Therapeutic Potential of Brazilian Cerrado Campomanesia Species on Metabolic Dysfunctions
Abstract
:1. Introduction
1.1. Obesity-Induced Metabolic Syndrome and Perspectives in Medicinal Plants
1.2. Medicinal Plants: The Potential of Brazilian Cerrado
1.3. Campomanesia (Myrtaceae)
2. Common Brazilian Cerrado Campomanesia Species as a Potential Therapy for Metabolic Dysfunctions
2.1. Campomanesia xanthocarpa O. Berg
2.2. Campomanesia adamantium (Cambess.) O. Berg
2.3. Campomanesia pubescens O. Berg
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mopuri, R.; Islam, S. Medicinal plants and phytochemicals with anti-obesogenic potentials: A review. Biomed. Pharmacother. 2017, 89, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Levin, P.; Weissman, C. Obesity, metabolic syndrome, and the surgical patient. Med. Clin. N. Am. 2009, 93, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.; Pitsavos, C.; Skoumas, Y.; Lentzas, Y.; Papadimitriou, L.; Chrysohoou, C.; Stefanadis, C. Abdominal obesity, bloodglucose and apolipoprotein B levels are the best predictors of the incidence of hypercholesterolemia (2001–2006) among healthy adults: The ATTICA study. Lipids Health Dis. 2008, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Isomaa, B.; Almgren, P.; Tuomi, T.; Forsén, B.; Lahti, K.; Nissén, M.; Taskinen, M.-R.; Groop, L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001, 24, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Hauner, H. Secretory factors from human adipose tissue and their functional role. Proc. Nutr. Soc. 2005, 64, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashburn, D.; Reed, M. Endocrine system and obesity. Crit. Care Clin. 2010, 26, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, E.; LeRoith, D. Obesity and diabetes: The increased risk of cancer and cancer-related mortality. Physiol. Rev. 2015, 95, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.; Hotamisligil, G. Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef] [PubMed]
- Szymanska, R.; Pospisil, P.; Kruk, J. Plant-derived antioxidants in disease prevention. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Vincent, H.; Taylor, A. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes. 2006, 30, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2017, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Houstis, N.; Rosen, E.; Lander, E. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, A.; Widenmaier, S.; Schlein, C.; Johann, K.; Goncalves, R.; Eguchi, K.; Fischer, A.; Parlakgül, G.; Snyder, N.; Nguyen, T.; et al. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat. Med. 2018, 24, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Loganathan, K.; Rao, B. Haemolytic activity of Indian medicinal plants toward human erythrocytes: An in vitro study. Elixir Appl. Bot. 2011, 40, 5534–5537. [Google Scholar]
- Ríos, J.; Recio, M. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Sahib, N.; Saari, N.; Ismail, A.; Khatib, A.; Mahomoodally, F.; Hamid, A. Plants′ metabolites as potential antiobesity agents. Sci. World J. 2012, 2012, 436039. [Google Scholar] [CrossRef]
- Bodeker, G.; Ong, C.; Grundy, C.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; WHO Centre for Health Development: Kobe, Japan, 2005; Volume 2, ISBN 9241562862. [Google Scholar]
- Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Marzouni, H. Effective medicinal plant in cancer treatment, part 2: Review study. J. Evid.-Based Complement. Altern Med. 2017, 22, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Di Stasi, L.; Hiruma-Lima, C.; Guimarâes, E.; Santos, C. Medicinal plants popularly used in Brazilian Amazon. Fitoterapia 1994, 65, 529–540. [Google Scholar]
- Silva, C.; Fonseca, G. Brazilian savannah fruits: Characteristics, properties, and potential applications. Food Sci. Biotechnol. 2016, 25, 1225–1232. [Google Scholar] [CrossRef]
- de Lima, N.; Arakaki, D.; Tschinkel, P.; da Silva, A.; Guimarães, R.; Hiane, P.; Nascimento, V. Investigation of Campomanesia Components: A Fruit of Brazilian Cerrado. In Active Ingredients from Aromatic and Medicinal Plants; InTech: Houston, TX, USA, 2017. [Google Scholar] [Green Version]
- Almeida, M.; Sousa, P.; Arriaga, A.; Prado, G.; Magalhães, C.; Maia, G.; Lemos, T. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef]
- Bento, E.; Júnior, F.; Oliveira, D.; Fernandes, C.; Araújo, D.; Cesário, F.; Rodrigues, C.; Sales, V.; Figueiredo, F.; Lemos, I.; et al. Antiulcerogenic activity of the hydroalcoholic extract of leaves of Annona muricata Linnaeus in mice. Saudi J. Biol. Sci. 2018, 25, 609–621. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.; Ramiro, M.; Iriguchi, E.; Corrêa, W.; Lowe, J.; Cardoso, C.; Arena, A.; Kassuya, C.; Muzzi, R. Antidiabetic, cytotoxic and antioxidant activities of oil extracted from Acrocomia aculeata pulp. Nat. Prod. Res. 2018, 28, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lescano, C.; Iwamoto, R.; Sanjinez-Argandoña, E.; Kassuya, C. Diuretic and anti-Inflammatory activities of the microencapsulated Acrocomia aculeata (Arecaceae) oil on Wistar rats. J. Med. Food 2015, 18, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, A.; Barbalho, S.; Guiguer, E.; Oshiiwa, M.; Mendes, C.; Vieites, R.; Chies, A.; Oliveira, P.; de Souza, M.; Nicolau, C. Dipteryx alata Vogel may improve lipid profile and atherogenic indices in Wistar rats Dipteryx alata and atherogenic indices. J. Med. Food 2017, 20, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.; de Santana, F.; Torres-Leal, F.; de Melo, I.; Yoshime, L.; Matos-Neto, E.; Seelaender, M.; Araújo, C.; Cogliati, B.; Mancini-Filho, J. Pequi (Caryocar brasiliense Camb.) almond oil attenuates carbon tetrachloride-induced acute hepatic injury in rats: Antioxidant and anti-inflammatory effects. Food Chem. Toxicol. 2016, 97, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Markman, B.; Bacchi, E.; Kato, E. Antiulcerogenic effects of Campomanesia xanthocarpa. J. Ethnopharmacol. 2004, 94, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, C.; de Brum Vieira, P.; Macedo, A.; Tasca, T. Remarkable anti-trichomonas vaginalis activity of plants traditionally used by the Mbyá-Guarani Indigenous goup in Brazil. Biomed. Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.C.; Grabe-Guimarês, A.; de Paula, C.A.; Michel, M.C.P.; Guimarães, R.G.; Rezende, S.A.; Filho, J.D.S.; Saúde-Guimarâes, D.A. Anti-inflammatory and antinociceptive activits of Campomanesia adamantium. J. Ethnopharmacol. 2013, 145, 100–108. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.; Salmazzo, G.; Arrigo, J.; Oliveira, R.; Kassuya, C.; Cardoso, C. Anti-inflammatory evaluation and toxicological analysis of Campomanesia xanthocarpa Berg. Inflammation 2016, 39, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Steffens, R.; Jablonski, A.; Hertz, P.; Rios, A.; Vizzotto, M.; Flôres, S. Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. J. Agric. Food Chem. 2012, 60, 3061–3067. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, I.; Coelho, R.; Kataoka, V.; Honda, N.; Silva, J.; Vilegas, W.; Cardoso, C. Determination of phenolic compounds and evaluation of antioxidant capacity of Campomanesia adamantium leaves. Ecl Quim. 2008, 33, 53–60. [Google Scholar] [CrossRef]
- Coutinho, I.; Kataoka, V.; Honda, N.; Coelho, R.; Vieira, M.; Cardoso, C. The Influence of seasonal variation in levels of flavonoids and antioxidant activity of the leaves of Campomanesia adamantium. Braz. J. Pharmacogn. 2010, 20, 322–327. [Google Scholar] [CrossRef]
- Pascoal, A.; Ehrenfried, C.; Eberline, M.; Stefanello, M.; Salvador, M. Free radical scavenging activity, determination of phenolic compounds and HPLC-DAD/ESI-MS profile of Campomanesia adamantium leaves. Nat. Prod. Commun. 2011, 6, 969–972. [Google Scholar] [PubMed]
- Espindola, P.; da Rocha, P.; Carollo, C.; Schmitz, W.; Pereira, Z.; Vieira, M.; dos Santos, E.; Souza, K. Antioxidant and anti-hyperlipidemic effects of Campomanesia adamantium O. Berg root. Oxid. Med. Cell Longev. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, A.; Ehrenfried, C.; Lopez, B.; de Araújo, T.; Pascoal, V.; Gilioli, R.; Anhê, G.; Ruiz, A.; de Carvalho, J.; Stefanello, M.; et al. Antiproliferative activity and induction of apoptosis in PC-3 cells by the chalcone cardamonin from Campomanesia adamantium (Myrtaceae) in a bioactivity-guided study. Molecules 2014, 19, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.; Espindola, P.; Torquato, H.; Vital, W.; Justo, G.; Silva, D.; Carollo, C.; Souza, K.; Paredes-Gamero, E.; dos Santos, E. Leaf and root extracts from Campomanesia adamantium (Myrtaceae) promote apoptotic death of leukemic cells via activation of intracellular calcium and caspase-3. Front. Pharmacol. 2017, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.; O′Brien, M.; Gadek, P.; Quinn, C. Myrtaceae revisited: A reassessment of intrafamilial groups. Am. J. Bot. 2001, 88, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Landrum, L. Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Flora Neotropica 1986, 45, 1–178. [Google Scholar]
- Viecili, P.; Borges, D.; Kirsten, K.; Malheiros, J.; Viecili, E.; Melo, R.; Trevisan, G.; da Silva, M.; Bochi, G.; Moresco, R.; et al. Effects of Campomanesia xanthocarpa on inflammatory processes, oxidative stress, endothelial dysfunction and lipid biomarkers in hypercholesterolemic individuals. Atherosclerosis 2014, 234, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas do Brasil. Nova Odessa Editora Plant. 1992, 4, 352. [Google Scholar]
- Souza-Moreira, T.; Salvagnini, L.; Santos, E.; Silva, V.; Moreira, R.; Salgado, H.; Pietro, R. Antidiarrheal activity of Campomanesia xanthocarpa fruit. J. Med. Food 2011, 14, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Klafke, J.; Silva, M.; Rossato, M.; Trevisan, G.; Walker, C.; Leal, C.; Borges, D.; Schetinger, M.; Moresco, R.; Duarte, M.; et al. Antiplatelet, antithrombotic, and fibrinolytic activities of Campomanesia xanthocarpa. Evid. Based Complement. Alt. Med. 2012, 2012. [Google Scholar] [CrossRef]
- Otero, J.; Hirsch, G.; Klafke, J.; Porto, F.; de Almeida, A.; Nascimento, S.; Schmidt, A.; da Silva, B.; Pereira, R.; Jaskulski, M.; et al. Inhibitory effect of Campomanesia xanthocarpa in platelet aggregation: Comparison and synergism with acetylsalicilic acid. Thromb. Res. 2017, 154, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, L.; Merlugo, L.; Ehle, C.; Limberger, J.; Fernandes, M.; Santos, M.; Mendez, A.; Paula, F.; Moreira, C. Chemical composition and hypotensive effect of Campomanesia xanthocarpa. Evid. Based Complement. Alt. Med. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Auharek, S.; Vieira, M.; Cardoso, C.; Oliveira, R.; Cunha-Laura, A. Reproductive toxicity of Campomanesia xanthocarpa (Berg.) in female Wistar rats. J. Ethnopharmacol. 2013, 148, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Biavatti, M.; Farias, C.; Curtius, F.; Brasil, L.; Hort, S.; Schuster, L.; Leite, S.; Prado, S. Preliminary studies on Campomanesia xanthocarpa (Berg.) and Cuphea carthagenensis (Jacq.) J.F. Macbr. aqueous extract: Weight control and biochemical parameters. J. Ethnopharmacol. 2004, 93, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Vinagre, A.; Ronnau, A.; Pereira, S.; da Silveira, L.; Willand, E.; Suyenaga, E. Anti-diabetic effetc of Campomanesia xanthocarpa (Berg) leaf decoction. Braz. J. Pharm. Sci. 2010, 46, 170–177. [Google Scholar] [CrossRef]
- Sánchez-Salgado, J.; Ortiz-Andrade, R.; Aguirre-Crespo, F.; Vergara-Galicia, J.; León-Rivera, I.; Montes, S.; Villalobos-Molina, R.; Estrada-Soto, S. Hypoglycemic, vasorelaxant and hepatoprotective effects of Cochlospermum vitifolium (Willd.) Sprengel: A potential agent for the treatment of metabolic syndrome. J. Ethnopharmacol. 2007, 109, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Schmeda Hirschmann, G. Flavonoids from Calycorectes, Campomanesia, Eugenia and Hexachlamys species. Fitoterapia 1995, 66, 373–374. [Google Scholar]
- Tang, L.-Q.; Wei, W.; Chen, L.-M.; Sheng, L. Effects of berberine on diabetes induced by alloxan and a high-fat/high cholesterol diet in rats. J. Ethnopharmacol. 2006, 108, 109–115. [Google Scholar] [CrossRef] [PubMed]
- May, A.; Seizer, P.; Gawaz, M. Platelets: Inflammatory firebugs of vascular walls. Arterioscler. Thromb. Vasc. Biol. 2008, 2008, S5–S10. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Thomas, A. Plaque fissuring—The cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br. Heart J. 1985, 53, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.D.; Vanhoorelbeke, K.; Broos, K.; Salles, I.; Deckmyn, H. Antiplatelet drugs. Br. J. Haematol. 2008, 142, 515–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S. Known knowns and known unknowns: Risks associated with combination antithrombotic therapy. Thromb. Res. 2008, 123, S7–S11. [Google Scholar] [CrossRef] [PubMed]
- Klafke, J.; Pereira, R.; Hirsch, G.; Parisi, M.; Porto, F.; de Almeida, A.; Rubin, F.; Schmidt, A.; Beutler, H.; Nascimento, S.; et al. Study of oxidative and inflammatory parameters in ldlr-ko mice treated with hypercholestrolemic diet: Comparison between the use of campomanesia xanthocarpa and acetylsalicylic acid. Phytomedicine 2016, 23, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Maranhao, R.; Leite, C. Development of anti-atherosclerosis therapy based on the inflammatory and proliferative aspects of the disease. Curr. Pharm. Des. 2015, 21, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; Jalali, F.; Karimi, G.; Zarrabi, K. Image-based computational simulation of sub-endothelial LDL accumulation in a human right coronary artery. Comput. Biol. Med. 2015, 62, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.; Luscher, T. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 2014, 35, 1782–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastori, T.; Flores, F.; Boligon, A.; Athayde, M.; da Silva, C.; Canto-Dorow, T.; Tedesco, S. Genotoxic effects of Campomanesia xanthocarpa extracts on Allium cepa vegetal system. Pharm. Biol. 2013, 51, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, V.; Cardoso, C. Evaluation of the chromatographic profile and the antioxidant activity of the species Campomanesia sessiliflora (O. Berg) Mattos and Campomanesia xanthocarpa O. Berg. Rev. Bras. Plant. Med. 2013, 15, 121–129. [Google Scholar] [CrossRef]
- Bini, A.; Minunni, M.; Tombelli, S.; Centi, S.; Mascini, M. Analytical performances of aptamer-based sensing for thrombin detection. Anal. Chem. 2007, 79, 3016–3019. [Google Scholar] [CrossRef] [PubMed]
- Trapaidze, A.; Hérault, J.-P.; Herbert, J.-M.; Bancaud, A.; Gué, A.-M. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma. Biosens. Bioelectron. 2016, 78, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapaidze, A.; Bancaud, A.; Brut, M. Binding modes of thrombin binding aptamers investigated by simulations and experiments. Appl. Phys. Lett. 2015, 106, 043702. [Google Scholar] [CrossRef] [Green Version]
- Davie, E.W.; Fujikawa, K.; Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 1991, 30, 10363–10370. [Google Scholar] [CrossRef] [PubMed]
- Klafke, J.; da Silva, M.; Panigas, T.; Belli, K.; de Oliveira, M.; Barichello, M.; Rigo, F.; Rossato, M.; dos Santos, A.; Pizzolatti, M.; et al. Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients. J. Ethnopharmacol. 2010, 127, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Pallottini, V.; Martini, C.; Cavallini, G.; Bergamini, E.; Mustard, K.; Hardie, D.; Trentalance, A. Age-related HMG-CoA reductase deregulation dependson ROS-induced p38 activation. Mech. Ageing Dev. 2007, 128, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Pallottini, V.; D′Eramo, C.; Cavallini, G.; Bergamini, E.; Trentalance, A. Age-related changes of cholesterol and dolichol biosynthesis in rat. Mech. Ageing Dev. 2002, 123, 1183–1189. [Google Scholar] [CrossRef]
- Kleemann, R.; Kooistra, T. HMG-CoA reductase inhibitors: Effects on chronic subacute inflammation and onset of atherosclerosis induced by dietary cholesterol. Curr. Drug Targets Cardiovasc. Haematol. Disord. 2005, 5, 411–453. [Google Scholar] [CrossRef]
- Borém, L.; Neto, J.; Brandi, I.; Lelis, D.; Santos, S. The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: A brief review. Hypertension Res. 2018, 41, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Czechowska, G.; Celinski, K.; Korolczuk, A.; Wojcicka, G.; Dudka, J.; Bojarska, A.; Madro, A.; Brzozowski, T. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacteamide-induced liver fibrosis in rats. J. Physiol. Pharmacol. 2016, 67, 575–586. [Google Scholar] [PubMed]
- Vieira, R. Frutas Nativas da Região Centro Oeste do Brasil; mbrapa Recursos Genéticos e Biotecnologia: Brasília, Brazil, 2006; ISBN 978-85-87697-44-8. [Google Scholar]
- Pavan, F.; Leite, C.; Coelho, R.; Coutinho, I.; Honda, N.; Cardoso, C.; Vilegas, W.; Leite, S.; Sato, D. Evaluation of anti-Mycobacterium tuberculosis activity of Campomanesia adamantium (Myrtaceae). Quimica Nova 2009, 32, 1222–1226. [Google Scholar] [CrossRef]
- Cardoso, C.; Salmazzo, G.; Honda, N.; Prates, C.; Vieira, M.; Coelho, R. Antimicrobial activity of the extracts and fractions of hexanic fruits of campomanesia species (Myrtaceae). J. Med. Food 2010, 13, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- de Souza, J.; Piccinelli, A.; Aquino, D.; de Souza, V.; Schmitz, W.; Traesel, G.; Cardoso, C.; Kassuya, C.; Arena, A. Toxicological analysis and antihyperalgesic, antidepressant, and anti-inflammatory effects of Campomanesia adamantium fruit barks. Nutr. Neurosci. 2017, 20, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Lescano, C.; de Oliveira, I.; Zaminelli, T.; Baldivia, D.; da Silva, L.; Napolitano, M.; Silvério, C.; Lincopan, N.; Sanjinez-Argandoña, E. Campomanesia adamantium peel extract in antidiarrheal activity: The ability of inhibition of heat-stable enterotoxin by polyphenols. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Lima e Silva, M.; Bogo, D.; Alexandrino, C.; Perdomo, R.; Figueiredo, P.; do Prado, P.; Garcez, F.; Kadri, M.; Ximenes, T.; Guimarães, R.; et al. Antiproliferative activity of extracts of Campomanesia adamantium (Cambess.) O. Berg and isolated compound dimethylchalcone against B16-F10 murine melanoma. J. Med. Food 2018, 0, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, I.; Cardoso, C.; Ré-Poppi, N.; Melo, A.; Vieira, M.; Honda, N.; Coelho, R. Gas Chromatography-Mass Spectrometry (GCMS) and evaluation of antioxidant and antimicrobial activities of essential oil of Campomanesia adamantium (Cambess.) O. Berg (Guavira). Braz. J. Pharm. Sci. 2009, 45, 767–776. [Google Scholar] [CrossRef]
- Brinton, E. Management of hypertriglyceridemia for prevention of atherosclerotic cardiovascular disease. Endocrinol. Metab. Clin. N. Am. 2016, 45, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Aeschbach, R.; Loliger, J.; Aruoma, O. The characterization of antioxidants. Food Chem. Toxicol. 1995, 33, 601–617. [Google Scholar] [CrossRef]
- Singh, P.; Chauhan, S. Activity-guided isolation of antioxidants from the leaves of Terminalia arjuna. Nat. Prod. Res. 2013, 28, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Chao, P.-C.; Hsu, C.-C.; Yin, M.-C. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr. Metab. 2009, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Dias, T.; Hassimotto, N.; Naves, M. Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Sci. Technol. 2017, 37, 564–569. [Google Scholar] [CrossRef]
- Tepe, B.; Daferera, D.; Sokmen, A.; Polissiou, M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
- Mata, A.; Proença, C.; Ferreira, A.; Serralheiro, M.; Nogueira, J.; Araújo, M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese spice food. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Cardoso, C.; Silva, J.; Kataoka, V.; Brum, C.; Poppi, N. Avaliação da atividade antioxidante, toxicidade e composição química por CG-EM do extrato hexânico das folhas de Campomanesia pubescens. Revista de Ciências Farmacêuticas Básica e Aplicada 2009, 29, 297–301. [Google Scholar]
- Duarte, W.; Dias, D.; Pereira, G.; Garvásio, I.; Schwan, R. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 2009, 36, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Morais, S.; Nascimento, E.; Cunha, L.; Rocha, E.; Aquino, F.; Souza, M.; Cunha, W.; Martins, C. Essential oil composition and antioxidant and antimicrobial properties of Campomanesia pubescens O. Berg, native of Brazilian Cerrado. Lat. Am. J. Pharm. 2011, 30, 1843–1848. [Google Scholar]
- Cardoso, C.; Salvador, M.; Carvalho, J.; Coelho, R. Evaluation of antioxidant and antiproliferative activities in fruits of Campomanesia pubescens. Rev. Inst. Adolfo Lutz 2013, 72, 309–315. [Google Scholar]
- Guerrero, F.; Zimmerman, L.; Cardoso, E.; de Lima, C.; Perdomo, R.; Alva, R.; Carollo, C.; Guerrero, A. Investigation on the chronical toxicity of guavira leaves (Campomanesia pubescens) in male rats. Revista Fitos 2013, 5, 64–72. [Google Scholar]
Host | Effects | Extract/Doses | Reference |
---|---|---|---|
Rats | Reduced weight gain Decreased blood glucose levels | Leaf extract (infusion ad libitum) | [49] |
Decreased blood glucose levels Inhibited hepatic glycogen loss Preserved histopathological alterations in the pancreas without glomerular alterations | Leaf decoction (20g/L) | [50] | |
Mice | Demonstrated antiplatelet, antithrombotic without cytotoxic effects and gastric lesions | Leaf extract (30 and 100 mg/kg/day) and ASA (100 mg/kg/day) | [45] |
Attenuated proinflammatory markers, such as IL-6, IL-1, TNF-α, and IFN-γ Increased IL-10 Only C. xanthocarpa was able to decrease anti-oxLDL antibodies without ulcerogenic activity | Leaf extract (100 mg/kg/day) and ASA (100 mg/kg/day) | [58] | |
Rats | Decreased blood pressure in a dose-dependent manner (50 mg/kg) Reduced heart rate (50 to 200 mg/kg) | Leaf extract (25, 50, 75, 100, 125, 150, 175, and 200 mg/kg) | [47] |
Humans | Decreased LDL-c and total cholesterol levels without differences in triglyceride, VLDL-c, or HDL-c levels Reduced inflammation and oxidative stress Displayed protective effects on the endothelium. | Encapsulated leaf extract (500 mg, 750 mg or 1000 mg) | [42] |
Demonstrated antiplatelet effects | Leaf extract (1000 mg), ASA (100 mg), ASA (50 mg) + leaf extract (500 mg) | [46] |
Host | Effects | Extract/Doses | Reference |
---|---|---|---|
Antioxidant activity assays | Exhibited high antioxidant activity and high capacity to inhibit peroxidation | C. adamantium leaves extract (different regions of Brazilian Cerrado) | [34] |
Exhibited low antioxidant activity | C. adamantium leaves essential oils (different regions of Brazilian Cerrado) | [80] | |
High antioxidant activity | Fruits from C. adamantium | [85] | |
Rats and In vitro | Exhibited antihyperlipidemic and antioxidant effects High antioxidant activity (antioxidant activity assay) | Root extract (200 mg/kg) | [37] |
Host | Effects | Extract/Doses | Reference |
---|---|---|---|
Antioxidant activity assay | Exhibited high antioxidant activity | Leaf extract | [88] |
Root, stem, leaf and fruit extracts | [89] | ||
Antioxidant activity assay and In vitro | Exhibited high antioxidant activity together with antitumoral activity in the human tumor lineage in vitro assay | Fruit extracts | [91] |
Rats | Reduced the number of monocytes (anti-inflammatory potential) Decreased plasma levels of hepatic enzymes (ALT and AST) withour renal toxicity | Leaf extract (250 and 500 mg/kg) | [92] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardozo, C.M.L.; Inada, A.C.; Marcelino, G.; Figueiredo, P.S.; Arakaki, D.G.; Hiane, P.A.; Cardoso, C.A.L.; Guimarães, R.D.C.A.; Freitas, K.D.C. Therapeutic Potential of Brazilian Cerrado Campomanesia Species on Metabolic Dysfunctions. Molecules 2018, 23, 2336. https://doi.org/10.3390/molecules23092336
Cardozo CML, Inada AC, Marcelino G, Figueiredo PS, Arakaki DG, Hiane PA, Cardoso CAL, Guimarães RDCA, Freitas KDC. Therapeutic Potential of Brazilian Cerrado Campomanesia Species on Metabolic Dysfunctions. Molecules. 2018; 23(9):2336. https://doi.org/10.3390/molecules23092336
Chicago/Turabian StyleCardozo, Carla Maiara Lopes, Aline Carla Inada, Gabriela Marcelino, Priscila Silva Figueiredo, Daniela Granja Arakaki, Priscila Aiko Hiane, Claudia Andrea Lima Cardoso, Rita De Cássia Avellaneda Guimarães, and Karine De Cássia Freitas. 2018. "Therapeutic Potential of Brazilian Cerrado Campomanesia Species on Metabolic Dysfunctions" Molecules 23, no. 9: 2336. https://doi.org/10.3390/molecules23092336
APA StyleCardozo, C. M. L., Inada, A. C., Marcelino, G., Figueiredo, P. S., Arakaki, D. G., Hiane, P. A., Cardoso, C. A. L., Guimarães, R. D. C. A., & Freitas, K. D. C. (2018). Therapeutic Potential of Brazilian Cerrado Campomanesia Species on Metabolic Dysfunctions. Molecules, 23(9), 2336. https://doi.org/10.3390/molecules23092336