide from the fern Macrothelypteris digophlebia. Chin. Chem. Lett. 2000, 11, 1063–1064. [Google Scholar]
- Tanaka, T.; Nishimura, A.; Kouno, I.; Nonaka, G.I.; Yang, C.R. Four new caffeic acid metabolites, yunnaneic acids E-H, from Salvia yunnanensis. Chem. Pharm. Bull. 1997, 45, 1596–1600. [Google Scholar] [CrossRef]
- Janicsak, G.; Mathe, I.; Miklossy-Vari, V.; Blunden, G. Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem. Syst. Ekol. 1999, 27, 733–738. [Google Scholar] [CrossRef]
- Shekarchi, M.; Hajimehdipoor, H.; Saeidnia, S.; Gohari, A.; Hamedani, M. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn. Mag. 2012, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: Biotechnology and applications. Crit. Rev. Biotechnol. 2012, 32, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Friedman, T. The effect of rosmarinic acid on immunological and neurological systems: A basic science and clinical review. J. Restor. Med. 2015, 4, 50–59. [Google Scholar] [CrossRef]
- Kim, G.-D.; Park, Y.S.; Jin, Y.-H.; Park, C.-S. Production and applications of rosmarinic acid and structurally related compounds. Appl. Microbiol. Biotechnol. 2015, 99, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.; Madureira, A.R.; Campos, D.; Sarmento, B.; Gomes, A.M.; Pintado, M.; Reis, F. Therapeutic and nutraceutical potential of rosmarinic acid—Cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Heal. Res. Rev. 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Q.; Wang, X.; Yang, J.; Wang, Q. Qualitative analysis and simultaneous quantification of phenolic compounds in the aerial parts of Salvia miltiorrhiza by HPLC-DAD and ESI/MSn. Phytochem. Anal. 2011, 22, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Yu, H.M.; Shie, J.J.; Cheng, T.J.R.; Wu, C.Y.; Fang, J.M.; Wong, C.H. Chemical constituents of Plectranthus amboinicus and the synthetic analogs possessing anti-inflammatory activity. Bioorganic Med. Chem. 2014, 22, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Miyase, T.; Yoshizaki, F. Hyaluronidase inhibitors from Keiskea japonica. Chem. Pharm. Bull. 2012, 60, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Watzke, A.; O′Malley, S.J.; Bergman, R.G.; Ellman, J.A. Reassignment of the Configuration of Salvianolic Acid B and Establishment of Its Identity with Lithospermic Acid B. J. Nat. Prod. 2006, 69, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.H.; Guo, H.; Ye, M.; Lin, Y.H.; Sun, J.H.; Xu, M.; Guo, D.A. Detection, characterization and identification of phenolic acids in Danshen using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A 2007, 1161, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Dueñas, M.; Dias, M.I.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic profiles of cultivate, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, L. Water soluble components of Danshen. In Dan Shen (Salvia Miltiorrhiza) in Medicine; Yan, X., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 97–117. [Google Scholar]
- Lu, Y.; Yeap Foo, L. Polyphenolics of Salvia—A review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chang, Y.Y.; Kuo, Y.H.; Shiao, M.S. Anti-lipid-peroxidative principles from Tournefortia sarmentosa. J. Nat. Prod. 2002, 65, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef] [PubMed]
- Kelley, C.J.; Mahajan, R.J.; Brooks, L.C.; Neubert, L.A.; Breneman, W.R.; Carmack, M. Polyphenolic acids of Lithospermum ruderale Dougl. ex Lehm. (Boraginaceae). Isolation and structure determination of lithospermic acid. J. Org. Chem. 1975, 40, 1804–1815. [Google Scholar] [CrossRef]
- Liu, X.; Chen, R.; Shang, Y.; Jiao, B.; Huang, C. Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats. Chem. Biol. Interact. 2008, 176, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Tsay, H.J.; Lai, T.H.; Tzeng, T.T.; Shiao, Y.J. Lithospermic acid attenuates 1-methyl-4-phenylpyridine-induced neurotoxicity by blocking neuronal apoptotic and neuroinflammatory pathways. J. Biomed. Sci. 2015, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elazem, I.S.; Chen, H.S.; Bates, R.B.; Huang, R.C.C. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antivir. Res 2002, 55, 91–106. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Wang, Y. Inhibitory effects of lithospermic acid on proliferation and migration of rat vascular smooth muscle cells. Acta Pharmacol. Sin. 2009, 30, 1245–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K.W.K.; Ho, W.S. Anti-oxidative and hepatoprotective effects of lithospermic acid against carbon tetrachloride-induced liver oxidative damage in vitro and in vivo. Oncol. Rep. 2015, 34, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Oyama, K.; Fujiyama, M.; Oobayashi, B.; Umehara, K.; Miyase, T.; Yoshizaki, F. Diastereomers of lithospermic acid and lithospermic acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia 2013, 91, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Odonbayar, B.; Murata, T.; Matsumoto, N.; Batkhuu, J.; Sasaki, K. Chemical constituents of aerial parts of Thymus gobicus and their cholinesterase inhibitory activities. Mong. J. Chem. 2016, 17, 1–4. [Google Scholar]
- Kamata, K.; Iizuka, T.; Nagai, M.; Kasuya, Y. Endothelium-dependent vasodilator effects of the extract from Salviae Miltiorrhizae radix. A study on the identification of lithospermic acid B in the extracts. Gen. Pharmacol. 1993, 24, 977–981. [Google Scholar] [CrossRef]
- Kang, D.G.; Oh, H.; Sohn, E.J.; Hur, T.Y.; Lee, K.C.; Kim, K.J.; Kim, T.Y.; Lee, H.S. Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats. Life Sci. 2004, 75, 1801–1816. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Nishimura, A.; Kouno, I.; Nonaka, G.I.; Young, T.J. Isolation and characterization of yunnaneic acids A-D, four novel caffeic acid metabolites from Salvia yunnanensis. J. Nat. Prod. 1996, 59, 843–849. [Google Scholar] [CrossRef]
- Dapkevicius, A.; Van Beek, T.A.; Lelyveld, G.P.; van Veldhuizen, A.; de Groot, A.; Linssen, J.P.H.; Venskutonis, R. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves. J. Nat. Prod. 2002, 65, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.; Johnston, K.; Knigh, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acid. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- Taofiq, O.; Gonzalez-Paramïas, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef] [PubMed]
- Ovenden, S.P.B.; Yu, J.; San Wan, S.; Sberna, G.; Murray Tait, R.; Rhodes, D.; Cox, S.; Coates, J.; Walsh, N.G.; Meurer-Grimes, B.M. Globoidnan A: A lignan from Eucalyptus globoidea inhibits HIV integrase. Phytochemistry 2004, 65, 3255–3259. [Google Scholar] [CrossRef] [PubMed]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, İ. Antioxidant activity of an anatolian herbal tea—Origanum minutiflorum: Isolation and characterization of its secondary metabolites. Int. J. Food Prop. 2018, 2912. [Google Scholar] [CrossRef]
- Erenler, R.; Sen, O.; Yildiz, I.; Aydın, A. Antiproliferative activities of chemical constituents isolated from Thymus praecox subsp. grossheimii (Ronniger) Jalas. Rec. Nat. Prod. 2016, 10, 766–770. [Google Scholar]
- Seigler, D.S.; Pauli, G.F.; Fröhlich, R.; Wegelius, E.; Nahrstedt, A.; Glander, K.E.; Ebinger, J.E. Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virginiana, Tiquilia plicata, and Tiquilia canescens. Phytochemistry 2005, 66, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.A.; Huang, X.Y.; Lei, L.G.; Zhang, X.M.; Chen, J.J. Chemical constituents of Saniculiphyllum guangxiense. Chem. Biodivers. 2012, 9, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.X.; Deng, J.G.; Gao, C.H.; Hou, X.T.; Li, F.; Wang, Z.P.; Hao, E.W.; Xie, Y.; Du, Z.C.; Huang, H.X.; et al. Four new cyclohexylideneacetonitrile derivatives from the hypocotyl of mangrove (Bruguiera gymnorrhiza). Molecules 2015, 20, 14565–14575. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Sirat, H.M. COX-2 inhibitors from stem bark of Bauhinia rufescens Lam. (Fabaceae). EXCLI J. 2013, 12, 824–830. [Google Scholar] [PubMed]
- Yahara, S.; Uda, N.; Yoshio, E.; Yae, E. Steroidal alkaloid glycosides from tomato (Lycopersicon esculentum). J. Nat. Prod. 2004, 67, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Peng, W.; Wang, Z.; Xu, A. b-carboline alkaloids: Biochemical and pharmacological functions. Curr. Med. Chem. 2007, 14, 479–500. [Google Scholar] [CrossRef] [PubMed]
- Murai, F.; Tagawa, M. Relationship between ionone glycosides and terpenoids in Actinidia polygama. In Proceedings of the Abstract Papers of the 33rd Symposium on the Chemistry of Terpenes, Essential Oils, and Aromatics (TEAC), Sendai, Japan, September 1989; pp. 68–70. [Google Scholar]
- Otsuka, H.; Hirata, E.; Shinzato, T.; Takeda, Y. Stereochemistry of megastigmane glucosides from Glochidion zeylanicum and Alangium premnifolium. Phytochemistry 2003, 62, 763–768. [Google Scholar] [CrossRef]
- Samy, M.N.; Hamed, A.N.E.S.; Sugimoto, S.; Otsuka, H.; Kamel, M.S.; Matsunami, K. Officinalioside, a new lignan glucoside from Borago officinalis L. Nat. Prod. Res. 2016, 30, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, V.; Gardeli, C.; Mallouchos, A.; Papaioannou, M.; Komaitis, M. Variation of the chemical pofile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller grown in Greece. J. Agric. Food Chem. 2008, 56, 7254–7264. [Google Scholar] [CrossRef] [PubMed]
- Çirak, C.; Radušiene, J.; Ivanauskas, L.; Janulis, V. Variation of bioactive secondary metabolites in Hypericum origanifolium during its phenological cycle. Acta Physiol. Plant. 2007, 29, 197–203. [Google Scholar] [CrossRef]
- Tan, X.J.; Li, Q.; Chen, X.H.; Wang, Z.W.; Shi, Z.Y.; Bi, K.-S.; Jia, Y. Simultaneous determination of 13 bioactive compounds in Herba Artemisiae Scopariae (Yin Chen) from different harvest seasons by HPLC-DAD. J. Pharm. Biomed. Anal. 2008, 47, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Pietraszek, E.; Pietraszek, J. Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae). J. Pharm. Biomed. Anal. 2012, 66, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Pietraszek, E.; Pietraszek, J. Seasonal changes of flavonoid content in Melittis melissophyllum L. (Lamiaceae). Chem. Biodivers. 2014, 11, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Nishida, R.; Kuwahara, Y. Oviposition stimulant for a Rutaceae-feeding swallowtail butterfly, Papilio bianor (Lepidoptera: Papilionidae): Hydroxycinnamic acid derivative from Orixa japonica. Appl. Entomol. Zool. 2000, 35, 119–123. [Google Scholar] [CrossRef]
- Ryan, K.G.; Markham, K.R.; Bloor, S.J.; Bradley, J.M.; Mitchell, K.A.; Jordan, B.R. UVB radiation induced increase in quercetin: Kaempferol ratio in wild-type and transgenic lines of Petunia. Photochem. Photobiol. 1998, 68, 323–330. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csepregi, K.; Hideg, É. Phenolic compound diversity explored in the context of photo-oxidative stress protection. Phytochem. Anal. 2018, 29, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.J.; Lewis, R.; Bernstein, M.A.; Sandor, P. Selective excitation of overlapping multiplets; the application of doubly selective and chemical shift filter experiments to complex NMR spectra. Magn. Reson. Chem. 2007, 45, 283–288. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds and plant material are available from the authors. |
No | Compound Name | RT (min) | Formula | Error (ppm) | mσ | Observed [M − H]− | Major Fragments (%) |
---|---|---|---|---|---|---|---|
1 | Danshensu | 2.9 | C9H10O5 | 0.3 | 1 | 197.0455 | 179.0350 (46), 135.0445 (27), 123.0456 (23) |
2 | Menisdaurin | 3.7 | C14H19NO7 | 1 | 7.6 | 312.1086 | 132.0378 (100), 294.0830 (4) |
3 | 3-O-(E)-caffeoyl-threonic acid | 4.5 | C13H14O8 | −1.2 | 2 | 297.0619 | 135.0293 (100), 179.0361 (21), 161.0263 (6) |
4 | 2-O-(E)-caffeoyl-l-threonic acid | 5 | C13H14O8 | 1.6 | 4.4 | 297.0611 | 135.0293 (100), 179.0346 (17), 161.0245 (11) |
5 | Lycoperodine-1 | 5.3 | C12H12N2O2 | 0.5 | 2.3 | 215.0825 | 171.0926 (28), 142.0655 (5), 116.0509 (6) |
6 | Chlorogenic acid | 5.7 | C16H18O9 | −1 | 5.7 | 353.0882 | 191.0567 (100) |
7 | Actinidioionoside | 5.9 | C19H34O9 | 1 | 4.2 | 405.2126 | 225.1494 (10); 179.0560 (10); 167.1073 (11) |
8 | Caffeic acid | 6 | C9H8O4 | −1.6 | 1.8 | 179.0262 | 135.0372 (95) |
9 | Cryptochlorogenic acid | 6.2 | C16H18O9 | −1.1 | 8.9 | 353.0882 | 191.0567 (100), 179.0355 (88), 173.0459 (83) |
10 | 3′−O-(E)-feruloyl-α-sorbopyranosyl-(2′→1)-α-glucopyranoside | 6.3 | C22H30O14 | −1.7 | 7.6 | 517.1572 | 341.1105 (24); 175.0407 (100); 160.0172 (57) |
11 | 2-O-(E)-caffeoyl-d-glyceric acid | 6.8 | C12H12O7 | 1 | 1.4 | 267.0508 | 161.0242 (100), 133.0288 (14), 179.0356(11) |
12 | 4-O-(E)-caffeoyl-l-threonic acid | 6.9 | C13H14O8 | −0.1 | 8.3 | 297.0616 | 135.0293 (100), 179.0355 (44), 161.0237 (9) |
13 | Neochlorogenic acid | 7.0 | C16H18O9 | 0 | 12.1 | 353.0882 | 191.0567 (100) |
14 | 3-O-(E)-caffeoyl-glyceric acid | 7.1 | C12H12O7 | 0.6 | 7.1 | 267.0509 | 179.0352 (24); 161.0244 (100); 135.0446 (21) |
15 | 3-O-p-coumaroylquinic acid | 7.2 | C16H18O8 | 1.4 | 10.8 | 337.0924 | 191.0560 (100); 163.0398 (5) |
16 | 4-O-p-coumaroylquinic acid | 7.4 | C16H18O8 | 0.8 | 19.4 | 337.0926 | 191.0552 (16); 173.0455 (100); 163.0410 (20) |
17 | 5-O-p-coumaroylquinic acid | 8.4 | C16H18O8 | 1.4 | 17.7 | 337.0924 | 191.0561 (100) |
18 | Globoidnan B | 9.7 | C27H22O12 | −1.3 | 8.3 | 537.1046 | 493.1135 (24); 339.0503 (100); 295.0604 (58) |
19 | Rutin | 10.2 | C27H30O16 | −0.5 | 10.9 | 609.1464 | 300.0277 (68), 271.0249 (100) |
20 | Nicotiflorin isomer | 10.4 | C27H30O15 | 1.8 | 8 | 593.1501 | 284.0320 (83); 255.0295 (100) |
21 | Quercetin 3-O-β-glucoside | 10.5 | C21H20O12 | −2.1 | 8.4 | 463.0892 | 300.0284 (100), 271.0256 (100) |
22 | Yunnaneic acid E | 10.9 | C27H24O14 | 0.2 | 4.9 | 571.1092 | 527.1195 (23), 285.0766 (100), 241.0867 (81) |
23 | Quercetin 3-O-(6″-O-malonyl)-β-glucoside | 11.2 | C24H22O15 | 1.7 | 5.6 | 549.0876 | 505.0976 (70), 300.0273 (88) |
24 | Nicotiflorin | 11.4 | C27H30O15 | 1.5 | 13.1 | 593.1503 | 284.0317 (65), 255.0290 (88) |
25 | Astragalin | 11.7 | C21H20O11 | −1.6 | 5.6 | 447.094 | 284.0328 (42), 255.0301 (93) |
26 | Shimobashiric acid C | 11.9 | C36H32O16 | 1.5 | 21.6 | 719.1607 | 359.0766 (100), 161.0239 (11), 539.1191 (6) |
27 | Rosmarinic acid | 12.4 | C18H16O8 | −0.2 | 6.4 | 359.0773 | 161.0247 (100), 197.0455 (87), 179.0345 (33) |
28 | Kaempferol 3-O-(6″-O-malonyl)-β-glucoside | 12.6 | C24H22O14 | −0.5 | 8.1 | 533.094 | 489.1044 (54), 284.0328 (89) |
29 | Monardic acid A | 12.7 | C27H22O12 | 0.6 | 15 | 537.1035 | 493.1128 (4); 295.0628 (100); 185.0240 (25) |
30 | Yunnaneic acid E-1 | 12.9 | C26H22O11 | −1 | 9 | 509.1094 | 329.0672 (40); 285.0768 (100); 135.0445 (38) |
31 | Lithospermic acid A | 13 | C27H22O12 | −2.9 | 5.6 | 537.1054 | 493.1131 (6); 295.0601 (100); 185.0240 (25) |
32 | Pulmonarioside A | 13.3 | C47H52O24 | 1 | 15.9 | 999.2766 | 853.2179 (100), 809.2258 (16), 485.1282 (37) |
33 | Salvianolic acid H | 13.5 | C27H22O12 | 0.9 | 17 | 537.1034 | 493.1123 (22); 359.0763 (69); 295.0605 (100) |
34 | Lithospermic acid B | 13.7 | C36H30O16 | 2.4 | 9.9 | 717.1444 | 519.0915 (63); 321.0392 (100) |
35 | Pulmonarioside B | 13.9 | C48H54O24 | −1.3 | 15.2 | 1013.2946 | 867.2370 (89); 823.247 (98); 499.1469 (53) |
36 | Yunnaneic acid B | 14 | C54H46O25 | 0 | 62.2 | 1093.2255 | 537.1043 (100); 555.1151 (40); 295.0613 (8) |
37 | Globoidnan A | 14.9 | C26H20O10 | 1 | 11.6 | 491.0979 | 311.0557 (100), 267.0658 (79) |
38 | Pulmitric acid A | 15 | C28H24O12 | 0.9 | 42.8 | 551.119 | 463.1394 (34); 295.0608 (100); 255.0657 (60) |
39 | Pulmitric acid B | 15.3 | C27H20O12 | −0.5 | 13.6 | 535.0885 | 359.0768 (38); 177.0197 (100) |
40 | Isosalvianolic acid A | 15.6 | C26H22O10 | 2.3 | 18.9 | 493.1134 | 295.0601 (100); 185.0250 (15) |
41 | Isosalvianolic acid A-1 | 15.7 | C26H22O10 | 1.3 | 4.5 | 493.1134 | 295.0601 (100); 185.0250 (21) |
42 | Isosalvianolic acid A isomer | 15.8 | C26H22O10 | −10.4 | 39 | 493.1134 | 295.0601 (100); 359.0775 (36); 185.0250 (11) |
43 | Rosmarinic acid methyl ester | 15.9 | C19H18O8 | −0.9 | 10.5 | 373.0932 | 179.0353 (53); 135.0445 (25) |
44 | Salvianolic acid H-9″-methylester | 16.4 | C28H24O12 | 1 | 10.9 | 551.1189 | 519.0919 (15); 359.0766 (48); 193.0502 (100) |
45 | Lycopic acid C | 20.6 | C27H19O11 | 1.6 | 25.6 | 519.0933 | 339.0499 (100),161.0227 (14), 179.0337 (5) |
Position | 3 | 14 | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 175.4 | 174.8 | ||
2 | 4.47 d (2.5) | 70.5 | 4.44 br d (6.0) | 70.3 |
3 | 5.34 ddd (6.8, 6.3, 2.5) | 75.8 | 4.46 m, 4.38 m | 66.9 |
4 | 3.81 dd (11.2, 6.8) 3.75 dd (11.2, 6.3) | 60.9 | ||
1′ | 127.8 | 127.7 | ||
2′ | 7.04 d (2.1) | 115.1 | 7.04 d (2.1) | 115.1 |
3′ | 146.8 | 146.8 | ||
4′ | 149.6 | 149.7 | ||
5′ | 6.77 d (8.2) | 116.5 | 6.78 d (8.2) | 116.5 |
6′ | 6.94 dd (8.2, 2.1) | 123.0 | 6.94 dd (8.2, 2.1) | 123.0 |
7′ | 7.59 d (15.9) | 147.5 | 7.58 d (15.9) | 147.4 |
8′ | 6.26 d (15.9) | 114.8 | 6.27 d (15.9) | 114.6 |
9′ | 168.3 | 168.9 |
Position | 38 | 39 | 40/41 | |||
---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 137.2 | 128.2 | 134.7 | |||
2 | 6.98 br s | 115.3 | 7.35 d (2.1) | 121.5 | 6.87 d (1.8) | 114.1 |
3 | 145.6 | 144.1 | 146.5 | |||
4 | 145.9 | 152.4 | 146.5 | |||
5 | 6.67 d (8.1) | 116.7 | 6.99 d (8.3) | 118.8 | 6.76 d (8.2) | 116.3 |
6 | 6.84 dd (8.1, 2.1) | 123.9 | 7.37 dd (8.3, 2.1) | 127.9 | 6.78 dd (8.2, 1.8) | 118.9 |
7 | 2.99 dd (15.4, 8.5) 2.96 dd (15.4, 7.6) | 40.1 | 7.59 d (15.9) | 146.4 | 5.71 dd (9.4,8.1) | 86.2 |
8 | 4.83 t (8.2) | 39.3 | 6.36 d (15.9) | 115.9 | 3.74 dd (15.9, 9.4) 3.26 dd (15.9, 8.1) | 39.3 |
9 | 174.5 | 168.1 | - | - | ||
9-OMe | 3.54 s | 52.1 | ||||
1′ | 129.4 | 129.2 | 123.8 | |||
2′ | 6.52 d (1.9) | 114.8 | 6.73 d (2.1) | 117.6 | 129.8 | |
3′ | 146.4 | 146.1 | 148.3 | |||
4′ | 142.6 | 145.3 | 145.0 | |||
5′ | 132.8 | 6.68 d (8.1) | 116.3 | 6.72 d (8.4) | 117.1 | |
6′ | 6.72 br s | 120.0 | 6.60 dd (8.1, 2.1) | 121.8 | 7.06 d (8.4) | 123.0 |
7′ | 3.15 dd (14.2, 1.6) 2.98 dd (14.2, 11.4) | 38.8 | 3.08 dd (14.2, 4.3) 2.99 dd (14.2, 8.3) | 37.9 | 7.62 d (16.0) | 145.2 |
8′ | 5.23 dd (11.4, 1.6) | 75.3 | 5.18 dd (8.3, 4.3) | 74.7 | 6.25 d (16.0) | 115.9 |
9′ | 172.7 | 173.4 | 168.3 | |||
1′′ | 126.0 | 112.6 | 129.2 | |||
2′′ | 7.40 d (2.1) | 118.0 | 146.8 | 6.74 d (2.1) | 117.6 | |
3′ | 146.3 | 6.79 s | 103.5 | 146.2 | ||
4′′ | 148.5 | 149.8 | 145.3 | |||
5′′ | 6.79 d (8.3) | 116.4 | 144.8 | 6.69 d (8.1) | 116.3 | |
6′′ | 7.16 dd (8.3, 2.1) | 124.7 | 6.81 s | 112.4 | 6.60 dd (8.1, 2.1) | 121.8 |
7′′ | 7.13 s | 127.0 | 7.03 s | 123.8 | 3.09 dd (14.3, 4.3) 3.00 dd (14.3, 8.4) | 37.9 |
8′′ | 140.2 | 140.9 | 5.19 dd (8.4, 4.3) | 74.6 | ||
9′′ | 164.2 | 160.2 | 173.4 |
Position | 18 | 32 | 35 | |||
---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 4.40 d (2.8) | 46.9 | 4.34 dd (15.3, 1.0) | 48.1 | 4.34 dd (15.0, 1.4) | 48.1 |
2 | 3.84 d (2.8) | 48.6 | 4.21 dd (15.3, 2.5) | 51.7 | 4.21 dd (15.2, 2.5) | 51.6 |
3 | 122.7 | 126.2 | 126.1 | |||
4 | 7.58 s | 140.3 | 7.39 d (2.5) | 140.3 | 7.39 d (2.5) | 140.3 |
4a | 124.9 | 124.1 | 124.0 | |||
5 | 6.83 s | 117.2 | 6.73 s | 113.6 | 6.68 s | 113.6 |
6 | 145.6 | 147.7 | 147.7 | |||
7 | 149.2 | 150.1 | 150.2 | |||
8 | 6.55 br s | 117.2 | 6.11 s | 116.1 | 6.11 t (0.9) | 116.2 |
8a | 131.6 | 134.7 | 134.7 | |||
9 | 168.0 | 168.1 | 168.0 | |||
10 | 176.2 | 176.4 | 176.3 | |||
6-OMe | 3.79 s | 56.6 | 3.77 s | 56.6 | ||
1′ | 136.3 | 133.5 | 133.5 | |||
2′ | 6.43 d (2.2) | 115.8 | 6.87 d (2.0) | 114.5 | 6.87 d (2.0) | 114.4 |
3′ | 146.0 | 149.0 | 149.0 | |||
4′ | 144.9 | 146.7 | 146.7 | |||
5′ | 6.62 d (8.2) | 116.3 | 6.90 d (8.1) | 116.9 | 6.89 d (8.1) | 116.9 |
6′ | 6.39 dd (8.2, 2.2) | 119.9 | 6.81 dd (8.1, 2.0) | 123.3 | 6.81 dd (8.1, 2.0) | 123.4 |
3′-OMe | - | - | 3.84 s | 56.8 | 3.84 s | 56.8 |
1′′ | 129.1 | 3.90 d (12.4) 3.72 d (12.4) | 63.2 | 3.89 d (12.4) 3.72 d (12.4) | 63.3 | |
2′′ | 6.71 d (2.1) | 117.6 | 110.1 | 110.1 | ||
3′ | 146.1 | 4.63 o | 81.9 | 4.62 s | 82.0 | |
4′′ | 145.2 | 4.63 o | 73.5 | 4.66 d (0.9) | 73.5 | |
5′′ | 6.68 d (8.1) | 116.4 | 4.24 br d (2.4) | 87.5 | 4.24 t (1.4) | 87.5 |
6′′ | 6.56 dd (8.1, 2.1) | 122.0 | 4.71 dd (12.4, 2.4) 4.08 d (12.4) | 66.4 | 4.69 dd (12.2, 2.5) 4.09 d (12.2) | 66.4 |
7′′ | 3.04 dd (14.3, 5.3) 3.00 dd (14.3, 7.2) | 37.9 | ||||
8′′ | 5.12 dd (7.2, 5.2) | 74.9 | ||||
9′′ | ||||||
1′′′ | 5.35 d (3.6) | 94.4 | 5.35 d (3.6) | 94.4 | ||
2′′′ | 3.46 dd (9.6, 3.6) | 73.4 | 3.46 dd (9.6, 3.6) | 73.4 | ||
3′′′ | 3.64 t (9.2) | 75.0 | 3.65 t (9.2) | 75.0 | ||
4′′′ | 3.31 dd (10.0, 8.9) | 72.0 | 3.29 dd (10.0, 9.0) | 72.2 | ||
5′′′ | 4.32 ddd (9.6, 6.5, 2.2) | 72.3 | 4.33 ddd (9.8, 7.0, 2.4) | 72.3 | ||
6′′′ | 4.48 dd (12.0, 2.2) 4.16 dd (12.0, 6.5) | 65.5 | 4.47 dd (11.9, 2.4) 4.16 dd (11.9, 7.0) | 65.8 | ||
1′′′′ | 130.6 | 130.8 | ||||
2′′′′ | 7.07 d (2.1) | 116.5 | 7.26 d (2.0) | 112.4 | ||
3′′′′ | 148.7 | 152.0 | ||||
4′′′′ | 147.9 | 149.0 | ||||
5′′′′ | 7.18 d (8.4) | 118.0 | 7.17 d (8.4) | 118.6 | ||
6′′′′ | 7.01 dd (8.4, 2.1) | 122.2 | 7.09 dd (8.4, 2.0) | 123.7 | ||
7′′′′ | 7.47 d (15.9) | 146.3 | 7.53 d (15.9) | 146.3 | ||
8′′′′ | 6.21 d (15.9) | 116.8 | 6.29 d (15.9) | 117.0 | ||
9′′′′ | 168.9 | 168.9 | ||||
3′′″-OMe | 3.92 s | 56.7 | ||||
1′′′′′ | 5.50 d (1.8) | 100.7 | 5.48 d (1.8) | 100.8 | ||
2′′′′′ | 4.14 dd (3.5, 1.8) | 71.8 | 4.10 dd (3.5, 1.8) | 71.9 | ||
3′′′′′ | 3.98 dd (9.5, 3.5) | 72.1 | 3.92 dd (9.5, 3.5) | 72.2 | ||
4′′′′′ | 3.49 t (9.5) | 73.8 | 3.48 t (9.5) | 73.7 | ||
5′′′′′ | 3.74 dq (9.5, 6.2) | 70.9 | 3.76 dq (9.5, 6.2) | 71.0 | ||
6′′′′′ | 1.25 d (6.2) | 18.0 | 1.24 d (6.2) | 18.0 |
Position | 10 | 30 * | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 5.44 d (3.7) | 93.3 | 141.2 | |
2 | 3.43 dd (9.8, 3.7) | 73.2 | 7.87 d (2.0) | 131.4 |
3 | 3.66 t (9.4) | 75.0 | 132.5 | |
4 | 3.40 dd (9.9, 8.9) | 71.2 | 142.1 | |
5 | 3.93 ddd (9.9, 4.5, 2.5) | 74.6 | 7.19 d (8.0) | 133.3 |
6 | 3.85 dd (12.0, 2.5) 3.77 dd (12.0, 4.5) | 62.4 | 7.67 dd (8.0, 2.0) | 132.7 |
7 | 3.25 m, 3.17 m | 29.8 | ||
8 | 2.70 m | 36.1 | ||
9 | 173.8 | |||
10 | 192.0 | |||
11 | 167.8 | |||
1′ | 3.66 d (12.2) 3.59 d (12.2) | 65.4 | 132.4 | |
2′ | 104.8 | 7.04 d (2.2) | 114.8 | |
3′ | 5.46 d (7.9) | 79.7 | 146.9 | |
4′ | 4.38 t (7.9) | 73.9 | 146.8 | |
5′ | 3.93 ddd (7.9, 5.6, 3.5) | 84.2 | 6.85 d (8.2) | 116.9 |
6′ | 3.84 dd (12.3, 5.6) 3.80 dd (12.3, 3.5) | 62.9 | 6.94 dd (8.2, 2.2) | 119.4 |
1′′ | 127.7 | 129.2 | ||
2′′ | 7.23 d (2.0) | 112.1 | 6.73 d (2.1) | 117.5 |
3′′ | 149.4 | 146.2 | ||
4′′ | 150.7 | 145.4 | ||
5′′ | 6.81 d (8.3) | 116.5 | 6.70 d (8.1) | 116.4 |
6′′ | 7.14 dd (8.3, 2.0) | 124.2 | 6.59 dd (8.1, 2.1) | 121.9 |
7′′ | 7.71 d (15.9) | 147.7 | 3.07 dd (14.3, 4.0) 2.93 dd (14.3, 8.9) | 37.8 |
8′′ | 6.43 d (15.9) | 115.1 | 5.10 dd (8.9, 4.0) | 74.8 |
9′′ | 168.3 | 173.2 | ||
3″-OMe | 3.91 s | 56.5 |
No. | Compound Name | Contents [µg/g DW] (Mean ± SD, n = 3) | |
---|---|---|---|
Spring | Autumn | ||
1 | Danshensu | 20.6 ± 0.2 | 59.5 ± 4.6 |
2 | Menisdaurin | 107.3 ± 3.6 | ND |
3 | 3-O-(E)-caffeoyl-threonic acid | 90.4 ± 1.8 | 27.7 ± 2.0 |
4 | 2-O-(E)-caffeoyl-l-threonic acid | 567.4 ± 33.1 | 123.5 ± 19.7 |
5 | Lycoperodine-1 | 8.1 ± 0.8 | ND |
6 | Chlorogenic acid | 240.9 ± 12.3 | 330.7 ± 16.6 |
7 | Actinidioionoside | 26.1 ± 6.8 | 397.0 ± 15.4 |
8 | Caffeic acid | 23.3 ± 0.8 | 119.5 ± 8.8 |
9 | Cryptochlorogenic acid | 5.5 ± 0.8 | 30.9 ± 2.4 |
10 | 3′-O-(E)-feruloyl-α-sorbopyranosyl-(2′→1)-α-glucopyranoside | 14.8 ± 0.8 | 23.0 ± 1.4 |
11 | 2-O-(E)-caffeoyl-d-glyceric acid | 465.3 ± 22.7 | 227.8 ± 11.2 |
12 | 4-O-(E)-caffeoyl-l-threonic acid | 48.6 ± 3.0 | 20.4 ± 1.4 |
13 | Neochlorogenic acid | 28.4 ± 1.7 | 37.8 ± 3.7 |
14 | 3-O-(E)-caffeoyl- glyceric acid | 18.4 ± 1.5 | 7.1 ± 1.1 |
15 | 3-O-p-coumaroylquinic acid | 111.6 ± 6.3 | 362.9 ± 24.1 |
16 | 4-O-p-coumaroylquinic acid | TR | 13.9 ± 0.8 |
17 | 5-O-p-coumaroylquinic acid | 152.6 ± 10.7 | 420.4 ± 29.8 |
18 | Globoidnan B | 6843.6 ± 853.4 | 3797.6 ± 845.4 |
19 | Rutin | 369.9 ± 9.4 | 57.1 ± 18.4 |
20 | Nicotiflorin isomer | 3.1 ± 0.3 | ND |
21 | Quercetin 3-O-β-glucoside | 253.6 ± 7.1 | 227.7 ± 10.5 |
22 | Yunnaneic acid E | 103.0 ± 3.8 | 183.1 ± 33.7 |
23 | Quercetin 3-O-(6″-O-malonyl)-β-glucoside | 1563.4 ± 109.2 | 858.8 ± 44.5 |
24 | Nicotiflorin | 184.8 ± 4.5 | 69.7 ± 4.8 |
25 | Astragalin | 146.6 ± 3.2 | 513.3 ± 28.2 |
26 | Shimobashiric acid C | 1188.0 ± 46.2 | 1797.8 ± 115.0 |
27 | Rosmarinic acid | 7002.1 ± 345.8 | 12201.5 ± 503.2 |
28 | Kaempferol 3-O-(6″-O-malonyl)-β-glucoside | 731.6 ± 45.5 | 1567.2 ± 86.3 |
29 | Monardic acid A | 806.8 ±168.5 | 971.7 ± 75.0 |
30 | Yunnaneic acid E-1 | NA | NA |
31 | Lithospermic acid A | 609.7 ± 110.7 | 576.3 ± 37.8 |
32 | Pulmonarioside A | 18.0 ± 1.5 | 91.5 ± 5.1 |
33 | Salvianolic acid H | 29.6 ± 9.3 | 261.9 ± 17.3 |
34 | Lithospermic acid B | NA | NA |
35 | Pulmonarioside B | 147.5 ± 12.8 | 199.6 ± 5.7 |
36 | Yunnaneic acid B | 216.8 ± 29.3 | 1834.6 ± 40.5 |
37 | Globoidnan A | 21.7 ± 3.5 | 27.1 ± 2.2 |
38 | Pulmitric acid A | TR | TR |
39 | Pulmitric acid B | TR | TR |
40 | Isosalvianolic acid A | TR | 0.7 ±0.1 |
41 | Isosalvianolic acid A-1 | TR | TR |
42 | Isosalvianolic acid A isomer | TR | 1.8 ± 0.3 |
43 | Rosmarinic acid methyl ester | 15.4 ± 0.9 | 15.8 ± 1.4 |
44 | Salvianolic acid H-9″-methylester | 5.6 ± 2.9 | 31.5 ± 4.1 |
45 | Lycopic acid C | NA | NA |
Meteorological Data for GPS Coordinates: 51°24′47.5″ N, 21°57′54.7″ E | ||
---|---|---|
April 2015 | September 2015 | |
Average temperature (°C) | 8.6 | 15.3 |
Average minimal (°C) | 4.0 | 11.8 |
Average maximal (°C) | 13.9 | 20.2 |
Rainfall (mm) | 28.5 | 126 |
Humidity (%) | 78 | 89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyżanowska-Kowalczyk, J.; Pecio, Ł.; Mołdoch, J.; Ludwiczuk, A.; Kowalczyk, M. Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles. Molecules 2018, 23, 2277. https://doi.org/10.3390/molecules23092277
Krzyżanowska-Kowalczyk J, Pecio Ł, Mołdoch J, Ludwiczuk A, Kowalczyk M. Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles. Molecules. 2018; 23(9):2277. https://doi.org/10.3390/molecules23092277
Chicago/Turabian StyleKrzyżanowska-Kowalczyk, Justyna, Łukasz Pecio, Jarosław Mołdoch, Agnieszka Ludwiczuk, and Mariusz Kowalczyk. 2018. "Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles" Molecules 23, no. 9: 2277. https://doi.org/10.3390/molecules23092277
APA StyleKrzyżanowska-Kowalczyk, J., Pecio, Ł., Mołdoch, J., Ludwiczuk, A., & Kowalczyk, M. (2018). Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles. Molecules, 23(9), 2277. https://doi.org/10.3390/molecules23092277