Molecular Computing and Bioinformatics
Abstract
:1. Introduction
2. Molecular Computing
3. Bioinformatics
3.1. Biomolecules Structure and Function Analysis
3.2. Drug Research and Development (R&D)
3.3. Disease Analysis and Research
4. Bio-Inspired Research
5. Conclusions
Funding
Conflicts of Interest
References
- Adleman, L.M. Molecular computation of solutions to combinatorial problems. Science 1994, 266, 1021. [Google Scholar] [CrossRef] [PubMed]
- Păun, G. Computing with Membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [Google Scholar] [CrossRef] [Green Version]
- Poet, J.L.; Campbell, A.M.; Eckdahl, T.T.; Heyer, L.J. Bacterial computing. XRDS 2010, 17, 10–15. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, W.; Zhang, D.; Zeng, X.X. MOEA/HD: A Multiobjective Evolutionary Algorithm Based on Hierarchical Decomposition. IEEE Trans. Cybern. 2019, 49, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tian, Y.; Jin, Y. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2015, 19, 761–776. [Google Scholar] [CrossRef]
- Chen, X.; Pérez-Jiménez, M.J.; Valencia-Cabrera, L.; Wang, B.; Zeng, X. Computing with viruses. Theor. Comput. Sci. 2016, 623, 146–159. [Google Scholar] [CrossRef]
- Mardis, E.R. Next-Generation DNA Sequencing Methods. Annu. Rev. Genom. Hum. Genet. 2008, 9, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Ding, L.; Li, Z.; Pan, Y.; Gao, X. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. arXiv 2019. [Google Scholar] [CrossRef]
- Lo Bosco, G.; Di Gangi, M.A. Deep Learning Architectures for DNA Sequence Classification. In Fuzzy Logic and Soft Computing Applications, Wilf 2016; Petrosino, A., Loia, V., Pedrycz, W., Eds.; Taylor & Francis Group: Oxfordshire, UK, 2017; Volume 10147, pp. 162–171. [Google Scholar]
- Zahiri, J.; Emamjomeh, A.; Bagheri, S.; Ivazeh, A.; Mahdevar, G.; Sepasi Tehrani, H.; Mirzaie, M.; Fakheri, B.A.; Mohammad-Noori, M. Protein complex prediction: A survey. Genomics 2019. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, G.; Zeng, N.; Song, X.; Zhuang, Y. Drug-Disease Association Prediction Based on Neighborhood Information Aggregation in Neural Networks. IEEE Access 2019, 7, 50581–50587. [Google Scholar] [CrossRef]
- Tsuji, S.; Aburatani, H. Machine Learning Applications in Cancer Genome Medicine. Gan to kagaku ryoho. Cancer Chemother. 2019, 46, 423–426. [Google Scholar]
- Stephenson, N.; Shane, E.; Chase, J.; Rowland, J.; Ries, D.; Justice, N.; Zhang, J.; Chan, L.; Cao, R. Survey of Machine Learning Techniques in Drug Discovery. Curr. Drug Metab. 2019, 20, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zhou, C. 8-Bit Adder and Subtractor with Domain Label Based on DNA Strand Displacement. Molecules 2018, 23, 2989. [Google Scholar] [CrossRef] [PubMed]
- Baek, C.; Lee, S.-W.; Lee, B.-J.; Kwak, D.-H.; Zhang, B.-T. Enzymatic Weight Update Algorithm for DNA-Based Molecular Learning. Molecules 2019, 24, 1409. [Google Scholar] [CrossRef] [PubMed]
- Cabarle, F.G.C.; Adorna, H.N.; Jiang, M.; Zeng, X. Spiking Neural P Systems With Scheduled Synapses. IEEE Trans. Nanobioscience 2017, 16, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Rodríguez-Patón, A.; Zheng, P.; Zeng, X. Spiking Neural P Systems with Colored Spikes. IEEE Trans. Cognitive Dev. Syst. 2018, 10, 1106–1115. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, L.; Păun, A. On the universality of axon P systems. IEEE Trans. Neural Networks Learn. Syst. 2015, 26, 2816–2829. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, P.; Ma, T.; Song, T. Small Universal Bacteria and Plasmid Computing Systems. Molecules 2018, 23, 1307. [Google Scholar] [CrossRef]
- Ping, X.; Wang, T.; Lin, N.; Di, F.; Li, Y.; Jian, H.; Wang, H.; Lu, K.; Li, J.; Xu, X.; et al. Genome-Wide Identification of the LAC Gene Family and Its Expression Analysis Under Stress in Brassica napus. Molecules 2019, 24, 1985. [Google Scholar] [CrossRef]
- Su, H.; Chu, Y.; Bai, J.; Gong, L.; Huang, J.; Xu, W.; Zhang, J.; Qiu, X.; Xu, J.; Huang, Z. Genome-Wide Identification and Comparative Analysis for OPT Family Genes in Panax ginseng and Eleven Flowering Plants. Molecules 2018, 24, 15. [Google Scholar] [CrossRef] [PubMed]
- Miskiewicz, J.; Szachniuk, M. Discovering Structural Motifs in miRNA Precursors from the Viridiplantae Kingdom. Molecules 2018, 23, 1367. [Google Scholar] [CrossRef] [PubMed]
- Kalidasan, V.; Azman, A.; Joseph, N.; Kumar, S.; Awang Hamat, R.; Neela, V.K. Putative Iron Acquisition Systems in Stenotrophomonas maltophilia. Molecules 2018, 23, 2048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, L. Integrating Multiple Interaction Networks for Gene Function Inference. Molecules 2018, 24, 30. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hong, Z.; Liu, J.; Lin, Y.; Alfonso, R.-P.; Zou, Q.; Zeng, X. Computational methods for identifying the critical nodes in biological networks. Brief. Bioinform. 2019. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Xu, Z.; Yang, H.; Lv, H.; Ding, H.; Liu, L. Identification of D Modification Sites by Integrating Heterogeneous Features in Saccharomyces cerevisiae. Molecules 2019, 24, 380. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Xing, P.; Wei, L.; Liu, B. Gene2vec: Gene Subsequence Embedding for Prediction of Mammalian N6-Methyladenosine Sites from mRNA. RNA 2019, 25, 205–218. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Jia, C.; Zou, Q. 4mCPred: Machine Learning Methods for DNA N4-methylcytosine sites Prediction. Bioinformatics 2019, 35, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, H.; Liu, J.-B.; Shao, Z. The Cartesian Product and Join Graphs on Edge-Version Atom-Bond Connectivity and Geometric Arithmetic Indices. Molecules 2018, 23, 1731. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010, 9, 203. [Google Scholar] [PubMed]
- Chen, R.; Liu, X.; Jin, S.; Lin, J.; Liu, J. Machine Learning for Drug-Target Interaction Prediction. Molecules 2018, 23, 2208. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Deng, S.; Qin, H.; Ding, P.; Chen, S.; Li, G. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein–Protein Interaction Network. Molecules 2018, 23, 1460. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lee, M.-H.; Weng, C.-F.; Leong, M.K. Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme. Molecules 2018, 23, 1820. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, H.; Wang, L.; Yuan, W. Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach. Molecules 2018, 23, 3193. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Liu, X.; Wei, L.; Zou, Q. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods 2019. [Google Scholar] [CrossRef]
- Shen, C.; Ding, Y.; Tang, J.; Xu, X.; Guo, F. An Ameliorated Prediction of Drug–Target Interactions Based on Multi-Scale Discrete Wavelet Transform and Network Features. Int. J. Mol. Sci. 2017, 18, 1781. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Tang, J.; Guo, F. Identification of drug-target interactions via multiple information integration. Inf. Sci. 2017, 417–419, 546–560. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, J.; Guo, F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing 2019, 325, 211–224. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, J.; Guo, F. Identification of Drug-side Effect Association via Semi-supervised Model and Multiple Kernel Learning. IEEE J. Biomed. Health Inform. 2019. [Google Scholar] [CrossRef]
- Han, K.; Wang, M.; Zhang, L.; Wang, C. Application of Molecular Methods in the Identification of Ingredients in Chinese Herbal Medicines. Molecules 2018, 23, 2728. [Google Scholar] [CrossRef]
- Oh, S.-M.; Shin, J.-S.; Kim, I.-K.; Kim, J.-H.; Moon, J.-S.; Lee, S.-K.; Lee, J.-H. Therapeutic Effects of HIF-1α on Bone Formation around Implants in Diabetic Mice Using Cell-Penetrating DNA-Binding Protein. Molecules 2019, 24, 760. [Google Scholar] [CrossRef] [PubMed]
- Qiang, X.; Kou, Z.; Fang, G.; Wang, Y. Scoring Amino Acid Mutations to Predict Avian-to-Human Transmission of Avian Influenza Viruses. Molecules 2018, 23, 1584. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liang, G.; Liao, C.; Chen, G.-D.; Chang, C.-C. An Efficient Classifier for Alzheimer’s Disease Genes Identification. Molecules 2018, 23, 3140. [Google Scholar] [CrossRef] [PubMed]
- Zakariah, M.; Khan, S.; Chaudhary, A.A.; Rolfo, C.; Ben Ismail, M.M.; Alotaibi, Y.A. To Decipher the Mycoplasma hominis Proteins Targeting into the Endoplasmic Reticulum and Their Implications in Prostate Cancer Etiology Using Next-Generation Sequencing Data. Molecules 2018, 23, 994. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Lan, W.; Chen, Q.; Wang, Z.; Liu, Z.; Yue, X.; Zhu, L. Inferring microRNA-Environmental Factor Interactions Based on Multiple Biological Information Fusion. Molecules 2018, 23, 2439. [Google Scholar] [CrossRef]
- Jiang, L.; Ding, Y.; Tang, J.; Guo, F. MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association. Front. Genet. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Xiao, Y.; Ding, Y.; Tang, J.; Guo, F. FKL-Spa-LapRLS: An accurate method for identifying human microRNA-disease association. BMC Genom. 2019, 19, 11–25. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, L.; Lü, L.; Zou, Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics 2018, 34, 2425–2432. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zou, Q.; Rodriguez-Paton, A.; Zeng, X.X. Meta-Path Methods for Prioritizing Candidate Disease miRNAs. IEEE-ACM Trans. Comput. Biol. Bioinform. 2019, 16, 283–291. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Z.; Zhang, X.; Gao, A.; Wu, S.; Wang, J. Synstable Fusion: A Network-Based Algorithm for Estimating Driver Genes in Fusion Structures. Molecules 2018, 23, 2055. [Google Scholar] [CrossRef]
- Xing, Y.; Wu, C.; Yang, X.; Wang, W.; Zhu, E.; Yin, J. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers. Molecules 2018, 23, 1028. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Kadir, A. Image encryption using DNA complementary rule and chaotic maps. Appl. Soft Comput. 2012, 12, 1457–1466. [Google Scholar] [CrossRef]
- Wang, B.; Xie, Y.; Zhou, S.; Zheng, X.; Zhou, C. Correcting Errors in Image Encryption Based on DNA Coding. Molecules 2018, 23, 1878. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Guo, D.; Zhang, G.; Paul, P.; Zhu, M.; Yang, Q. A Resolution-Free Parallel Algorithm for Image Edge Detection within the Framework of Enzymatic Numerical P Systems. Molecules 2019, 24, 1235. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Zhu, W.; Lv, Z.; Zou, Q. Molecular Computing and Bioinformatics. Molecules 2019, 24, 2358. https://doi.org/10.3390/molecules24132358
Liang X, Zhu W, Lv Z, Zou Q. Molecular Computing and Bioinformatics. Molecules. 2019; 24(13):2358. https://doi.org/10.3390/molecules24132358
Chicago/Turabian StyleLiang, Xin, Wen Zhu, Zhibin Lv, and Quan Zou. 2019. "Molecular Computing and Bioinformatics" Molecules 24, no. 13: 2358. https://doi.org/10.3390/molecules24132358
APA StyleLiang, X., Zhu, W., Lv, Z., & Zou, Q. (2019). Molecular Computing and Bioinformatics. Molecules, 24(13), 2358. https://doi.org/10.3390/molecules24132358