Investigation of Size-Dependent Sublimation Kinetics of 2,4,6-Trinitrotoluene (TNT) Micro-Islands Using In Situ Atomic Force Microscopy
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Steinfeld, J.I.; Wormhoudt, J. Explosives Detection: A Challenge for Physical Chemistry. Annu. Rev. Phys. Chem. 1998, 49, 203–232. [Google Scholar] [CrossRef]
- Moore, D.S. Recent Advances in Trace Explosives Detection Instrumentation. Sens. Imag. 2007, 8, 9–38. [Google Scholar] [CrossRef]
- Caygill, J.S.; Davis, F.; Higson, S.P.J. Current Trends in Explosive Detection Techniques. Talanta 2012, 88, 14–29. [Google Scholar] [CrossRef]
- Gee, R.H.; Wu, C.; Maiti, A. Coarse-Grained Model for a Molecular Crystal. Appl. Phys. Lett. 2006, 89, 2004–2007. [Google Scholar] [CrossRef]
- Hikal, W.M.; Weeks, B.L. Sublimation Kinetics and Diffusion Coefficients of TNT, PETN, and RDX in Air by Thermogravimetry. Talanta 2014, 125, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Burnham, A.K.; Qiu, S.R.; Pitchimani, R.; Weeks, B.L. Comparison of Kinetic and Thermodynamic Parameters of Single Crystal Pentaerythritol Tetranitrate using Atomic Force Microscopy and Thermogravimetric Analysis: Implications on Coarsening Mechanisms. J. Appl. Phys. 2009, 105, 1–7. [Google Scholar] [CrossRef]
- Mu, R.; Ueda, A.; Liu, Y.C.; Wu, M.; Henderson, D.O.; Lareau, R.T.; Chamberlain, R.T. Effects of Interfacial Interaction Potential on the Sublimation Rates of TNT Films on a Silica Surface Examined by QCM and AFM Techniques. Surf. Sci. 2003, 530, 293–296. [Google Scholar] [CrossRef]
- Gershanik, A.P.; Zeiri, Y. Sublimation Rate of TNT Microcrystals in Air. J. Phys. Chem. A 2010, 114, 12403–12410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershanik, A.P.; Zeiri, Y. Sublimation Rate of Energetic Materials in Air: RDX and PETN. Propellants Explos. Pyrotech. 2012, 37, 207–214. [Google Scholar] [CrossRef]
- Hikal, W.M.; Weeks, B.L. Determination of Sublimation Rate of 2,4,6-Trinitrotoluene (TNT) Nano Thin Films Using UV-Absorbance Spectroscopy. J. Therm. Anal. Calorim. 2012, 110, 955–960. [Google Scholar] [CrossRef]
- Hikal, W.M.; Paden, J.T.; Weeks, B.L. Thermo-Optical Determination of Vapor Pressures of TNT and RDX Nanofilms. Talanta 2011, 87, 290–294. [Google Scholar] [CrossRef]
- Hikal, W.M.; Paden, J.T.; Weeks, B.L. Simple Method for Determining the Vapor Pressure of Materials Using UV-Absorbance Spectroscopy. J. Phys. Chem. B 2011, 115, 13287–13291. [Google Scholar] [CrossRef] [PubMed]
- Pitchimani, R.; Burnham, A.K.; Weeks, B.L. Quantitative Thermodynamic Analysis of Sublimation Rates Using an Atomic Force Microscope. J. Phys. Chem. B 2007, 111, 9182–9185. [Google Scholar] [CrossRef]
- Östmark, H.; Wallin, S.; Ang, H.G. Vapor Pressure of Explosives: a Critical Review. Propellants Explos. Pyrotech. 2012, 37, 12–23. [Google Scholar] [CrossRef]
- Lenchitz, C.; Velicky, R.W. Vapor Pressure and Heat of Sublimation of Three Nitrotoluenes. J. Chem. Eng. Data 1970, 15, 401–403. [Google Scholar] [CrossRef]
- Leggett, D.C. Vapor Pressure of 2,4,6-Trinitrotoluene by a Gas Chromatographic Headspace Technique. J. Chromatogr. A 1977, 133, 83–90. [Google Scholar] [CrossRef]
- Cundall, R.B.; Palmer, T.F.; Wood, C.E.C. Vapour Pressure Measurements on Some Organic High Explosives. J. Chem. Soc. Faraday Trans. 1978, 74, 1339–1345. [Google Scholar] [CrossRef]
- Pella, P.A. Measurement of the Vapor Pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN. J. Chem. Thermodyn. 1977, 9, 301–305. [Google Scholar] [CrossRef]
- Oxley, J.C.; Smith, J.L.; Shinde, K.; Moran, J. Determination of the Vapor Density of Triacetone Triperoxide (TATP) Using a Gas Chromatography Headspace Technique. Propellants Explos. Pyrotech. 2005, 30, 127–130. [Google Scholar] [CrossRef]
- McLean, J.G.; Krishnamachari, B.; Peale, D.R.; Chason, E.; Sethna, J.P.; Cooper, B.H. Decay of Isolated Surface Features Driven by the Gibbs-Thomson Effect in an Analytic Model and a Simulation. Phys. Rev. B 1997, 55, 1811–1823. [Google Scholar] [CrossRef]
- Kodambaka, S.; Petrova, V.; Vailionis, A.; Petrov, I.; Greene, J.E. In Situ High-Temperature Scanning Tunneling Microscopy Studies of Two-Dimensional TiN Island Coarsening Kinetics on TiN(001). Surf. Sci. 2003, 526, 85–96. [Google Scholar] [CrossRef]
- Parmeter, J.E.; Eiceman, G.A.; Preston, D.A.; Tiano, G.S. Sandia Report SAND-96-2016C. In Proceedings of the Conference-960767-21; Sandia National Laboratories: Albuquerque, NM, USA, 9607. [Google Scholar]
- Eiceman, G.A.; Peterson, D.; Tiano, G.; Rodrigues, J. Quantitative Calibration of Vapor Levels of TNT, RDX, and PETN Using a Diffusion Generator with Gravimetry and Ion Mobility Spectrometry. Talanta 1997, 45, 57–74. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gomez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Heat of Vaporization (kJ mol−1) | Vapor Pressure at 15 °C (Pa) | Vapor Pressure at 20.6 °C (Pa) | Vapor Pressure at 25 °C (Pa) | |
---|---|---|---|---|
Lenchitz et al. [15] | 103.4 | 2.89 × 10−4 | 6.57 × 10−4 | 1.23 × 10−3 |
Pella et al. [18] | 99.2 | 2.99 × 10−4 | 6.57 × 10−4 | 1.19 × 10−3 |
Leggett et al. [16] | 141.1 | 6.25 × 10−5 | 1.92 × 10−4 | 4.51 × 10−4 |
Oxley et al. [19] | 137 | 6.37 × 10−5 | 1.89 × 10−4 | 4.32 × 10−4 |
Sample Type | Experimental Method | Sublimation Rate at 15 °C (kg s−1 m−2) | Sublimation Rate at 20.6 °C (kg s−1 m−2) | Sublimation Rate at 25 °C (kg s−1 m−2) | |
---|---|---|---|---|---|
Measured | Non-continuous micro islands | AFM | 1.27 × 10−8 (1500–1600 nm) 1.26 × 10−8 (1000–1100 nm) 2.21 × 10−8 (600–700 nm) | 2.67 × 10−8 (1500–1600 nm) 3.45 × 10−8 (1000–1100 nm) 4.20 × 10−8 (600–700 nm) | 2.12 × 10−7 (1500–1600 nm) 7.52 × 10−8 (1000–1100 nm) 7.12 × 10−8 (600–700 nm) |
Calculated by Diffusion theory | - | - | 1.23 × 10−6 (1500–1600 nm) 1.92 × 10−6 (1000–1100 nm) 2.99 × 10−6 (600–700 nm) | 2.79 × 10−6 (1500–1600 nm) 4.18 × 10−6 (1000–1100 nm) 6.29 × 10−6 (600–700 nm) | 4.96 × 10−6 (1500–1600 nm) 7.32 × 10−6 (1000–1100 nm) 1.19 × 10−5 (600–700 nm) |
Walid et al. [10] | Continuous nanofilm (500–600 nm) | UV spectroscopy | 1.87 × 10−10 | 4.11 × 10−10 | 7.48 × 10−10 |
Walid et al. [5] | powder | TGA | 1.48 × 10−11 | 3.18 × 10−11 | 5.68 × 10−11 |
Sample Type | Experimental Method | Sublimation Rate at 30 °C (kg s−1 m−2) | Sublimation Rate at 40 °C (kg s−1 m−2) | |
---|---|---|---|---|
Pitchimani at al. [13] | Non-continuous micro islands | AFM | 5.31 × 10−9 | 4.39 × 10−8 |
Burnham at al. [6] | Nano-islands on single crystal | AFM | 3.00 × 10−10 | 1.83 × 10−9 |
Walid et al. [12] | Continuous nano-film (~100 nm) | UV spectroscopy | 4.15 × 10−13 | 2.28 × 10−12 |
Burnham at al. [6] | Single crystal | TGA | 9.29 × 10−13 | 5.21 × 10−12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.J.; Weeks, B.L. Investigation of Size-Dependent Sublimation Kinetics of 2,4,6-Trinitrotoluene (TNT) Micro-Islands Using In Situ Atomic Force Microscopy. Molecules 2019, 24, 1895. https://doi.org/10.3390/molecules24101895
Lee YJ, Weeks BL. Investigation of Size-Dependent Sublimation Kinetics of 2,4,6-Trinitrotoluene (TNT) Micro-Islands Using In Situ Atomic Force Microscopy. Molecules. 2019; 24(10):1895. https://doi.org/10.3390/molecules24101895
Chicago/Turabian StyleLee, Yong Joon, and Brandon L. Weeks. 2019. "Investigation of Size-Dependent Sublimation Kinetics of 2,4,6-Trinitrotoluene (TNT) Micro-Islands Using In Situ Atomic Force Microscopy" Molecules 24, no. 10: 1895. https://doi.org/10.3390/molecules24101895
APA StyleLee, Y. J., & Weeks, B. L. (2019). Investigation of Size-Dependent Sublimation Kinetics of 2,4,6-Trinitrotoluene (TNT) Micro-Islands Using In Situ Atomic Force Microscopy. Molecules, 24(10), 1895. https://doi.org/10.3390/molecules24101895