Characteristics of the Water- and Alkali-Soluble Hemicelluloses Fractionated by Sequential Acidification and Graded-Ethanol from Sweet Maize Stems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Hemicelluloses
2.3. Structural Characterization
3. Results and Discussion
3.1. Yield and Chemical Composition
3.2. Molecular Weight
3.3. FT-IR Spectra Analysis
3.4. 1H and 13C NMR Spectra Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiménez-González, C.; Poechlauer, P.; Broxterman, Q.B.; Yang, B.S.; Am Ende, D.; Baird, J.; Bertsch, C.; Hannah, R.E.; Dell’Orco, P.; Noorman, H.; et al. Key green engineering research areas for sustainable manufacturing: A perspective from pharmaceutical and fine chemicals manufacturers. Org. Process Res. Dev. 2017, 15, 900–911. [Google Scholar] [CrossRef]
- Ashwani, K. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol. Front. Biosci. 2018, 10, 350–371. [Google Scholar] [CrossRef]
- Li, X.; Guo, T.; Xia, Q.; Liu, X.; Wang, Y. One-pot catalytic transformation of lignocellulosic biomass into alkylcyclohexanes and polyols. ACS Sustain. Chem. Eng. 2018, 6, 4390–4399. [Google Scholar] [CrossRef]
- Lindblad, M.S.; Ranucci, E.; Albertsson, A.C. Biodegradable polymers from renewable sources. New hemicellulose-based hydrogels. Macromol. Rapid Commun. 2001, 22, 962–967. [Google Scholar] [CrossRef]
- Gröndahl, M.; Eriksson, L.; Gatenholm, P. Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 2004, 5, 1528–1535. [Google Scholar] [CrossRef]
- Farhat, W.; Venditti, R.; Quick, A.; Taha, M.; Mignard, N.; Becquart, F.; Ayoub, A. Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crops Prod. 2017, 107, 370–377. [Google Scholar] [CrossRef]
- Huang, H.J.; Ramaswamy, S.; Tschirner, U.W.; Ramarao, B.V. A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 2015, 62, 1–21. [Google Scholar] [CrossRef]
- Bai, L.K.; Hu, H.R.; Xu, J.F. Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydr. Polym. 2012, 88, 1258–1263. [Google Scholar] [CrossRef]
- Peng, F.; Peng, P.; Xu, F.; Sun, R.C. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 2012, 30, 879–903. [Google Scholar] [CrossRef]
- Peng, X.P.; Bian, J.; Li, M.F.; Xiao, X.; Xia, X.L.; Yin, W.L.; Sun, R.C. Graded Ethanol Fractionation and Structural Characterization of Alkali-Extractable Hemicelluloses from Olea europaea L. BioResources 2013, 8, 1110–1123. [Google Scholar] [CrossRef]
- Sorokina, K.N.; Samoylova, Y.V.; Piligaev, A.V.; Sivakumar, U.; Parmon, V.N. New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 3: Products synthesized via the biotechnological conversion of poly- and monosaccharides of biomass. Catal. Ind. 2017, 9, 270–276. [Google Scholar] [CrossRef]
- Cara, C.; Ruiz, E.; Ballesteros, I.; Negro, M.J.; Castro, E. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem. 2006, 41, 423–429. [Google Scholar] [CrossRef]
- Schlesinger, R.; Götzinger, G.; Sixta, H.; Friedl, A.; Harasek, M. Evaluation of alkali resistant nanofiltration membranes for the separation of hemicellulose from concentrated alkaline process liquors. Desalination 2006, 192, 303–314. [Google Scholar] [CrossRef]
- Subba Rao, M.; Muralikrishna, G. Hemicelluloses of ragi (Finger Millet, Eleusine coracana, Indaf-15): Isolation and purification of an alkali-extractable arabinoxylan from native and malted hemicellulose B. J. Agric. Food. Chem. 2006, 54, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Cyran, M.R.; Saulnier, L. Association and structural diversity of hemicelluloses in the cell walls of rye outer layers: Comparison between two ryes with opposite breadmaking quality. J. Agric. Food. Chem. 2007, 55, 2329–2341. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.N.; Cao, X.F.; Xu, F.; Sun, R.C.; Jones, G.L.; Baird, M. Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens. Carbohydr. Polym. 2014, 101, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.; Munoz-Dorado, J.; de la Rubia, T.; Martinez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, M.; Beldman, G.; Gruppen, H.; Voragen, A. Optimisation of the selective extraction of (glucurono) arabinoxylans from wheat bran: Use of barium and calcium hydroxide solution at elevated temperatures. J. Cereal Sci. 1996, 23, 235–245. [Google Scholar] [CrossRef]
- Izdorczyk, M.; Macri, L.; MacGregor, A. Structural and physicochemical properties of barley non-starch polysaccharides—II. Alkali-extractable β-glucans and arabinoxylans. Carbohydr. Polym. 1998, 35, 259–269. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.; Geng, Z.; Liu, C.; Ren, J.; Sun, R.; Fowler, P.; Baird, M. Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree). Carbohydr. Polym. 2007, 67, 56–65. [Google Scholar] [CrossRef]
- Kačuráková, M.; Belton, P.S.; Wilson, R.H.; Hirsch, J.; Ebringerová, A. Hydration properties of xylan-type structures: An FTIR study of xylooligosaccharides. J. Sci. Food Agric. 1998, 77, 38–44. [Google Scholar] [CrossRef]
- Saeed, F.; Pasha, I.; Anjum, F.M.; Sultan, M.T. Arabinoxylans and arabinogalactans: A comprehensive treatise. Crit. Rev. Food Sci. Nutr. 2011, 51, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Moine, C.; Krausz, P.; Chaleix, V.; Sainte-Catherine, O.; Kraemer, M.; Gloaguen, V. Structural characterization and cytotoxic properties of a 4-O-methylglucuronoxylan from Castanea sativa. J. Nat. Prod. 2007, 70, 60–66. [Google Scholar] [CrossRef]
- Ebringerova, A.; Hromadkova, Z.; Alfoldi, J.; Berth, G. Structure and solution properties of corn cob heteroxylans. Carbohydr. Polym. 1992, 19, 99–105. [Google Scholar] [CrossRef]
- Kalam Azad, M.A.; Wang, F.; Kim, H.R. Identification of a novel sugar compound from korean pine seeds. Food Sci. Biotechnol. 2015, 24, 2011–2015. [Google Scholar] [CrossRef]
- Li, X.; Xiong, F.; Liu, Y.; Liu, F.; Hao, Z.; Chen, H. Total fractionation and characterization of the water-soluble polysaccharides isolated from enteromorpha intestinalis. Int. J. Biol. Macromol. 2018, 111, 319–325. [Google Scholar] [CrossRef]
- Hoffmann, R.; Kamerling, J.; Vliegenthart, J. Structural feature of water-soluble arabinoxylans from the endosperm of wheat. Carbohydr. Res. 1992, 226, 303–311. [Google Scholar] [CrossRef]
- Chaikumpollert, O.; Methacanon, P.; Suchiva, K. Structural elucidation of hemicelluloses from Vetiver grass. Carbohydr. Polym. 2004, 57, 191–196. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Sugars (%) | HH2O | Ha | H10 | H20 | H35 | H50 | H65 | H80 |
---|---|---|---|---|---|---|---|---|
Rhamnose | 1.72 | ND | ND | ND | ND | 0.25 | ND | 0.11 |
Arabinose | 12.65 | 4.21 | 5.41 | 5.57 | 6.11 | 7.65 | 9.11 | 16.20 |
Galactose | 16.81 | ND | 0.42 | 0.86 | 1.21 | 0.87 | 1.56 | 4.18 |
Glucose | 27.83 | 0.39 | 0.94 | 1.04 | 2.13 | 1.67 | 3.55 | 3.13 |
Mannose | 13.94 | ND | ND | ND | ND | ND | ND | 0.25 |
Xylose | 27.32 | 90.10 | 88.62 | 85.73 | 83.22 | 82.14 | 80.23 | 69.73 |
Uronic acids | ND a | 5.30 | 4.70 | 6.80 | 7.33 | 7.67 | 5.55 | 6.49 |
Xyl/Ara b | 2.17 | 21.40 | 16.43 | 15.39 | 13.62 | 10.74 | 8.81 | 4.21 |
HH2O | Ha | H10 | H20 | H35 | H50 | H65 | H80 | |
---|---|---|---|---|---|---|---|---|
Mw | 40,430 | 43,490 | 61,170 | 72,940 | 76,040 | 99,520 | 110,400 | 73,690 |
Mn | 12,630 | 18,910 | 26,360 | 24,310 | 34,420 | 36,860 | 55,200 | 35,090 |
Mw/Mn | 3.2 | 2.3 | 2.7 | 3.0 | 2.5 | 2.7 | 2.0 | 2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Nie, S.; Li, X.; Huang, X.; Li, Q. Characteristics of the Water- and Alkali-Soluble Hemicelluloses Fractionated by Sequential Acidification and Graded-Ethanol from Sweet Maize Stems. Molecules 2019, 24, 212. https://doi.org/10.3390/molecules24010212
Peng X, Nie S, Li X, Huang X, Li Q. Characteristics of the Water- and Alkali-Soluble Hemicelluloses Fractionated by Sequential Acidification and Graded-Ethanol from Sweet Maize Stems. Molecules. 2019; 24(1):212. https://doi.org/10.3390/molecules24010212
Chicago/Turabian StylePeng, Xiaopeng, Shuangxi Nie, Xiaoping Li, Xiong Huang, and Quanzi Li. 2019. "Characteristics of the Water- and Alkali-Soluble Hemicelluloses Fractionated by Sequential Acidification and Graded-Ethanol from Sweet Maize Stems" Molecules 24, no. 1: 212. https://doi.org/10.3390/molecules24010212
APA StylePeng, X., Nie, S., Li, X., Huang, X., & Li, Q. (2019). Characteristics of the Water- and Alkali-Soluble Hemicelluloses Fractionated by Sequential Acidification and Graded-Ethanol from Sweet Maize Stems. Molecules, 24(1), 212. https://doi.org/10.3390/molecules24010212