Synthesis of Hydrazone Derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as Potent Growth Inhibitors of Antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
2.2.1. Antimicrobial Studies
2.2.2. In vitro Toxicity Studies
2.2.3. Calculated Physicochemical Properties
2.2.4. In vivo Toxicity Studies
3. Experimental Section
3.1. General Procedures
3.1.1. Synthesis of Hydrazone Derivatives
3.1.2. Synthesis of Hydrazones
3.2. MIC Studies
3.3. Cytotoxicity Studies
3.4. In Vivo Toxicity Assessment
3.5. Experimental Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FDA. Combating Antibiotic Resistance. Available online: https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm092810.htm (accessed on 19 December 2018).
- WHO. Antimicrobial resistance. Available online: https://www.who.int/antimicrobial-resistance/en/ (accessed on 6 February 2019).
- CDC Acinetobacter in Healthcare Settings. Acinetobacter in Healthcare Settings. Available online: https://www.cdc.gov/hai/organisms/acinetobacter.html (accessed on 22 September 2016).
- WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 28 February 2017).
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef]
- CDC Staphylococcus aureus in Healthcare Settings. Available online: https://www.cdc.gov/hai/organisms/staph.html (accessed on 28 October 2017).
- CDC Methicillin-resistant Staphylococcus aureus (MRSA). Available online: https://www.cdc.gov/mrsa/tracking/index.html (accessed on 28 October 2017).
- Alam, M.A.; Reddy, Y.S.; Ali, M.A. New and under explored epigenetic modulators in search of new paradigms. Med. Chem. 2015, 11, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018, 23, 250. [Google Scholar] [CrossRef]
- Gurrapu, S.; Jonnalagadda, S.K.; Alam, M.A.; Ronayne, C.T.; Nelson, G.L.; Solano, L.N.; Lueth, E.A.; Drewes, L.R.; Mereddy, V.R. Coumarin carboxylic acids as monocarboxylate transporter 1 inhibitors: In vitro and In vivo studies as potential anticancer agents. Bioorg. Med. Chem. Lett. 2016, 26, 3282–3286. [Google Scholar] [CrossRef] [PubMed]
- Widelski, J.; Luca, S.V.; Skiba, A.; Chinou, I.; Marcourt, L.; Wolfender, J.L.; Skalicka-Wozniak, K. Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of Peucedanum luxurians Tamamsch. Molecules 2018, 23, 1222. [Google Scholar] [CrossRef] [PubMed]
- Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem. 2018, 146, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Walasek, M.; Grzegorczyk, A.; Malm, A.; Skalicka-Wozniak, K. Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chem. 2015, 186, 133–138. [Google Scholar]
- Valadbeigi, E.; Ghodsi, S. Synthesis and Characterization of Some New Thiazolidinedione Derivatives Containing a Coumarin Moiety for their Antibacterial and Antifungal Activities. Med. Chem. 2017, 7, 178–185. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Nasr, S.M.; El-Refai, H.A.; Abdel-Aziz, M.S. A novel approach of potent antioxidant and antimicrobial agents containing coumarin moiety accompanied with cytotoxicity studies on the newly synthesized derivatives. J. Appl. Pharm. Sci. 2017, 7, 186–196. [Google Scholar]
- Holiyachi, M.; Samundeeswari, S.; Chougala, B.M.; Naik, N.S.; Madar, J.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Dodamani, S.; Jalalpure, S.; et al. Design and synthesis of coumarin–imidazole hybrid and phenyl-imidazoloacrylates as potent antimicrobial and antiinflammatory agents. Monatsh Chem. 2018, 149, 595–609. [Google Scholar] [CrossRef]
- Chusri, S.; Villanueva, I.; Voravuthikunchai, S.P.; Davies, J. Enhancing antibiotic activity: A strategy to control Acinetobacter infections. J. Antimicrob. Chemother. 2009, 64, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem. 2017, 25, 5891–5903. [Google Scholar] [CrossRef]
- Khan, K.A.; Faidallah, H.M. 1-Substituted carbamoyl and thiocarbamoyl-4,5-dihydro-1H-pyrazoles as possible cytotoxic and antimicrobial agents. J. Enzym. Inhib. Med. Chem. 2016, 31, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A.; Rahisuddin. Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem. 2016, 69, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Pyta, K.; Janas, A.; Szukowska, M.; Pecyna, P.; Jaworska, M.; Gajecka, M.; Bartl, F.; Przybylski, P. Synthesis, docking and antibacterial studies of more potent amine and hydrazone rifamycin congeners than rifampicin. Eur. J. Med. Chem. 2019, 167, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Jeong, M.C.; Jeon, D.; Lee, Y.; Lee, W.C.; Kim, Y. Structure-activity relationship-based screening of antibiotics against Gram-negative Acinetobacter baumannii. Bioorg. Med. Chem. 2017, 25, 372–380. [Google Scholar] [CrossRef]
- Okolo, C.; Ali, M.A.; Newman, M.; Chambers, S.A.; Whitt, J.; Alsharif, Z.A.; Day, V.W.; Alam, M.A. Hexafluoroisopropanol-Mediated Domino Reaction for the Synthesis of Thiazolo-androstenones: Potent Anticancer Agents. ACS Omega 2018, 3, 17991–18001. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Okolo, C.; Alsharif, Z.A.; Whitt, J.; Chambers, S.A.; Varma, R.S.; Alam, M.A. Benign Synthesis of Thiazolo-androstenone Derivatives as Potent Anticancer Agents. Org. Lett. 2018, 20, 5927–5932. [Google Scholar] [CrossRef]
- Alam, M.A.; Alsharif, Z.; Alkhattabi, H.; Jones, D.; Delancey, E.; Gottsponer, A.; Yang, T. Hexafluoroisopropyl alcohol mediated synthesis of 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones. Sci. Rep. 2016, 6, 36316. [Google Scholar] [CrossRef]
- Alsharif, Z.; Ali, M.A.; Alkhattabi, H.; Jones, D.; Delancey, E.; Ravikumar, P.C.; Alam, M.A. Hexafluoroisopropanol mediated benign synthesis of 2H-pyrido[1,2-a]pyrimidin-2-ones by using a domino protocol. New J. Chem. 2017, 41, 14862–14870. [Google Scholar] [CrossRef]
- Brider, J.; Rowe, T.; Gibler, D.J.; Gottsponer, A.; Delancey, E.; Branscum, M.D.; Ontko, A.; Gilmore, D.; Alam, M.A. Synthesis and antimicrobial studies of azomethine and N-arylamine derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-methicillin-resistant Staphylococcus aureus agents. Med. Chem. Res. 2016, 25, 2691–2697. [Google Scholar] [CrossRef]
- Allison, D.; Delancey, E.; Ramey, H.; Williams, C.; Alsharif, Z.A.; Al-khattabi, H.; Ontko, A.; Gilmore, D.; Alam, M.A. Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumannii agents. Bioorg. Med. Chem. Lett. 2017, 27, 387–392. [Google Scholar] [CrossRef]
- Zakeyah, A.A.; Whitt, J.; Duke, C.; Gilmore, D.F.; Meeker, D.G.; Smeltzer, M.S.; Alam, M.A. Synthesis and antimicrobial studies of hydrazone derivatives of 4-[3-(2,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid and 4-[3-(3,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid. Bioorg. Med. Chem. Lett. 2018, 28, 2914–2919. [Google Scholar] [CrossRef]
- Aizawa, S.-I. Bacillus subtilis—The Representative of Gram-Positive Bacteria. In The Flagellar World; Aizawa, S.-I., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 22–23. [Google Scholar]
- Saber, H.; Jasni, A.S.; Jamaluddin, T.Z.M.T.; Ibrahim, R. A Review of Staphylococcal Cassette Chromosome mec (SCCmec) Types in Coagulase-Negative Staphylococci (CoNS) Species. Malays. J. Med Sci. MJMS 2017, 24, 7–18. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Modeling 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res. 1997, 14, 568–571. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K. Toxicity of polymyxins: A systematic review of the evidence from old and recent studies. Crit. Care (Lond. Engl.) 2006, 10, R27. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods (San DiegoCalif.) 2007, 42, 321–324. [Google Scholar] [CrossRef]
Sample Availability: Samples of all the compounds are available from the authors. |
SN | Structure | Sa | Bs | Ec | Ea | Ab | Pa | Kp |
---|---|---|---|---|---|---|---|---|
5 | | NA | NA | NA | NA | 25 | NA | NA |
6 | | NA | >25 | NA | NA | NA | NA | NA |
7 | | 6.25 | 6.25 | NA | NA | NA | NA | NA |
8 | | 6.25 | 3.125 | NA | NA | NA | NA | NA |
9 | | >25 | 12.5 | NA | NA | NA | NA | NA |
10 | | NA | NA | NA | NA | NA | NA | NA |
11 | | >25 | >25 | NA | NA | 25 | NA | NA |
12 | | 25 | 25 | NA | NA | 6.25 | NA | NA |
13 | | >25 | 25 | NA | NA | 25 | NA | NA |
14 | | >25 | >25 | NA | NA | 25 | NA | NA |
15 | | 25 | 12.5 | NA | NA | 3.125 | NA | NA |
16 | | NA | NA | NA | NA | 12.5 | NA | NA |
17 | | 25 | 12.5 | NA | NA | 6.25 | NA | NA |
18 | | 12.5 | NA | NA | NA | 12.5 | NA | NA |
19 | | NA | NA | NA | NA | NA | NA | NA |
20 | | NA | NA | NA | NA | NA | NA | NA |
21 | | 3.125 | 3.125 | NA | NA | NA | NA | NA |
22 | | NA | NA | NA | NA | >25 | NA | NA |
23 | | 25 | 25 | NA | NA | 25 | NA | NA |
24 | | 6.25 | 3.125 | NA | NA | NA | NA | NA |
25 | | NA | NA | NA | NA | 25 | NA | NA |
26 | | NA | NA | NA | NA | NA | NA | NA |
27 | | NA | NA | NA | NA | NA | NA | NA |
28 | | NA | NA | NA | NA | NA | NA | NA |
29 | | NA | NA | NA | NA | >25 | NA | NA |
30 | | NA | NA | NA | NA | NA | NA | NA |
31 | | NA | NA | NA | NA | NA | NA | NA |
Vancomycin | 0.78 | |||||||
Colistin | 0.78 |
SN | Sa91 | Sa92 | Sa12 | Sa00 | Se | Ab05 | Ab47 |
---|---|---|---|---|---|---|---|
7 | NA | 3.125 | NA | 3.125 | NA | NA | >25 |
8 | 6.25 | 3.125 | 6.25 | 6.25 | 6.25 | NA | NA |
11 | NA | >25 | NA | >25 | NA | >25 | 12.5 |
12 | 25 | 25 | >25 | 25 | 25 | 25 | 6.25 |
13 | >25 | 25 | >25 | >25 | NA | 12.5 | 12.5 |
14 | NA | 25 | NA | >25 | >25 | >25 | >25 |
15 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 3.125 | 3.125 |
16 | NA | 25 | >25 | 25 | 25 | 12.5 | 12.5 |
17 | 12.5 | 12.5 | NA | 25 | 25 | 6.25 | 1.56 |
18 | NA | >25 | NA | NA | NA | NA | >25 |
21 | NA | 3.125 | NA | 3.125 | NA | NA | NA |
22 | NA | 6.25 | NA | 3.125 | NA | NA | NA |
23 | 25 | 25 | 12.5 | 12.5 | 25 | 25 | >25 |
24 | NA | 6.25 | 6.25 | 6.25 | 6.25 | NA | NA |
Vancomycin | 0.78 | ||||||
Colistin | 0.78 |
Property | 15 | 17 |
---|---|---|
ilogP | 3.07 | 3.26 |
TPSA (A2) | 109.72 | 103.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitt, J.; Duke, C.; Sumlin, A.; Chambers, S.A.; Alnufaie, R.; Gilmore, D.; Fite, T.; Basnakian, A.G.; Alam, M.A. Synthesis of Hydrazone Derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as Potent Growth Inhibitors of Antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules 2019, 24, 2051. https://doi.org/10.3390/molecules24112051
Whitt J, Duke C, Sumlin A, Chambers SA, Alnufaie R, Gilmore D, Fite T, Basnakian AG, Alam MA. Synthesis of Hydrazone Derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as Potent Growth Inhibitors of Antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules. 2019; 24(11):2051. https://doi.org/10.3390/molecules24112051
Chicago/Turabian StyleWhitt, Jedidiah, Cameron Duke, Anthony Sumlin, Steven A. Chambers, Rawan Alnufaie, David Gilmore, Todd Fite, Alexei G. Basnakian, and Mohammad A. Alam. 2019. "Synthesis of Hydrazone Derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as Potent Growth Inhibitors of Antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii" Molecules 24, no. 11: 2051. https://doi.org/10.3390/molecules24112051
APA StyleWhitt, J., Duke, C., Sumlin, A., Chambers, S. A., Alnufaie, R., Gilmore, D., Fite, T., Basnakian, A. G., & Alam, M. A. (2019). Synthesis of Hydrazone Derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as Potent Growth Inhibitors of Antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules, 24(11), 2051. https://doi.org/10.3390/molecules24112051