The Effects of Cold Saponification on the Unsaponified Fatty Acid Composition and Sensory Perception of Commercial Natural Herbal Soaps
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Feedstock Sources on the Unsaponified Fatty Acid Composition of Natural Herbal Soaps
2.2. Effects of Natural Additives on the Unsaponified Fatty Acid Composition of Natural Herbal Soaps
2.3. Phenolic, Antioxidant, and Oxidant Status in Natural Herbal Soaps
2.4. Relationship between Sensory Attributes and Unsaponified Fatty Acid Composition of Natural Herbal Soaps
3. Material and Methods
3.1. Soap Oils
3.2. Cold Saponification Soap Production
3.3. Addition of Natural Additives to Herbal Soaps
3.4. Chemical Analysis of the Natural Herbal Soaps
3.4.1. Sample Extraction
3.4.2. Total Phenolic Content (TPC) Analysis
3.4.3. Ferric Reduction Antioxidant Power (FRAP) Method
3.4.4. Total Oxidant Status Analysis
3.4.5. Soap Lipid Extraction
3.4.6. GC-MS/FID Analysis of FAMEs
3.5. Soap Sensory Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Friedman, M.; Wolf, R. Chemistry of soaps and detergents: Various types of commercial products and their ingredients. Clin. Dermatol. 1996, 14, 7–13. [Google Scholar] [CrossRef]
- Berneckė, S.; Maruška, A. Analysis of free fatty acids in soap samples by means of gas chromatography-mass spectrometry. Chemija 2013, 24, 307–311. [Google Scholar]
- Burke, M. Bailey’s Industrial Oil and Fat Products, 6th ed.; Fereidoon, S., Ed.; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar]
- Kuntom, A.; Kifli, H.; Lim, P.-K. Chemical and physical characteristics of soap made from distilled fatty acids of palm oil and palm kernel oil. J. Am. Oil Chem. Soc. 1996, 73, 105–108. [Google Scholar] [CrossRef]
- Vivian, O.P.; Nathan, O.; Osano, A.; Mesopirr, L.; Omwoyo, W.N. Assessment of the physicochemical properties of selected commercial soaps manufactured and sold in Kenya. Open J. Appl. Sci. 2014, 4, 433. [Google Scholar] [CrossRef]
- George, E.D. Fatty acid distribution of fats, oils and soaps by high-performance liquid chromatography without derivatization. J. Am. Oil Chem. Soc. 1994, 71, 789–791. [Google Scholar] [CrossRef]
- Ayorinde, F.O.; Garvin, K.; Saeed, K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 608–615. [Google Scholar] [CrossRef]
- Quintero-Flórez, A.L.; Sinausia Nieva, L.; Sánchez-Ortíz, A.; Beltrán, G.; Perona, J.S. The fatty acid composition of virgin olive oil from different cultivars is determinant for foam cell formation by macrophages. J. Agric. Food Chem. 2015, 63, 6731–6738. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.H.; Bernards, M.A.; Drake, E.E.; Guglielmo, C.G. Changes in the antioxidant activities of seven herb-and spice-based marinating sauces after cooking. J. Food Compos. Anal. 2010, 23, 244–252. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Estanqueiro, M.; Oliveira, M.B.; Sousa Lobo, J.M. Main benefits and applicability of plant extracts in skin care products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. Rsc. Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Tao, L. Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Adv. Food Technol. Nutr. Sci. 2015, 1, 135–142. [Google Scholar] [CrossRef]
- Tuorila, H.; Recchia, A. Sensory perception and other factors affecting consumer choice of olive oil. In Olive Oil Sensory Science; Monteleone, E., Langstaff, S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 55–80. [Google Scholar]
- Cano, A.; Acosta, M.; Arnao, M.B. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 2003, 28, 59–65. [Google Scholar] [CrossRef]
- Jimenez-Alvarez, D.; Giuffrida, F.; Vanrobaeys, F.; Golay, P.; Cotting, C.; Lardeau, A.; Keely, B.J. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J. Agric. Food Chem. 2008, 56, 3470–3477. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Abbey, L.; Pham, T.H.; Annan, N.; Leke-Aladekoba, A.; Thomas, R.H. Chemical composition of kale as influenced by dry vermicast, potassium humate and volcanic minerals. Food Res. Int. 2018, 107, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Aldai, N.; Murray, B.E.; Nájera, A.I.; Troy, D.J.; Osoro, K. Derivatization of fatty acids and its application for conjugated linoleic acid studies in ruminant meat lipids. J. Sci. Food Agric. 2005, 85, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- García-Segovia, P.; Barreto-Palacios, V.; Iborra-Bernad, C.; Andres-Bello, A.; Gonzalez-Carrascosa, R.; Breton, J.; Martínez-Monzó, J. Improvement of a culinary recipe by applying sensory analysis: Design of the New Tarte Tatin. Int. J. Gastron. Food Sci. 2012, 1, 54–60. [Google Scholar] [CrossRef]
- Sampaio, G.; Saldanha, T.; Soares, R.; Torres, E. Effect of natural antioxidant combinations on lipid oxidation in cooked chicken meat during refrigerated storage. Food Chem. 2012, 135, 1383–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Fatty Acids | Oil BB | Oil FG | Oil H |
---|---|---|---|
C8 | 0.99 ± 0.16 a | 1.32 ± 0.44 a | 2.49 ± 0.19 b |
C10 | 0.72 ± 0.11 a | 0.91 ± 0.31 a | 1.72 ± 0.15 b |
C12 | 4.92 ± 0.43 a | 6.25 ± 1.95 a | 11.67 ± 1.48 b |
C14 | 1.79 ± 0.13 a | 2.09 ± 0.65 a | 3.65 ± 0.43 b |
C16 | 16.61 ± 3.79 a | 23.94 ± 7.19 a | 47.05 ± 5.72 b |
C18 | 3.13 ± 1.26 a | 3.55 ± 1.72 a | 3.78 ± 0.56 a |
C18:1n-9 | 3.93 ± 0.56 a | 4.66 ± 1.63 a | 5.32 ± 0.88 a |
C18:2n-6 | 4.60 ± 0.31 a | 4.77 ± 1.85 ab | 6.71 ± 0.21 b |
C18:3n-3 | 0.76 ± 0.06 a | 0.75 ± 0.30 a | 0.73 ± 0.02 a |
SFA | 28.17 ± 5.84 a | 38.05 ± 12.21 a | 70.36 ± 7.48 b |
MUFA | 3.93 ± 0.56 a | 4.66 ± 1.63 a | 5.32 ± 0.88 a |
PUFA | 5.36 ± 0.37 a | 4.62 ± 1.42 a | 7.44 ± 0.23 b |
Soaps without Additives | Soaps + Natural Additives | ||||||
---|---|---|---|---|---|---|---|
Fatty Acids | BB | FG | H | FGA | HA | BBR | FGR |
C8 | 0.08 ± 0.01 ab | 0.08 ± 0.01 ab | 0.10 ± 0.00 a | 0.11 ± 0.01 b | 0.06 ± 0.01 a | 0.08 ± 0.01 ab | 0.07 ± 0.01 a |
C10 | 0.09 ± 0.01 ab | 0.10 ± 0.01 ab | 0.11 ± 0.00 a | 0.12 ± 0.01 b | 0.08 ± 0.01 a | 0.09 ± 0.01 ab | 0.08 ± 0.01 a |
C12 | 1.06 ± 0.13 ab | 1.12 ± 0.15 ab | 1.21 ± 0.02 a | 1.39 ± 0.11 b | 0.98 ± 0.06 a | 1.11 ± 0.15 ab | 1.00 ± 0.14 a |
C14 | 0.56 ± 0.06 ab | 0.58 ± 0.06 ab | 0.56 ± 0.02 a | 0.70 ± 0.04 b | 0.48 ± 0.05 a | 0.59 ± 0.07 ab | 0.53 ± 0.07 ab |
C16 | 5.57 ± 0.48 ab | 5.85 ± 0.50 b | 5.21 ± 0.60 a | 5.96 ± 0.81 b | 5.03 ± 0.82 ab | 5.67 ± 0.52 b | 5.36 ± 0.49 ab |
C18 | 1.55 ± 0.32 a | 1.73 ± 0.68 a | 2.91 ± 0.12 ab | 2.83 ± 0.24 b | 2.38 ± 0.37 ab | 2.19 ± 0.32 ab | 1.88 ± 0.52 ab |
C18:1n-9 | 4.57 ± 0.20 c | 4.79 ± 0.95 c | 3.43 ± 0.36 a | 4.32 ± 0.05 bc | 3.34 ± 0.37 ab | 4.33 ± 0.31 bc | 4.20 ± 0.26 bc |
C18:2n-6 | 4.07 ± 0.28 a | 4.02 ± 0.46 a | 4.78 ± 0.35 a | 4.62 ± 0.16 a | 4.19 ± 0.22 a | 4.34 ± 0.30 a | 3.94 ± 0.60 a |
C18:3n-3 | 0.71 ± 0.05 bc | 0.70 ± 0.07 bc | 0.62 ± 0.04 a | 0.77 ± 0.02 c | 0.54 ± 0.02 ab | 0.75 ± 0.03 c | 0.68 ± 0.10 bc |
SFA | 8.90 ± 0.96 ab | 9.46 ± 0.86 ab | 10.10 ± 0.73 a | 11.10 ± 1.09 b | 9.02 ± 0.89 ab | 9.73 ± 1.02 ab | 8.91 ± 1.21 ab |
MUFA | 4.57 ± 0.20 c | 4.79 ± 0.95 c | 3.43 ± 0.36 a | 4.32 ± 0.05 bc | 3.34 ± 0.37 ab | 4.33 ± 0.31 bc | 4.20 ± 0.26 bc |
PUFA | 4.78 ± 0.32 a | 4.72 ± 0.53 a | 5.40 ± 0.39 a | 5.39 ± 0.18 a | 4.73 ± 2.72 a | 5.09 ± 0.33 a | 4.62 ± 0.69 a |
Parameter | BB | FG | H |
---|---|---|---|
Color | 7.37 ± 0.35 c | 5.42 ± 0.40 b | 1.78 ± 0.21 a |
Shape | 5.34 ± 0.38 a | 4.52 ± 0.35 a | 5.28 ± 0.37 a |
Smell | 6.41 ± 0.33 b | 4.55 ± 0.39 a | 4.12 ± 0.33 a |
Lather | 4.63 ± 0.30 a | 3.81 ± 0.33 a | 4.67 ± 0.33 a |
Moisturizing | 4.07 ± 0.25 a | 3.70 ± 0.32 a | 4.35 ± 0.32 a |
Price | 8.2 ± 0.53 b | 7.57 ± 0.52 ab | 6.30 ± 0.43 b |
Overall | 5.29 ± 0.31 a | 4.68 ± 0.3 a | 4.74 ± 0.28 a |
Attributes | Color | Shape | Smell | Lather | MoisturiZing | Price | Overall |
---|---|---|---|---|---|---|---|
Color | 1 | −0.113 | 0.869 | −0.213 | −0.696 | 0.987 | 0.703 |
Shape | −0.113 | 1 | 0.393 | 0.995 | 0.792 | 0.048 | 0.628 |
Smell | 0.869 | 0.393 | 1 | 0.298 | −0.250 | 0.937 | 0.963 |
Lather | −0.213 | 0.995 | 0.298 | 1 | 0.850 | −0.054 | 0.546 |
Moisturizing | −0.696 | 0.792 | −0.250 | 0.850 | 1 | −0.572 | 0.022 |
Price | 0.987 | 0.048 | 0.937 | −0.054 | −0.572 | 1 | 0.807 |
Overall | 0.703 | 0.628 | 0.963 | 0.546 | 0.022 | 0.807 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto Vidal, N.; Adeseun Adigun, O.; Pham, T.H.; Mumtaz, A.; Manful, C.; Callahan, G.; Stewart, P.; Keough, D.; Thomas, R.H. The Effects of Cold Saponification on the Unsaponified Fatty Acid Composition and Sensory Perception of Commercial Natural Herbal Soaps. Molecules 2018, 23, 2356. https://doi.org/10.3390/molecules23092356
Prieto Vidal N, Adeseun Adigun O, Pham TH, Mumtaz A, Manful C, Callahan G, Stewart P, Keough D, Thomas RH. The Effects of Cold Saponification on the Unsaponified Fatty Acid Composition and Sensory Perception of Commercial Natural Herbal Soaps. Molecules. 2018; 23(9):2356. https://doi.org/10.3390/molecules23092356
Chicago/Turabian StylePrieto Vidal, Natalia, Oludoyin Adeseun Adigun, Thu Huong Pham, Abira Mumtaz, Charles Manful, Grace Callahan, Peter Stewart, Dwayne Keough, and Raymond Horatio Thomas. 2018. "The Effects of Cold Saponification on the Unsaponified Fatty Acid Composition and Sensory Perception of Commercial Natural Herbal Soaps" Molecules 23, no. 9: 2356. https://doi.org/10.3390/molecules23092356
APA StylePrieto Vidal, N., Adeseun Adigun, O., Pham, T. H., Mumtaz, A., Manful, C., Callahan, G., Stewart, P., Keough, D., & Thomas, R. H. (2018). The Effects of Cold Saponification on the Unsaponified Fatty Acid Composition and Sensory Perception of Commercial Natural Herbal Soaps. Molecules, 23(9), 2356. https://doi.org/10.3390/molecules23092356