Recovery of Polyphenols from Grape Pomace Using Polyethylene Glycol (PEG)-Grafted Silica Particles and PEG-Assisted Cosolvent Elution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Silica Particles
2.1.1. Fourier Transform Infrared (FTIR) Analysis
2.1.2. Thermogravimetric (TGA) Analysis of Bare and mPEG-Grafted Silica Particles
2.1.3. Elemental Analysis of Bare and mPEG-Grafted Silica Particles
2.2. Adsorption of Polyphenols Extracted from Grape Pomace onto mPEG-Grafted Silica Particles
2.3. Recovery of Polyphenols from mPEG-Grafted Silica Particles
2.3.1. Screening Solvent Systems Coupled with Reagents That Can Break Hydrogen Bonding for the Recovery of Polyphenols from mPEG-Grafted Silica Particles
Effect of Sorbitol and Salt in Aqueous Ethanol on Polyphenol Recovery
Effect of Acid and Base on Polyphenol Recovery
2.3.2. Screening PEG Cosolvent Systems for the Recovery of Polyphenols from mPEG-Grafted Silica Particles: Developing PEG–Water and PEG–Ethanol Cosolvent Systems
Effect of PEG Concentration on Polyphenol Recovery
Effect of Water and Ethanol in PEG Cosolvent Systems for the Recovery of Polyphenols
Tunable Recovery of Polyphenols Using Cosolvent Systems with PEG-200 and PEG-400
2.4. Antioxidant Activity of the Polyphenols Recovered by the Use of PEG Cosolvent Systems from mPEG-Grafted Silica Particles
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Grape Pomace Samples
3.3. Preparation of Grape Pomace Extracts
3.4. Preparation of Silica Particles with Functional Groups
3.5. Characterization of Silica Particles
3.5.1. FTIR Spectroscopy
3.5.2. Elemental Analysis
3.5.3. TGA
3.5.4. Determination of the Surface Area and Pore Volume of Bare and mPEG-Grafted Silica Particles
3.6. Analysis of Total Polyphenols
3.7. Batch Adsorption and Desorption of Polyphenols
3.8. Developing the Green Solvents for the Recovery of Adsorbed Polyphenols onto the mPEG-Modified Silica Particles
3.9. Antioxidant Activity
3.10. Analysis of Individual Polyphenols via High-Performance Liquid Chromatography (HPLC)
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization’s Statistical Database. 2016. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 January 2019).
- Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds-biochemistry and functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Munin, A.; Edwards-Levy, F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food. Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food. Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.L.; Moure, A.; Dominguez, H.; Parajo, J.C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Busscher, H.J.; Norde, W.; van der Mei, H.C. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl. Environ. Microbiol. 2008, 74, 2559–2564. [Google Scholar] [CrossRef]
- Rodríguez, I.; Llompart, M.P.; Cela, R. Solid-phase extraction of phenols. J. Chromatogr. A 2000, 885, 291–304. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Sanongraj, S.; Bulloch, J.L.; Hand, D.W.; Rogers, T.N.; Speth, T.F.; Ulmer, M. Correlation of aqueous-phase adsorption isotherms. Environ. Sci. Technol. 1999, 33, 2926–2933. [Google Scholar] [CrossRef]
- Leon-Gonzalez, M.E.; Perez-Arribas, L.V. Chemically modified polymeric sorbents for sample preconcentration. J. Chromatogr. A 2000, 902, 3–16. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, M.; Sun-Waterhouse, D.; Zhuang, M.; Chen, H.; Feng, M.; Lin, L. Absorption and desorption behaviour of the flavonoids from Glycyrrhiza glabra L. leaf on macroporous adsorption resins. Food Chem. 2015, 168, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Sun, A.; Liu, R.; Meng, Z.; Xie, H. Isolation and purification of flavonoid and isoflavonoid compounds from the pericarp of Sophora japonica L. by adsorption chromatography on 12% cross-linked agarose gel media. J. Chromatogr. A 2007, 1140, 219–224. [Google Scholar] [CrossRef]
- Geng, X.; Ren, P.; Pi, G.; Shi, R.; Yuan, Z.; Wang, C. High selective purification of flavonoids from natural plants based on polymeric adsorbent with hydrogen-bonding interaction. J. Chromatogr. A 2009, 1216, 8331–8338. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Zhao, X.L.; Zhang, J.; Shi, R.F.; Yuan, Z.; Wang, C.H. Synthesis of high selectivity polymeric adsorbent and its application on the separation of ginkgo flavonol glycosides and terpene lactones. React. Funct. Polym. 2008, 68, 899–909. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41, 2590–2605. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Guliants, V.V. Periodic mesoporous organic–inorganic hybrid materials: Applications in membrane separations and adsorption. Microporous Mesoporous Mater. 2010, 132, 1–14. [Google Scholar] [CrossRef]
- Matsumoto, A.; Tsutsumi, K.; Schumacher, K.; Unger, K.K. Surface functionalization and stabilization of mesoporous silica spheres by silanization and their adsorption characteristics. Langmuir 2002, 18, 4014–4019. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Ogale, S.B.; Vijayamohanan, K.P. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J. Colloid Interface Sci. 2008, 318, 372–379. [Google Scholar] [CrossRef]
- Zhou, T.; Xiao, X.; Li, G.; Cai, Z.W. Study of polyethylene glycol as a green solvent in the microwave-assisted extraction of flavone and coumarin compounds from medicinal plants. J. Chromatogr. A 2011, 1218, 3608–3615. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Uyama, H.; Kobayashi, S. Regioselective synthesis of poly(phenylene) as a complex with poly(ethylene glycol) by template polymerization of phenol in water. Macromolecules 2003, 36, 5058–5060. [Google Scholar] [CrossRef]
- Jandera, P.; Hajek, T. Utilization of dual retention mechanism on columns with bonded PEG and diol stationary phases for adjusting the separation selectivity of phenolic and flavone natural antioxidants. J. Sep. Sci. 2009, 32, 3603–3619. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Uyama, H.; Kobayashi, S. Peroxidase-catalyzed oxidative polymerization of phenol with a nonionic polymer surfactant template in water. Macromol. Biosci. 2004, 4, 497–502. [Google Scholar] [CrossRef] [PubMed]
- McNamee, C.E.; Yamamoto, S.; Higashitani, K. Effect of the physicochemical properties of poly(ethylene glycol) brushes on their binding to cells. Biophys. J. 2007, 93, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Timasheff, S.N. Mechanism of polyethylene glycol interaction with proteins. Biochemistry 1985, 24, 6756–6762. [Google Scholar] [CrossRef] [PubMed]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [Google Scholar] [CrossRef] [PubMed]
- Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef]
- Robinson, K.; Mock, C.; Liang, D. Pre-formulation studies of resveratrol. Drug Dev. Ind. Pharm. 2015, 41, 1464–1469. [Google Scholar] [CrossRef]
- Qiu, N.; Cai, L.L.; Xie, D.; Wang, G.; Wu, W.; Zhang, Y.; Song, H.; Yin, H.; Chen, L. Synthesis, structural and in vitro studies of well-dispersed monomethoxy-poly(ethylene glycol)-honokiol conjugate micelles. Biomed. Mater. 2010, 5, 065006. [Google Scholar] [CrossRef]
- Mohan, A.; Narayanan, S.; Sethuraman, S.; Krishnan, U.M. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed Res. Int. 2014, 2014, 424239. [Google Scholar] [CrossRef] [PubMed]
- Shui, Y.D.; Su, Y.L.; Kuang, X.; Zhao, W.W.; Cai, Y.L.; Wang, D.J. Facile and controllable synthesis of hybrid silica nanoparticles densely grafted with poly(ethylene glycol). Polym. Int. 2017, 66, 1395–1401. [Google Scholar] [CrossRef]
- Stewart, B. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2004. [Google Scholar]
- Kim, S.A.; Archer, L.A. Hierarchical structure in semicrystalline polymers tethered to nanospheres. Macromolecules 2014, 47, 687–694. [Google Scholar] [CrossRef]
- Wen, X.N.; Su, Y.L.; Shui, Y.D.; Zhao, W.W.; Muller, A.J.; Wang, D.J. Correlation between grafting density and confined crystallization behavior of poly(ethylene glycol) grafted to silica. Macromolecules 2019, 52, 1505–1516. [Google Scholar] [CrossRef]
- Khdary, N.H.; Ghanem, M.A. Highly dispersed platinum nanoparticles supported on silica as catalyst for hydrogen production. RSC Adv. 2014, 4, 50114–50122. [Google Scholar] [CrossRef]
- Freitas, L.B.d.O.; Bravo, I.J.G.; Macedo, W.A.d.A.; de Sousa, E.M.B. Mesoporous silica materials functionalized with folic acid: Preparation, characterization and release profile study with methotrexate. J. Sol-Gel Sci. Technol. 2016, 77, 186–204. [Google Scholar] [CrossRef]
- Kazakova, O.A.; Gun’ko, V.M.; Lipkovskaya, N.A.; Voronin, E.F.; Pogorelyi, V.K. Interaction of quercetin with highly dispersed silica in aqueous suspensions. Colloid J. 2002, 64, 412–418. [Google Scholar] [CrossRef]
- Schlipf, D.M.; Jones, C.A.; Armbruster, M.E.; Rushing, E.S.; Wooten, K.C.; Rankin, S.E.; Knutson, B.L. Flavonoid adsorption and stability on titania-functionalized silica nanoparticles. Colloids Surf. A 2015, 478, 15–21. [Google Scholar] [CrossRef]
- Khan, M.A.; Wallace, W.T.; Islam, S.Z.; Nagpure, S.; Strzalka, J.; Littleton, J.M.; Rankin, S.E.; Knutson, B.L. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO2-Functionalized Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 32114–32125. [Google Scholar] [CrossRef]
- Soto, M.L.; Conde, E.; Gonzalez-Lopez, N.; Conde, M.J.; Moure, A.; Sineiro, J.; Falque, E.; Dominguez, H.; Nunez, M.J.; Parajo, J.C. Recovery and concentration of antioxidants from winery wastes. Molecules 2012, 17, 3008–3024. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Effect of the ionic strength of salts on retention and overloading behavior of ionizable compounds in reversed-phase liquid chromatography: I. XTerra-C18. J. Chromatogr. A 2004, 1033, 43–55. [Google Scholar] [CrossRef]
- Gagnon, P.; Cernigoj, U.; Peljhan, S.; Zabar, R.; Vidic, U.; Vrabec, K. Hydrogen bond chromatography: Principles and methods. In Proceedings of the 8th International Monolith Summer School and Symposium, Portoroz, Slovenia, 15–20 June 2018. [Google Scholar]
- Zhao, B.Y.; Xu, P.; Yang, F.X.; Wu, H.; Zong, M.H.; Lou, W.Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Roseman, T. Solubilization of Drugs by Co-Solvents. In Techniques of Solubilization of Drugs; Yalkowsky, S.H., Ed.; M. Dekker Inc.: New York, NY, USA, 1981; pp. 91–134. [Google Scholar]
- Nema, S.; Washkuhn, R.J.; Brendel, R.J. Excipients and their use in injectable products. PDA J. Pharm. Sci. Technol. 1997, 51, 166–171. [Google Scholar] [PubMed]
- Fisher, O.Z.; Langer, R.; Anderson, D.G. Synthetic polyphenols for drug delivery. In Proceedings of the 2010 AICHE Annual Meeting, Salt Lake City, UT, USA, 7–12 November 2010; p. 688b. [Google Scholar]
- Pop, R.; Ştefănut, M.N.; Căta, A.; Tănasie, C.; Medeleanu, M. Ab initio study regarding the evaluation of the antioxidant character of cyanidin, delphinidin and malvidin. Cent. Eur. J. Chem. 2012, 10, 180–186. [Google Scholar] [CrossRef]
- Marko, D.; Puppel, N.; Tjaden, Z.; Jakobs, S.; Pahlke, G. The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol. Nutr. Food Res. 2004, 48, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1619–1636. [Google Scholar] [CrossRef]
- Villano, D.; Fernandez-Pachon, M.S.; Moya, M.L.; Troncoso, A.M.; Garcia-Parrilla, M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.C.; Khoo, H.-E. Biological effects of myricetin. Gen. Pharmacol. Vasc. Syst. 1997, 29, 121–126. [Google Scholar] [CrossRef]
- Bariana, M.; Aw, M.S.; Kurkuri, M.; Losic, D. Tuning drug loading and release properties of diatom silica microparticles by surface modifications. Int. J. Pharm. 2013, 443, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Norrman, K.; Papra, A.; Kamounah, F.S.; Gadegaard, N.; Larsen, N.B. Quantification of grafted poly(ethylene glycol)-silanes on silicon by time-of-flight secondary ion mass spectrometry. J. Mass Spectrom. 2002, 37, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Howarter, J.A.; Youngblood, J.P. Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane. Langmuir 2006, 22, 11142–11147. [Google Scholar] [CrossRef] [PubMed]
- Jaroniec, M.; Kruk, M.; Olivier, J.P. Standard nitrogen adsorption data for characterization of nanoporous silicas. Langmuir 1999, 15, 5410–5413. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Waterhouse, A.L. Determination of total phenolics. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons, Inc.: New York, NY, USA, 2002; pp. I1.1.1–I1.1.8. [Google Scholar]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin−Ciocalteu Reagent. J. Agric. Food. Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L. Analytical Fractionation of the Phenolic Substances of Grapes and Wine and Some Practical Uses of Such Analyses. In Chemistry of Winemaking; American Chemical Society: Washington, DC, USA, 1974; pp. 184–211. [Google Scholar]
- Sandhu, A.K.; Gu, L. Adsorption/desorption characteristics and separation of anthocyanins from muscadine (Vitis rotundifolia) juice pomace by use of macroporous adsorbent resins. J. Agric. Food. Chem. 2013, 61, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Nunez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food. Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
C (wt %) | H (wt %) | N (wt %) | Surface Area (m2/g) | Total Pore Volume (cm3/g) | |
---|---|---|---|---|---|
Bare Silica | 1.02 ± 0.01 | 0.50 ± 0.01 | 0.07 ± 0.05 | 270.74 ± 1.45 | 0.869 |
mPEG-2000 | 2.28 ± 0.02 | 0.62 ± 0.00 | 0.08 ± 0.01 | 248.29 ± 1.35 | 0.806 |
mPEG-5000 | 5.02 ± 0.04 | 1.24 ± 0.02 | 0.11 ± 0.00 | 234.83 ± 1.35 | 0.768 |
Elution Solvent | (%) Recovered Individual Polyphenols a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
GA 1 | CA 2 | PB2 3 | DC 4 | pCA 5 | IC 6 | MC 7 | MY 8 | QU 9 | KA 10 | |
50% (v/v) PEG-400 in Ethanol | 13.8 ± 0.5 | 0.2 ± 0.0 | ND b | 8.8 ± 0.7 | 10.6 ± 1.5 | 24.4 ± 1.4 | 53.7 ± 0.7 | ND | ND | 52.6 ± 4.7 |
50% (v/v) PEG-400 in Water | 48.7 ± 1.3 | 0.4 ± 0.0 | ND | 9.9 ± 1.0 | 50.2 ± 1.9 | 43.5 ± 2.4 | 82.0 ± 0.9 | ND | ND | 29.4 ± 0.7 |
50% (v/v) PEG-200 in Ethanol | ND | 0.1 ± 0.0 | 7.3 ± 0.3 | 8.3 ± 0.6 | ND | ND | ND | 30.39 ± 3.3 | ND | 52.6 ± 1.4 |
50% (v/v) PEG-200 in Water | ND | 1.0 ± 0.1 | 5.7 ± 0.2 | 9.2 ± 0.6 | ND | ND | 27.6 ± 0.3 | 49.3 ± 3.1 | ND | 14.4 ± 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seker, A.; Arslan, B.; Chen, S. Recovery of Polyphenols from Grape Pomace Using Polyethylene Glycol (PEG)-Grafted Silica Particles and PEG-Assisted Cosolvent Elution. Molecules 2019, 24, 2199. https://doi.org/10.3390/molecules24122199
Seker A, Arslan B, Chen S. Recovery of Polyphenols from Grape Pomace Using Polyethylene Glycol (PEG)-Grafted Silica Particles and PEG-Assisted Cosolvent Elution. Molecules. 2019; 24(12):2199. https://doi.org/10.3390/molecules24122199
Chicago/Turabian StyleSeker, Ayca, Baran Arslan, and Shulin Chen. 2019. "Recovery of Polyphenols from Grape Pomace Using Polyethylene Glycol (PEG)-Grafted Silica Particles and PEG-Assisted Cosolvent Elution" Molecules 24, no. 12: 2199. https://doi.org/10.3390/molecules24122199
APA StyleSeker, A., Arslan, B., & Chen, S. (2019). Recovery of Polyphenols from Grape Pomace Using Polyethylene Glycol (PEG)-Grafted Silica Particles and PEG-Assisted Cosolvent Elution. Molecules, 24(12), 2199. https://doi.org/10.3390/molecules24122199