Gastroprotective Activity of Parastrephia quadrangularis (Meyen), Cabrera from the Atacama Desert
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification of the Compounds in Parastrephia Quadrangularis Extract
2.2. Full Metabolome Identification by UHPLC-PDA-MS
2.2.1. Phenolic Acids
2.2.2. Coumarins
2.2.3. Flavonols
2.2.4. Flavanones
2.2.5. Prenylated Flavonoids
2.2.6. Kaurene Terpenoids
2.2.7. Clerodane Terpenoids
2.2.8. Tremetones
2.3. Gastroprotective Capacities of Isolated Compounds (1–7) from Parastrephia Quadrangularis
3. Materials and Methods
3.1. Chemicals and Plant Material
3.2. Plant Material
3.3. Extraction
3.4. Isolation
3.5. UHPLC-PDA-MS Instrument
3.6. LC Parameters and MS Parameters
3.7. Animals
3.8. Gastroprotective Effects
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hilgert, N.I. Plants used in home medicine in the Zenta River basin, Northwest Argentina. J. Ethnopharmacol. 2001, 76, 11–34. [Google Scholar] [CrossRef]
- Villagrán, C.; Castro, V. Ciencia Indígena de los Andes del Norte de Chile, 1st ed.; Editorial Universitaria: Santiago, Chile, 2003. [Google Scholar]
- Giberti, G.C. Herbal folk medicine in northwestern Argentina-compositae. J. Ethnopharmacol. 1983, 7, 321–341. [Google Scholar] [CrossRef]
- Villagrán, C.; Castro, V.; Sánchez, G.; Romo, M.; Latorre, C.; Hinojosa, L.F. La tradición surandina del desierto: Etnobotánica del área del Salar de Atacama (Provincia de El Loa, Región de Antofagasta, Chile). Estud. Atacameños 1998, 16, 7–105. [Google Scholar] [CrossRef]
- Navarro, G.; Arrázola, S.; Atahuachi, M.; De la Barra, N.; Mercado, M.; Ferreira, W.; Moraes, M. Libro Rojo De la Flora Amenazada de Bolivia; Ministerio de Medio Ambiente y Agua Viceministerio de Medio Ambiente, Biodiversidad, Cambios Climaticos y de Gestion y Desarrollo Forestal: Cochabamba, Bolivia, 2012. [Google Scholar]
- D'Almeida, R.E.; Alberto, M.R.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Antimicrobial phenylpropanoids from the Argentinean highland plant Parastrephia lucida (Meyen) Cabrera. J. Ethnopharmacol. 2012, 142, 407–414. [Google Scholar] [CrossRef] [PubMed]
- D’Almeida, R.E.; Isla, M.I.; Vildoza, E.D.L.; Quispe, C.; Schmeda-Hirschmann, G.; Alberto, M.R. Inhibition of arachidonic acid metabolism by the Andean crude drug Parastrephia lucida (Meyen) Cabrera. J. Ethnopharmacol. 2013, 150, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Palavecino Ruiz, M.D.; Ordonez, R.M.; Isla, M.I.; Sayago, J.E. Activity and mode of action of Parastrephia lepidophylla ethanolic extracts on phytopathogenic fungus strains of lemon fruit from Argentine Northwest. Postharvest. Biol. Technol. 2016, 114, 62–68. [Google Scholar] [CrossRef]
- Rodrigo, G.C.; Almanza, G.R.; Akesson, B.; Duan, R.-D. Antiproliferative activity of extracts of some Bolivian medicinal plants. J. Med. Plants Res. 2010, 4, 2204–2210. [Google Scholar]
- Rojo, L.E.; Benites, J.; Lopez, J.; Rojas, M.; Diaz, P.; Ordoñez, J.; Pastene, E. Antioxidant capacity and polyphenolic content of twelve traditionally used herbal medicinal infusions from the South American Andes. Bol. Latinoam. Caribe Plantas Med. Aromát. 2009, 8, 498–508. [Google Scholar]
- Benites, J.; Gutierrez, E.; Lopez, J.; Rojas, M.; Rojo, L.; Costa, M.D.C.; Pilar Vinardell, M.; Calderon, P.B. Evaluation of Analgesic Activities of Tremetone Derivatives Isolated from the Chilean Altiplano Medicine Parastrephia lepidophylla. Nat. Prod. Commun. 2012, 7, 611–614. [Google Scholar] [PubMed]
- Bohlmann, F.; Fritz, U.; King, R.M. Neue tremeton-derivate aus Parastrephia lepidophylla. Phytochemistry 1979, 18, 1403–1405. [Google Scholar] [CrossRef]
- Cheng Lian Ee, G.; Teh, S.S.; Kwong, H.C.; Ibrahim, M.; Tahira, M.; Mah, S.H. Rac-[3-Hydroxy-6,9-dimethyl-6-(4-methylpent-3-en-1-yl)-6a,7,8,9,10,10ahexahydro-6H-1,9-epoxybenzo[c]-chromen-4-yl](phenyl)methanone. Acta Crystallogr. Sect. E 2012, E68, o1091–o1092. [Google Scholar]
- Davis, T.Z.; Lee, S.T.; Collett, M.G.; Stegelmeier, B.L.; Green, B.T.; Buck, S.R.; Pfister, J.A. Toxicity of white snakeroot (Ageratina altissima) and chemical extracts of white snakeroot in goats. J. Agric. Food Chem. 2015, 63, 2092–2097. [Google Scholar] [CrossRef] [PubMed]
- Loyola, L.A.; Naranjo, J.; Morales, G. 5,7-Dihydroxy-3,8,3′,4′-tetramethoxyflavone from Parastrephia-quadrangularis. Phytochemistry 1985, 24, 1871–1872. [Google Scholar] [CrossRef]
- Di Ciaccio, L.S.; Spotorno, V.G.; Estevez, M.M.C.; Rios, D.J.L.; Fortunato, R.H.; Salvat, A.E. Antifungal activity of Parastrephia quadrangularis (Meyen) Cabrera extracts against Fusarium verticillioides. Lett. Appl. Microbiol. 2018, 66, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.G.; Barreira, L.; Bijttebier, S.; Pieters, L.; Marques, C.; Santos, T.F.; Rodrigues, M.J.; Varela, J.; Custodio, L. Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: From traditional remedies to prospective products. Sci. Rep. 2018, 8, 4689. [Google Scholar] [CrossRef] [PubMed]
- Varut, R.M.; Gird, C.E.; Rotaru, L.T.; Varut, M.C.; Pisoschi, C.G. Evaluation of polyphenol and flavonoid profiles and the antioxidant effect of carduus acanthoides hydroalcoholic extract compared with vaccinium myrtillus in an animal model of diabetes mellitus. Pharm.Chem. J. 2018, 51, 1088–1095. [Google Scholar] [CrossRef]
- Areche, C.; Rodriguez, J.A.; Razmilic, I.; Yanez, T.; Theoduloz, C.; Schmeda-Hirschmann, G. Gastroprotective and cytotoxic effect of semisynthetic ferruginol derivatives. J. Pharm. Pharmacol. 2007, 59, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Pongpiriyadacha, Y.; Morikawa, T.; Kashima, Y.; Nakano, K.; Yoshikawa, M. Protective effects of polygodial and related compounds on ethanol-induced gastric mucosal lesions in rats: Structural requirements and mode of action. Bioorg. Med. Chem. Lett. 2002, 12, 477–482. [Google Scholar] [CrossRef]
- Boeing, T.; da Silva, L.M.; Somensi, L.B.; Cury, B.J.; Michels Costa, A.P.; Petreanu, M.; Niero, R.; de Andrade, S.F. Antiulcer mechanisms of Vernonia condensata Baker: A medicinal plant used in the treatment of gastritis and gastric ulcer. J. Ethnopharmacol. 2016, 184, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Benites, J.; Areche, C.; Sepúlveda, B. Antioxidant capacities and analysis of phenolic compounds in three endemic Nolana species by HPLC-PDA-ESI-MS. Molecules 2015, 20, 11490–11507. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Areche, C.; Sepúlveda, B. Fast detection of phenolic compounds in extracts of easter pears (Pyrus communis) from the Atacama Desert by ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC-Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Schmeda-Hirschmann, G.; Avendaño, M.; Sepúlveda, B.; Winterhalter, P. Fast high resolution Orbitrap MS fingerprinting of the resin of Heliotropium taltalense Phil. from the Atacama Desert. Ind. Crops Prod. 2016, 85, 159–166. [Google Scholar] [CrossRef]
- Labbe, C.; Castillo, M.; Hernandez, M. Diterpenoids from Baccharis lejía. Phytochemistry 1991, 30, 1607–1611. [Google Scholar] [CrossRef]
- Echiburu-Chau, C.; Pastén, L.; Parra, C.; Bórquez, J.; Mocan, A.; Simirgiotis, M.J. High resolution UHPLC-MS characterization and isolation of main compounds from the antioxidant medicinal plant Parastrephia lucida (Meyen). Saudi Pharm. J. 2017, 25, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Kumari, G.N.K.; Rao, L.J.M.; Rao, N.S.P. Myricetin methyl ethers from Solanum pubescens. Phytochemistry 1984, 23, 2701–2702. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Ramirez, J.E.; Schmeda Hirschmann, G.; Kennelly, E.J. Bioactive coumarins and HPLC-PDA-ESI-ToF-MS metabolic profiling of edible queule fruits (Gomortega keule), an endangered endemic Chilean species. Food Res. Int. 2013, 54, 532–543. [Google Scholar] [CrossRef]
- Dutta, P.K.; Banerjee, D.; Dutta, N.L. Euphorbetin: A new bicoumarin from Euphorbia lathyris L. Tetrahedron Lett. 1972, 13, 601–604. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Favier, L.S.; Rossomando, P.C.; Giordano, O.S.; Tonn, C.E.; Padrón, J.I.; Vázquez, J.T. Diterpenes from Laennecia sophiifolia. Phytochemistry 2000, 55, 721–726. [Google Scholar] [CrossRef]
- Nogueira, R.T.; Shepherd, G.J.; Laverde, A., Jr.; Marsaioli, A.J.; Imamura, P.M. Clerodane-type diterpenes from the seed pods of Hymenaea courbaril var. stilbocarpa. Phytochemistry 2001, 58, 1153–1157. [Google Scholar] [CrossRef]
- Starks, C.M.; Williams, R.B.; Goering, M.G.; O’Neil-Johnson, M.; Norman, V.L.; Hu, J.-F.; Garo, E.; Hough, G.W.; Rice, S.M.; Eldridge, G.R. Antibacterial clerodane diterpenes from Goldenrod (Solidago virgaurea). Phytochemistry 2010, 71, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Tonn, C.E.; Giordano, O.S.; Bessalle, R.; Frolow, F.; Lavie, D. The structure of bartemidiolide, a clerodane-type diterpene from Baccharis artemisioides. Phytochemistry 1988, 27, 489–491. [Google Scholar] [CrossRef]
- Anthonsen, T.; Henderson, M.S.; Martin, A.; Murray, R.D.H.; McCrindle, R.; McCaster, D. Constituents of solidago species. Part IV. Solidagoic acids A and B, diterpenoids from solidago gigantea var. serotina. Can. J. Chem. 1973, 51, 1333–1345. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.; Bonesi, M.; Menichini, F.; Conforti, F.; Statti, G. Natural products as gastroprotective and antiulcer agents: Recent developments. Nat. Prod. Commun. 2008, 3, 2129–2144. [Google Scholar]
- Awaad, A.S.; El-Meligy, R.M.; Soliman, G.A. Natural products in treatment of ulcerative colitis and peptic ulcer. J. Saudi Chem. Soc. 2013, 17, 101–124. [Google Scholar] [CrossRef]
- Lewis, D.A.; Hanson, P.J. 4 Anti-ulcer drugs of plant origin. In Progress in Medicinal Chemistry; Ellis, G.P., West, G.B., Eds.; Elsevier Science: Amsterdam, Netherlands, 1991; pp. 201–231. [Google Scholar]
- Vera-Arzave, C.; Antonio, L.C.; Arrieta, J.; Cruz-Hernandez, G.; Velasquez-Mendez, A.M.; Reyes-Ramirez, A.; Sanchez-Mendoza, M.E. Gastroprotection of suaveolol, isolated from Hyptis suaveolens, against ethanol-induced gastric lesions in Wistar rats: role of prostaglandins, nitric oxide and sulfhydryls. Molecules 2012, 17, 8917–8927. [Google Scholar] [CrossRef] [PubMed]
- Parra, T.; Benites, J.; Ruiz, L.M.; Sepulveda, B.; Simirgiotis, M.; Areche, C. Gastroprotective activity of ent-beyerene derivatives in mice: Effects on gastric secretion, endogenous prostaglandins and non-protein sulfhydryls. Bioorg. Med. Chem. Lett. 2015, 25, 2813–2817. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Khundmiri, S.U.K.; Khundmiri, S.R.; Al-Sanea, M.M.; Mok, P.L. Fruit-derived polysaccharides and terpenoids: Recent update on the gastroprotective effects and mechanisms. Front. Pharmacol. 2018, 9, 569. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.-P.; Cheng, F.-Q.; Ji, L.; Yu, H.-Y. Chemical constituents of physalis pubescens. Zhongguo Zhong Yao Za Zhi 2015, 40, 4424–4427. [Google Scholar] [PubMed]
- Garneau, F.-X.; Collin, G.J.; Jean, F.-I.; Gagnon, H.; Lopez Arze, J.B. Essential oils from Bolivia. XII. Asteraceae: Ophryosporus piquerioides (DC) Benth. ex Baker. J. Essent. Oil Res. 2013, 25, 388–393. [Google Scholar] [CrossRef]
Sample Availability: Samples of the plant and pure compounds are available from the authors. |
Peak Number | UV Max (nm) | Tentative Identification | Elemental Composition [M – H]− | Retention Time (min) | Theoretical Mass (m/z) | Measured Mass (m/z) | MSn Ions |
---|---|---|---|---|---|---|---|
1 | 238–310 | Dicaffeoyl quinic acid | C25H23O12− | 10.65 | 515.11938 | 515.11840 | 353.08774, chlorogenic acid, 191.05554 (quinic acid) |
2 | 270–310 | Euphorbetin | C18H9O8− | 11.92 | 353.03046 | 353.02919 | 177.01871 |
3 | 310 | Caffeic acid * | C9H7O4− | 12.62 | 179.03498 | 179.03441 | 108.02070(C6H8O2−; –CH=CHCOO–) |
4 | 288 | Hydroxy-hesperetin | C16H13O7− | 13.24 | 317.06668 | 317.06656 | 125.02354 (C6H5O3−); 207.06560 (C11H11O4−) |
5 | 281 | Hydroxyeriodictyol | C15H11O7− | 11.92 | 303.05103 | 303.05090 | 125.02360 (C6H5O3−) |
6 | 265–365 | Kaempferol * | C15H9O6− | 13.67 | 285.04046 | 285.04028 | 135.04431 (C8H7O2−) |
7 | 254–365 | Isorhamnetin * | C16H11O7− | 14.23 | 315.05103 | 315.05090 | 300.05090 (C15H8O7−) |
8 | 255–375 | 6-Hydroxytrimethoxymyricetin | C18H15O9− | 15.55 | 375.07211 | 375.07202 | 315.01437 (C15H7O8−); 271.02448 (C14H7O5−) |
9 | 287 | Eriodictyol * | C15H11O6− | 13.55 | 287.05611 | 287.05597 | 243.02946 (C13H7O5−) |
10 | 255–373 | 8-Isoprenyl-7,4′-dimethoxymyricetin | C22H21O8− | 15.97 | 413.12419 | 413.12411 | 145.02867 (C9H5O2−); 249.07637 (C13H13O5−) |
11 | 255–375 | 3′,5′-Dimethoxymyricetin | C17H13O8− | 14.36 | 345.06159 | 345.06152 | 315.01422 (C15H7O8−) |
12 | 255–373 | 3′,4′-Dimethoxymyricetin * | C18H15O8− | 16.86 | 345.06159 | 345.06149 | 285.04007 (C15H9O6−); 125.02357 (C6H5O3−); |
13 | 255–373 | 8-Isoprenyl-7,3′,4′-trimethoxymyricetin | C23H23O8− | 17.64 | 427.13984 | 427.13977 | 145.02869 (C9H5O2−); 263.09210 (C14H15O5−) |
14 | 254–365 | 7,3′-Dimethoxyquercetin(7-O-methyl-isorhamnetin) | C17H13O7− | 18.21 | 329.06668 | 329.06662 | 299.01953 (C15H7O7−) |
15 | 287 | Hesperetin * | C16H13O6− | 18.42 | 301.07176 | 301.07159 | 135.04431 (C8H7O2−) |
16 | 255–373 | 7,3′,5′-Trimethoxymyricetin | C18H15O8− | 15.98 | 359.07724 | 359.07715 | 284.03229 (C15H8O6−) |
17 | 205 | 18-O-Malonyl-Bacchalineol | C23H31O5− | 19.86 | 387.21770 | 387.21771 | - |
18 | 203 | Adenolin C | C23H33O8− | 19.43 | 437.21809 | 437.21780 | 299.01953 (C15H7O7−) |
19 | 285 | Methoxyeriodictyol | C16H13O6− | 19.68 | 301.07176 | 301.07166 | 135.04430 (C8H7O2−) |
20 | 255–373 | 6-Hydroxy-3,7,3′,5′-tetramethoxymyricetin | C19H17O9− | 19.87 | 389.08781 | 389.08780 | 359.04031 (C17H11O9−, -2CH3) |
21 | 265–365 | 8-Isoprenyl-7,4′-dimethoxykaempferol | C22H21O6− | 20.01 | 381.13436 | 381.13425 | 119.04949 (C8H7O−) |
22 | 205 | 11-Acetoxy-11,12-dehydrated adenolin C | C25H33O9− | 20.25 | 477.21301 | 477.21249 | - |
23 | 217 | 11-Acetoxy-7-methoxyadenolin C | C26H37O9− | 20.27 | 493.24431 | 493.24384 | - |
24 | 254–354 | 3,7,3′-Trimethoxyquercetin(3,7-di-O-methyl-isorhamnetin) * | C18H15O7− | 20.49 | 343.08233 | 343.08203 | 313.03491 (C16H9O7−) |
25 | 217 | Bacchalineol 18-O-malonate methyl ester | C25H35O5− | 20.52 | 401.23340 | 401.23225 | - |
26 | 255–373 | 5,7-Dihydroxy-3,8,3′,4′-Tetramethoxyflavone | C19H17O8− | 20.84 | 373.09277 | 373.09271 | 343.04556 (C17H11O8-) |
27 | 254–355 | p-Coumaroyloxytremetone | C22H19O5− | 20.93 | 363.12380 | 363.12378 | 121.02878 (C7H5O2−) |
28 | 207 | Bacchalineol 18-O-malonate ethyl ester | C25H35O5− | 21.05 | 415.24899 | 415.24790 | |
29 | 218 | Bacchalineol | C20H29O2− | 21.26 | 301.21730 | 301.21840 | - |
30 | 265–365 | 3-O-Acetyl-8-isoprenyl-7,5,4′-trimethoxykaempferol | C25H25O7− | 21.75 | 437.16058 | 437.16046 | 119.04943 (C8H7O−); 163.03926 (C9H7O3−) |
31 | 210 | 1,2,19-Trihydroxy-18-acetyl-solidagoiol A | C22H31O6− | 21.54 | 391.21261 | 391.21252 | 287.20145 (C19H27O2−) |
32 | 207 | Adenolin C 11,12 dehydrated derivative | C23H31O7− | 21.76 | 419.20753 | 419.20746 | 289.21698 (C19H29O2−) |
33 | 207 | 1,18-Dihydroxysolidagoic acid | C20H27O5− | 22.01 | 347.18640 | 347.18637 | |
34 | 207 | Hawtriwaic acid | C20H27O4− | 22.45 | 331.19148 | 331.19141 | - |
35 | 265–365 | 3-O-Acetyl-8-isoprenyl-7,4′-dimethoxykaempferol | C24H23O7− | 22.58 | 423.14493 | 423.14487 | 119.04947 (C8H7O−); 163.03931 (C9H7O3−) |
36 | 205 | 19-Hydroxy-solidagoiol A acetate | C22H31O4− | 22.78 | 359.22278 | 359.22278 | 211.07591 (C14H11O2−) |
37 | - | p-Cinammoyloxytremetone | C22H19O4− | 22.86 | 347.12888 | 347.12892 | |
38 | 232–272 | 8-Isoprenyl-7,4′-dimethoxyapigenin | C22H21O5− | 23.66 | 365.13945 | 365.13947 | 119.04942 (C8H7O−); 201.09149 (C13H13O2−) |
39 | 205 | Barticulidiol diacetate | C24H33O5− | 24.15 | 401.23335 | 401.23328 | 333.20688 (C20H29O4−) |
40 | 205 | Bacchalineol acetate | C22H31O3− | 25.74 | 343.22787 | 343.22784 | - |
41 | 254–355 | 8-Iisoprenyl-7-methoxyquercetin | C21H19O7− | 26.35 | 383,11363 | 383.11353 | 119.04935 (C8H7O−); 163.03922 (C9H7O3−) |
42 | 270–310 | Umbelliferone | C9H6O3− | 26.43 | 162.03169 | 162.03124 | |
43 | 270–310 | Scopoletin | 26.78 | 192.04226 | 192.04220 |
Compound | n | Lesion Index (mm) | % Lesion Reduction |
---|---|---|---|
1 | 7 | 35.7 ± 4.6 ** | 12 * |
2 | 7 | 39.0 ± 3.5 ** | 4 |
3 | 7 | 36.6 ± 1.5 ** | 11 * |
4 | 7 | 46.6 ± 7.2 ** | - |
5 | 7 | 33.1 ± 2.0 ** | 19 * |
6 | 7 | 23.9 ± 3.1 ** | 41 * |
7 | 7 | 13.9 ± 2.2 | 76 * |
Lansoprazole | 7 | 11.3 ± 1.5 | 72 * |
Control | 7 | 40.6 ± 1.2 ** | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardiles, A.; Barrientos, R.; Simirgiotis, M.J.; Bórquez, J.; Sepúlveda, B.; Areche, C. Gastroprotective Activity of Parastrephia quadrangularis (Meyen), Cabrera from the Atacama Desert. Molecules 2018, 23, 2361. https://doi.org/10.3390/molecules23092361
Ardiles A, Barrientos R, Simirgiotis MJ, Bórquez J, Sepúlveda B, Areche C. Gastroprotective Activity of Parastrephia quadrangularis (Meyen), Cabrera from the Atacama Desert. Molecules. 2018; 23(9):2361. https://doi.org/10.3390/molecules23092361
Chicago/Turabian StyleArdiles, Alejandro, Ruth Barrientos, Mario J. Simirgiotis, Jorge Bórquez, Beatriz Sepúlveda, and Carlos Areche. 2018. "Gastroprotective Activity of Parastrephia quadrangularis (Meyen), Cabrera from the Atacama Desert" Molecules 23, no. 9: 2361. https://doi.org/10.3390/molecules23092361
APA StyleArdiles, A., Barrientos, R., Simirgiotis, M. J., Bórquez, J., Sepúlveda, B., & Areche, C. (2018). Gastroprotective Activity of Parastrephia quadrangularis (Meyen), Cabrera from the Atacama Desert. Molecules, 23(9), 2361. https://doi.org/10.3390/molecules23092361