Novel pH Selective, Highly Lytic Peptides Based on a Chimeric Influenza Hemagglutinin Peptide/Cell Penetrating Peptide Motif
Abstract
:1. Introduction
2. Results and Discussion
2.1. Generation of Lead Chimeric Peptides
2.2. SAR and Optimization of Lytic Activity for Lead Peptide 6
3. Materials and Methods
3.1. Peptides
3.2. RBC Lysis Assay and Analysis
3.3. Circular Dichroism Spectra
Band width | 1 nm |
Response | 2 sec |
Sensitivity | High |
Measurement range | 300–200 nm |
Data pitch | 1 nm |
Scanning speed | 50 nm/min |
Accumulation | 1 or 3 scans as noted |
Cell Length | 0.1 cm |
Temperature | Ambient |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Stanton, M.G.; Colletti, S.L. Medicinal Chemistry of siRNA Delivery. J. Med. Chem. 2010, 53, 7887–7901. [Google Scholar] [CrossRef]
- EErazo-Oliveras, A.; Muthukrishnan, N.; Baker, R.; Wang, T.Y.; Pellois, J.P. Improving the endosomal escape of cell-penetrating peptides and their cargos. Pharmaceuticals 2012, 5, 1177–1209. [Google Scholar] [CrossRef]
- Endoh, T.; Ohtsuki, T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Del. Rev. 2009, 61, 704–709. [Google Scholar] [CrossRef]
- Weise, K.; Reed, J. Fusion peptides and transmembrane domains of fusion proteins are characterized by different but specific structural properties. Chembiochem 2008, 9, 934–943. [Google Scholar] [CrossRef]
- Lundberg, P.; El-Andaloussi, S.; Sutlu, T.; Johansson, H.; Langel, U. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. 2007, 21, 2664–2671. [Google Scholar] [CrossRef]
- Avci, F.G.; Akbulut, B.S.; Ozkirimli, E. Membrane active peptides and their biophysical characterization. Biomolecules 2018, 8, 77. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, H.; Jiang, Y.; Tian, Y.; Wang, D.; Lao, Y.; Xu, N.; Li, Z. Development of a lytic peptide derived from BH3-only proteins. Cell Death Discov. 2016, 2, 16008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epand, R.M. Fusion peptides and the mechanism of viral fusion. Biochim. Biophys. Acta 2003, 1614, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Bio. 2010, 5, 905–917. [Google Scholar] [CrossRef]
- Dufourc, E.J.; Buchoux, S.; Toupé, J.; Sani, M.A.; Jean-François, F.; Khemtémourian, L.; Grélard, A.; Loudet-Courrèges, C.; Laguerre, M.; Elezgaray, J.; et al. Membrane interacting peptides: from killers to helpers. Curr. Prot. Pept. Sci. 2012, 13, 620–631. [Google Scholar] [CrossRef]
- Tamm, L.K.; Han, X. Viral Fusion Peptides: A tool set to disrupt and connect biological membranes. Biosci. Rep. 2000, 20, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, G.; Brambilla, L.; Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 2017, 38, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Sugita, T.; Yoshikawa, T.; Mukai, Y.; Yamanda, N.; Imai, S.; Nagano, K.; Yoshida, Y.; Shibata, H.; Yoshiaok, Y.; Nakagawa, S.; et al. Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Biochem. Biophys. Res. Comm. 2007, 363, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jophnson, G.; Pellois, J.P. Modeling of the Endosomolytic Activity of HA2-TAT Peptides with Red Blood Cells and Ghosts. Biochemistry 2012, 49, 7854–7866. [Google Scholar] [CrossRef] [PubMed]
- Angeles-Boza, A.M.; Erazo-Oliveras, A.; Lee, Y.J.; Pellois, J.P. Generation of Endosomolytic Reagents by Branching of Cell-Penetrating Peptides: Tools for the Delivery of Bioactive Compounds to Live Cells in Cis or Trans. Bioconj. Chem. 2010, 21, 2164–2167. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Johnson, G.; Peltier, G.C.; Pellois, J.P. A HA2-Fusion tag limits the endosomal release of its protein cargo despite causing endosomal lysis. Biochim. Biophys. Acta 2011, 1810, 752–758. [Google Scholar] [CrossRef] [Green Version]
- Liou, J.; Liu, B.R.; Martin, A.L.; Huang, Y.; Chiang, H.-J.; Lee, H.-J. Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence. Peptides 2012, 37, 273–284. [Google Scholar] [CrossRef]
- Ye, S.-F.; Tian, M.; Wang, T.-X.; Ren, L.; Wang, D.; Shen, L.-H.; Shang, T. Synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles. Nanomed. Nanotech Bio. Med. 2012, 8, 833–841. [Google Scholar] [CrossRef]
- Oliverira, S.; van Rooy, I.; Kranenburg, O.; Storm, G.; Schiffelers, R.M. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm. 2007, 331, 211–214. [Google Scholar] [CrossRef]
- Thomas J. Tucker, Merck Research Laboratories, West Point, PA, USA. There are different Tat sequences that have been used in the literature for delivery; we chose the YG-Tat (YGRKKRRQRR) sequence for this particular study as unpublished internal data showed that this sequence exhibited the most consistent CPP behavior in multiple cell lines, and also in general showed very good physical properties and behavior, 2016.
- Miletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Disc. Today 2012, 17, 850–860. [Google Scholar] [CrossRef]
- Mechtler, K.; Wagner, E. Gene transfer mediated by influenza virus peptides: the role of peptide sequences. New J. Chem. 1997, 21, 105–111. [Google Scholar]
- Sung, M.S.; Mun, J.Y.; Kwon, O.; Oh, D.B. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein. Biochem. Biophys. Res. Comm. 2013, 437, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Zheng, W.; Li, L.; Liu, H.; Wang, T.; Wang, P.; Ma, X. A novel system enhancing the endosomal escapes of peptides promotes Bak BH3 peptide inducing apoptosis in lung cancer A549 cells. Targ. Oncol. 2014, 9, 163–170. [Google Scholar] [CrossRef]
- Garcia-Sosa, A.T.; Tulp, I.; Langel, K.; Langel, U. Peptide-ligand binding modeling of siRNA with cell penetrating peptides. Biomed. Res. Int. 2014, 2014, 257040. [Google Scholar] [CrossRef] [PubMed]
- Friemann, K.; Arukuusk, P.; Kurrikoff, K.; Ferreira Vasconcelos, L.D.; Veiman, K.-L.; Uusna, J.; Margus, H.; Garcia-Sosa, A.T.; Pooga, M.; Langel, U. Optimization of in vivo delivery with NickFect peptide vectors. J. Cont. Rel. 2016, 241, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Durell, R.D.; Martin, I.; Ruysschaert, J.-M.; Shai, Y.; Blumenthal, R. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion. Mol. Memb. Biol. 1997, 14, 97–112. [Google Scholar] [CrossRef]
- Cross, K.J.; Wharton, S.A.; Skehel, J.J.; Wiley, D.C.; Steinhauser, D.A. Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics. EMBO J. 2001, 20, 4432–4442. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Bushweller, J.H.; Cafiso, D.S.; Tamm, L.K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Bio. 2001, 8, 715–720. [Google Scholar] [CrossRef]
- Lorieau, J.L.; Louis, J.M.; Bax, A. The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface. Proc. Natl. Acad. Sci. 2010, 107, 11341–11346. [Google Scholar] [CrossRef] [Green Version]
- Lorieau, J.L.; Louis, J.M.; Bax, A. Helical Hairpin Structure of Influenza Hemagglutinin Fusion Peptide Stabilized by Charge−Dipole Interactions between the N-Terminal Amino Group and the Second Helix. J. Am. Chem. Soc. 2011, 133, 2824–2827. [Google Scholar] [CrossRef] [PubMed]
- Midoux, P.; Kichler, A.; Boutin, V.; Maurizot, J.-C.; Monsigny, M. Membrane Permeabilization and Efficient Gene Transfer by a Peptide Containing Several Histidines. Bioconj. Chem. 1998, 9, 260–267. [Google Scholar] [CrossRef]
- Schafmeister, C.E.; Po, J.; Verdine, G.L. An All-Hydrocarbon Cross-Linking System for Enhancing the Helicity and Metabolic Stability of Peptides. J. Am. Chem. Soc. 2000, 122, 5891–5892. [Google Scholar] [CrossRef]
- Kutchukian, P.S.; Yang, J.S.; Verdine, G.L.; Shakhnovich, E.I. An all-atom model for stabilization of α-helical structure in peptides by hydrocarbon staples. J. Am. Chem. Soc. 2009, 131, 4622–4627. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-W.; Grossmann, T.N.; Verdine, G.L. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat. Protoc. 2011, 6, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Teixido, M.; Giralt, E. Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E). ChemBioChem 2011, 12, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Sitaram, N. Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr. Med. Chem. 2006, 13, 679–696. [Google Scholar] [CrossRef]
- Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic antimicrobial peptides from eukaryotic organisms and their mechanisms of action. Curr. Chem. Bio. 2011, 5, 142–153. [Google Scholar] [CrossRef]
- Henry, S.M.; El-Sayed, M.E.; Pirie, C.M.; Hoffman, A.S.; Stayton, P.S. pH-responsive poly (styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 2006, 7, 2407–2414. [Google Scholar] [CrossRef]
Sample Availability: Not Available. |
Number | Sequence | RBC Lysis IC50, pH 5.5 (μM) | RBC Lysis IC50, pH 7.4 (μM) | Comments |
---|---|---|---|---|
std | CGIGAVLKVLTTGLPALISWIKRKRQQ | 0.8 ± 0.2 (n =25) | 2.6 ± 0.6 (n = 25) | Melittin |
1 | CYGRKKRRQRR | >20 | >20 | Tat |
2 | CRQIKIWFQNRRMKWKK | >20 | >20 | Penetratin |
3 | CGLFEAIAGFIENGWEGMIDGWYG | >20 | >20 | HA2 |
4 | CGLFEAIEGFIENGWEGMIDGWYG | 16 | >20 | INF7 |
5 | CGLFEAIAGFIENGWEGMIDGWYGYGRKKRRQRR | 2.3 ± 0.5 (n = 10) | 5.7 ± 1.1 (n = 10) | HA2-Tat |
6 | CGLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 1.4 ± 0.4 (n = 10) | 4.6 ± 1.2 (n = 10) | INF7-Tat |
7 | CGLFHAIAHFIHGGWHGLIHGWYGYGRKKRRQRR | 5.9 | 0.3 | H5WYG-Tat |
8 | CGLFKAIAKFIKGGWKGLIKGWYGYGRKKRRQRR | 1.9 | 0.9 | K5WYG-Tat |
9 | CGLFEAIAEFIEGGWEGLIEGWYGYGRKKRRQRR | >20 | 2.2 | E5WYG-Tat |
10 | CGLFEAIAGFIENGWEGMIDGWYGRQIKIWFQNRRMKWKKGG | >20 | >20 | HA2-Penetratin |
11 | CGLFEAIEGFIENGWEGMIDGWYGRQIKIWFQNRRMKWKKGG | >20 | >20 | INF7-Penetratin |
Number | Sequence | RBC Lysis IC50, pH 5.5 (μM) | RBC Lysis IC50, pH 7.4 (μM) |
---|---|---|---|
12a | CRLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.8 | 3.5 |
12b | CELFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 1.5 | >20 |
12c | CGGGLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 1 | 0.9 |
12d | C(Nle)LFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.8 | 2.4 |
12e | CVLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.72 | >20 |
12f | C(b-Ala)LFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.38 ± 0.17 (n = 5) | >20 (n = 5) |
12g | CSLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.66 | >20 |
13a | CGFFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.35 | 1.16 |
13b | CGKFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >20 | >20 |
13c | CGEFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >20 | >20 |
13d | CGGFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
13e | CGNFEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
14a | CGLNEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >100 | >100 |
14b | CGLGEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >20 | >20 |
14c | CGLKEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
14d | CGLEEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 2.5 | >10 |
14e | CGLAEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 1.3 (max. 65%) | >10 |
14f | CGLLEAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.93 | 3.67 |
15a | CGLFGAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.4 | 1 |
15b | CGLFAAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 1.26 | 0.75 |
15c | CGLFNAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 1.12 | 1.78 |
15d | CGLFLAIEGFIENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
15e | CGLFKAIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.71 | 1.27 |
16a | CGLFENIEGFIENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
16b | CGLFELIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.23 | 1.93 |
16c | CGLFEEIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.26 | >10 |
16d | CGLFEKIEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.04 | 1.11 |
17a | CGLFEAKEGFIENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
17b | CGLFEAEEGFIENGWEGMIDGWYGYGRKKRRQRR | 4.74 | >10 |
17c | CGLFEALEGFIENGWEGMIDGWYGYGRKKRRQRR | 0.8 | 5 |
18a | CGLFEAIWGFIENGWEGMIDGWYGYGRKKRRQRR | 0.9 | 1.2 |
18b | CGLFEAIKGFIENGWEGMIDGWYGYGRKKRRQRR | 2.2 | 6.5 |
18c | CGLFEAIHGFIENGWEGMIDGWYGYGRKKRRQRR | 7.7 | >80 |
18d | CGLFEAIRGFIENGWEGMIDGWYGYGRKKRRQRR | 1.2 | 2.8 |
18e | CGLFEAIDGFIENGWEGMIDGWYGYGRKKRRQRR | 3.7 | >100 |
18f | CGLFEAIGGFIENGWEGMIDGWYGYGRKKRRQRR | 2.1 | 2.1 |
19a | CGLFEAIENFIENGWEGMIDGWYGYGRKKRRQRR | 2.7 | 3.09 |
19b | CGLFEAIEKFIENGWEGMIDGWYGYGRKKRRQRR | 2.32 | >10 |
19c | CGLFEAIEEFIENGWEGMIDGWYGYGRKKRRQRR | 0.41 | >10 |
19d | CGLFEAIEGGIENGWEGMIDGWYGYGRKKRRQRR | 2.52 | >10 |
20a | CGLFEAIEGAIENGWEGMIDGWYGYGRKKRRQRR | 0.88 | 4.71 |
20b | CGLFEAIEGLIENGWEGMIDGWYGYGRKKRRQRR | 0.24 | 1.97 |
20c | CGLFEAIEGGIENGWEGMIDGWYGYGRKKRRQRR | 2.52 | >10 |
20d | CGLFEAIEGAIENGWEGMIDGWYGYGRKKRRQRR | 0.88 | 4.71 |
20e | CGLFEAIEGLIENGWEGMIDGWYGYGRKKRRQRR | 0.24 | 1.97 |
21a | CGLFEAIEGFGENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
21b | CGLFEAIEGFAENGWEGMIDGWYGYGRKKRRQRR | 1.59 | >10 |
21c | CGLFEAIEGFLENGWEGMIDGWYGYGRKKRRQRR | 0.59 | 2.8 |
21d | CGLFEAIEGFWENGWEGMIDGWYGYGRKKRRQRR | 0.35 | >10 |
21e | CGLFEAIEGFKENGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
21f | CGLFEAIEGFNENGWEGMIDGWYGYGRKKRRQRR | >100 | >100 |
22a | CGLFEAIEGFILNGWEGMIDGWYGYGRKKRRQRR | 1.06 | 1.1 |
22b | CGLFEAIEGFIWNGWEGMIDGWYGYGRKKRRQRR | 0.44 | 0.95 |
22c | CGLFEAIEGFIKNGWEGMIDGWYGYGRKKRRQRR | 4.27 | >10 |
22d | CGLFEAIEGFIGNGWEGMIDGWYGYGRKKRRQRR | 6.16 | >10 |
23a | CGLFEAIEGFIEPGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
23b | CGLFEAIEGFIEPGWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
23c | CGLFEAIEGFIEGGWEGMIDGWYGYGRKKRRQRR | 1.11 | 6.55 |
23d | CGLFEAIEGFIELGWEGMIDGWYGYGRKKRRQRR | 1.34 | 1.31 |
23e | CGLFEAIEGFIEWGWEGMIDGWYGYGRKKRRQRR | 0.54 | 5.18 |
23f | CGLFEAIEGFIEKGWEGMIDGWYGYGRKKRRQRR | 1.52 | >10 |
24a | CGLFEAIEGFIENEWEGMIDGWYGYGRKKRRQRR | max. 45% @ 2.0 uM | >100 |
24b | CGLFEAIEGFIENKWEGMIDGWYGYGRKKRRQRR | >10 | >10 |
24c | CGLFEAIEGFIENNWEGMIDGWYGYGRKKRRQRR | 6.39 | >10 |
24d | CGLFEAIEGFIENHWEGMIDGWYGYGRKKRRQRR | 3.06 | 2.9 |
24e | CGLFEAIEGFIENPWEGMIDGWYGYGRKKRRQRR | 1.71 | 4.72 |
24f | CGLFEAIEGFIENAWEGMIDGWYGYGRKKRRQRR | 1.88 | 1.28 |
24g | CGLFEAIEGFIENWWEGMIDGWYGYGRKKRRQRR | 1.1 | >10 |
25a | CGLFEAIEGFIENGEEGMIDGWYGYGRKKRRQRR | 1.55 | 0.31 |
24b | CGLFEAIEGFIENGKEGMIDGWYGYGRKKRRQRR | >10 | >10 |
25c | CGLFEAIEGFIENGLEGMIDGWYGYGRKKRRQRR | 0.66 | 4.43 |
26a | CGLFEAIEGFIENGWDGMIDGWYGYGRKKRRQRR | 0.55 | 1.3 |
26b | CGLFEAIEGFIENGWRGMIDGWYGYGRKKRRQRR | 0.19 | 3.3 |
26c | CGLFEAIEGFIENGWKGMIDGWYGYGRKKRRQRR | 0.34 | >10 |
26d | CGLFEAIEGFIENGWHGMIDGWYGYGRKKRRQRR | 2.54 | >10 |
26e | CGLFEAIEGFIENGWNGMIDGWYGYGRKKRRQRR | 1.47 | >10 |
26f | CGLFEAIEGFIENGWLGMIDGWYGYGRKKRRQRR | 0.84 | 2.03 |
26g | CGLFEAIEGFIENGWAGMIDGWYGYGRKKRRQRR | 1.3 | >10 |
26h | CGLFEAIEGFIENGWGGMIDGWYGYGRKKRRQRR | 3.1 | >10 |
27a | CGLFEAIEGFIENGWEAMIDGWYGYGRKKRRQRR | 0.12(max. 65%) | 0.95 |
27b | CGLFEAIEGFIENGWENMIDGWYGYGRKKRRQRR | 0.42 | >10 |
27c | CGLFEAIEGFIENGWEKMIDGWYGYGRKKRRQRR | 1.01 | 8.99 |
27d | CGLFEAIEGFIENGWEEMIDGWYGYGRKKRRQRR | 3.76 | >10 |
28a | CGLFEAIEGFIENGWEG(M sulfoxide)IDGWYGYGRKKRRQRR | >100 | >100 |
28b | CGLFEAIEGFIENGWEG(M sulfone)IDGWYGYGRKKRRQRR | >100 | >100 |
28c | CGLFEAIEGFIENGWEGNIDGWYGYGRKKRRQRR | >10 | >10 |
28d | CGLFEAIEGFIENGWEGQIDGWYGYGRKKRRQRR | >10 | >10 |
28e | CGLFEAIEGFIENGWEGTIDGWYGYGRKKRRQRR | >10 | >10 |
28f | CGLFEAIEGFIENGWEGSIDGWYGYGRKKRRQRR | >10 | >10 |
28g | CGLFEAIEGFIENGWEGLIDGWYGYGRKKRRQRR | 0.71 | 2.9 |
28h | CGLFEAIEGFIENGWEG(Nle)IDGWYGYGRKKRRQRR | 0.53 | 3.94 |
28i | CGLFEAIEGFIENGWEGYIDGWYGYGRKKRRQRR | 2.56 | >10 |
28j | CGLFEAIEGFIENGWEGFIDGWYGYGRKKRRQRR | 0.52 | 9.65 |
28k | CGLFEAIEGFIENGWEGIDGWYGYGRKKRRQRR (delete) | 50 | >100 |
29a | CGLFEAIEGFIENGWEGMLDGWYGYGRKKRRQRR | 10.2 | >10 |
29b | CGLFEAIEGFIENGWEGMADGWYGYGRKKRRQRR | >10 | >10 |
29c | CGLFEAIEGFIENGWEGMGDGWYGYGRKKRRQRR | 2.53 | >10 |
29d | CGLFEAIEGFIENGWEGMNDGWYGYGRKKRRQRR | 1.04 | >10 |
29e | CGLFEAIEGFIENGWEGMKDGWYGYGRKKRRQRR | 1.17 | 9.1 |
29f | CGLFEAIEGFIENGWEGMEDGWYGYGRKKRRQRR | >10 | >10 |
30a | CGLFEAIEGFIENGWEGMIEGWYGYGRKKRRQRR | 4.4 | >10 |
30b | CGLFEAIEGFIENGWEGMIAGWYGYGRKKRRQRR | >10 | 2.83 |
30c | CGLFEAIEGFIENGWEGMIWGWYGYGRKKRRQRR | >10 | >10 |
30d | CGLFEAIEGFIENGWEGMILGWYGYGRKKRRQRR | >10 | >10 |
31a | CGLFEAIEGFIENGWEGMIDAWYGYGRKKRRQRR | 1.4 | >10 |
31b | CGLFEAIEGFIENGWEGMIDLWYGYGRKKRRQRR | 0.32 | 0.96 |
31c | CGLFEAIEGFIENGWEGMIDIWYGYGRKKRRQRR | 1.68 | >10 |
31d | CGLFEAIEGFIENGWEGMIDWWYGYGRKKRRQRR | 0.55 ± 0.25 (n = 8) | 7.14 ± 0.73 (n = 8) |
31e | CGLFEAIEGFIENGWEGMIDNWYGYGRKKRRQRR | 6.07 | 7.26 |
31f | CGLFEAIEGFIENGWEGMIDKWYGYGRKKRRQRR | 2.86 | >10 |
31g | CGLFEAIEGFIENGWEGMIDEWYGYGRKKRRQRR | 1.5 | >10 |
32a | CGLFEAIEGFIENGWEGMIDGYGRKKRRQRR | >10 | >10 |
32b | CGLFEAIEGFIENGWEGMIDGGGGYGRKKRRQRR | >10 | >10 |
33a | CGLFEAIEGFIENGWEGMIDGLYGYGRKKRRQRR | 4.24 | 1.75 |
33b | CGLFEAIEGFIENGWEGMIDGAYGYGRKKRRQRR | 4.07 | >10 |
33c | CGLFEAIEGFIENGWEGMIDGGYGYGRKKRRQRR | >10 | >10 |
33d | CGLFEAIEGFIENGWEGMIDGNYGYGRKKRRQRR | 2.5 | >10 |
33e | CGLFEAIEGFIENGWEGMIDGKYGYGRKKRRQRR | 6.6 | >10 |
33f | CGLFEAIEGFIENGWEGMIDGEYGYGRKKRRQRR | 4.26 | >10 |
34a | CGLFEAIEGFIENGWEGMIDGWAGYGRKKRRQRR | >10 | >10 |
34b | CGLFEAIEGFIENGWEGMIDGWHGYGRKKRRQRR | 5.04 | >10 |
34c | CGLFEAIEGFIENGWEGMIDGWNGYGRKKRRQRR | 0.13 | 1.72 |
34d | CGLFEAIEGFIENGWEGMIDGWEGYGRKKRRQRR | 3.94 | >10 |
35a | CGLFEAIEGFIENGWEGMIDGWYAYGRKKRRQRR | 2 | >10 |
35b | CGLFEAIEGFIENGWEGMIDGWYWYGRKKRRQRR | 0.17 (max. 70%) | 3.05 |
35c | CGLFEAIEGFIENGWEGMIDGWYEYGRKKRRQRR | 1.04 (max. 60%) | >10 |
Number | Sequence | RBC Lysis IC50, pH 5.5 (μM) | RBC Lysis IC50, pH 7.4 (μM) |
---|---|---|---|
36a | GLFEAIEGFIENGWEGMIDGWYGCYGRKKRRQRR | 2.09 | 2.1 |
36b | CGLFEAIEGFIENGWEGMIDGWYGGGGYGRKKRRQRR | 0.7 | 7.9 |
36c | CGLFEAIEGFIENGWEGMIDGWYG(Peg 3)YGRKKRRQRR | 1.92 | >10 |
36d | CGLFEAIEGFIENGWEGMIDGWYG(Peg 6)YGRKKRRQRR | 1.22 | >10 |
36e | CGLFEAIEGFIENGWEGMIDGWYG(Peg11)YGRKKRRQRR | 2.4 | >100 |
36f | CGLFEAIEGFIENGWEGMIDGWYG(Peg 27)YGRKKRRQRR | 28 | >100 |
37a | CGLFEAIEGFIENGWEGMIDGWYGYGKKKKKQKK | 7.78 | >100 |
37b | CGLFEAIEGFIENGWEGMIDGWYGYGHKKHHQHH | 0.90 ± 0.19 (n = 8) | >100 (n = 8) |
37c | CGLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRRR | 1.77 | 6.82 |
37d | CGLFEAIEGFIENGWEGMIDGWYGYGRKKRRQR | 0.75 | >100 |
37e | CGLFEAIEGFIENGWEGMIDGWYGYGRKKRRQ | 0.96 | >100 |
37f | CGLFEAIEGFIENGWEGMIDGWYGYGRKKRR | 1.61 | >100 |
37g | CGLFEAIEGFIENGWEGMIDGWYGYGRKKR | 7.8 | >100 |
37h | CGLFEAIEGFIENGWEGMIDGWYGYGHKKHHQHR | 0.58 ± 0.17 (n = 10) | >100 (n = 10) |
38a | GLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRRC | 0.96 | >10 |
38b | YGRKKRRQRRGLFEAIEGFIENGWEGMIDGWYGC | 2.91 | >100 |
38c | CYGRKKRRQRRGLFEAIEGFIENGWEGMIDGWYG | 1.17 | >20 |
38d | rrqrrkkrgygywgdimgewgneifgeiaeflgc | 5 | >100 |
38e | crrqrrkkrgygywgdimgewgneifgeiaeflg | 0.1 | 1.51 |
38f | cglfeaiegfiengwegmidgwygygrkkrrqrr | 2.3 | >20 |
Number | Sequence | RBC Lysis IC50, pH 5.5 (μM) | RBC Lysis IC50, pH 7.4 (μM) |
---|---|---|---|
39a | 0.48 | >10 | |
39b | 0.19 | >10 | |
39c | 1.89 | >10 | |
39d | CGLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRRK(Stearoyl) | 0.58 ± 0.2 (n = 6) | 0.94 ± 0.4 (n = 6) |
39e | (stearoyl)GLFEAIEGFIENGWEGMIDGWYGYGRKKRRQRRC | 0.7 | >10 |
Number | Sequence | RBC Lysis IC50, pH 5.5 (μM) | RBC Lysis IC50, pH 7.4 (μM) |
---|---|---|---|
40 | CELFEAIEGFIENGWEGLIDGWYGYGRKKRRQRR | 2.12 | >10 |
41 | CGLFGAIEGFIENGWEGLIDGWYGYGRKKRRQRR | 0.41 | 0.9 |
42 | CGLFEAIEGFIENGWKGMIDWWYGYGRKKRRQRR | 0.66 | 0.29 |
43 | CGLFEAIEGFIENGWEGLIDAWYGYGRKKRRQRR | 0.62 | >10 |
44 | CELFEAIWGFIENGWEGMIDGWYGGGGYGRKKRRQRR | 1 (max.50%) | 5 (max.60%) |
45 | CELFEAIEGFIENGWEGLIDGWYGYGRKKRRQRRR | 2.98 | 4.32 |
46 | CRLFEAIWGFIENGWEGMIDGWYGGGGYGRKKRRQRR | 0.35 | 0.12 |
47 | CGLFGAIEGFIENGWEGLIDGWYGYGRKKRRQRRR | 1.55 | 3.97 |
48 | CGLFEEIEGFIENGWEGLIDWWYGYGRKKRRQRR | 0.72 | >10 |
49 | CELFGAIWGFIENGWEGLIDGWYGYGRKKRRQRR | >10 | >10 |
50 | CELFGAIEGFIENGWEGLIDGWYGYGRKKRRQRRR | 2 | max. 35% @ >10 |
51 | CELFGAIEGFIENGWKGLIDWWYGYGRKKRRQRR | 0.14 | 3.29 |
52 | CGLFGAIEGFIENGWKGLIDAWYGYGRKKRRQRR | 0.1 | 3.41 |
53 | CGLFEAIEGFIENGLKGLIDAWYGYGRKKRRQRR | 0.18 | >10 |
54 | CELFGAIEGFIENGWKGLIDWWYGYGRKKRRQRR | 0.14 | 3.29 |
55 | CELFGAIEGFIENGWKGLIDAWYGYGRKKRRQRR | 0.71 | 3.19 |
56 | CGIFGAIEGFIENGWWGLIDAWYGYGRKKRRQRR | 0.07 | 2.35 |
57 | CGFFEAIEGFIENGLKGLIDAWYGYGRKKRRQRR | 0.17 | 3.99 |
58 | CGLAEAIEGFIENGLKGLIDWWYGYGRKKRRQRR | 0.06 | 2 |
59 | CGLFEAIAEFIEGGWEGLIEGWYGYGRKKRRQRR | 0.79 | >10 |
60 | C(b-Ala)GFEFIEEFIENGLKNLIDWWYGYGRKKRRQRR | 1.14 | 12.8 |
61 | CGLFGEIEELIEEGLKNLIDWWYGYGRKKRRQRR | 0.97 | 8.07 |
62 | CGLFGEIEELIEEGLKNLIDWWYGYGHKKHHQHR | 1.28 | >20 |
63 | CGLFGEIEELIEEGLENLIDWWYGYGRKKRRQRR | 3.6 | >20 |
64 | CGLFGEIEELIEEGLENLIDWWYGYGHKKHHQHR | 3.91 | >20 |
65 | CGLFGEIEEFIEEGLENLIDWWYGYGRKKRRQRR | 3.15 | >20 |
66 | CGLFGEIEEFIEEGWENFIDWWYGYGRKKRRQRR | 4.08 | >20 |
67 | CGLFGEIEELIEEGWEGLIDWWYGYGRKKRRQRR | 3.4 | >20 |
68 | CGLFEEIEELIEEGLENLIDWWYGYGRKKRRQRR | 4.11 | >20 |
69 | CGLFEEIEELIEEGLENLIDWWYGYGHKKHHQHR | 8.73 | >20 |
70 | CGLFEEIEELIEEGLKNLIDWWYGYGHKKHHQHR | 2.28 | >20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algayer, B.; O’Brien, A.; Momose, A.; Murphy, D.J.; Procopio, W.; Tellers, D.M.; Tucker, T.J. Novel pH Selective, Highly Lytic Peptides Based on a Chimeric Influenza Hemagglutinin Peptide/Cell Penetrating Peptide Motif. Molecules 2019, 24, 2079. https://doi.org/10.3390/molecules24112079
Algayer B, O’Brien A, Momose A, Murphy DJ, Procopio W, Tellers DM, Tucker TJ. Novel pH Selective, Highly Lytic Peptides Based on a Chimeric Influenza Hemagglutinin Peptide/Cell Penetrating Peptide Motif. Molecules. 2019; 24(11):2079. https://doi.org/10.3390/molecules24112079
Chicago/Turabian StyleAlgayer, Bethany, Ann O’Brien, Aaron Momose, Dennis J. Murphy, William Procopio, David M. Tellers, and Thomas J. Tucker. 2019. "Novel pH Selective, Highly Lytic Peptides Based on a Chimeric Influenza Hemagglutinin Peptide/Cell Penetrating Peptide Motif" Molecules 24, no. 11: 2079. https://doi.org/10.3390/molecules24112079
APA StyleAlgayer, B., O’Brien, A., Momose, A., Murphy, D. J., Procopio, W., Tellers, D. M., & Tucker, T. J. (2019). Novel pH Selective, Highly Lytic Peptides Based on a Chimeric Influenza Hemagglutinin Peptide/Cell Penetrating Peptide Motif. Molecules, 24(11), 2079. https://doi.org/10.3390/molecules24112079