Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells
Abstract
:1. Introduction
2. Results
2.1. Effect of Microfluidization Condition, Efficiency, Emulsion Size, and Zeta Potential of Vit-A and -C Nanoemulsion
2.2. Effect of Nanoemulsified Vitamins on MAC-T Cell Growth and Viability
2.3. Effects of Nanoemulsified Vitamins on the In Vitro Expression Changes of Casein mRNA in MAC-T Cells
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Chemicals
4.2. Preparation of Vit-A and Vit-C Nanoemulsion
4.3. Determination of Droplet Size (Diameter), Polydispersity Index (PDI), and Zeta Potential (ζ-Potential)
4.4. Analysis of Cell Growth and Viability
4.5. Investigating the Efficacy of Vit-A and Vit-C Nanoemulsion on the In Vitro Expression of Milk-Specific Proteins
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 2010, 75, R50–R57. [Google Scholar] [CrossRef] [PubMed]
- Luykx, D.M.; Peters, R.J.; Van Ruth, S.M.; Bouwmeester, H. A review of analytical methods for the identification and characterization of nano delivery systems in food. J. Agric. Food Chem. 2008, 56, 8231–8247. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 2009, 49, 577–606. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Arumugam, K. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of Gulf of Mannar, India. J. Nanobiotechnol. 2013, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, R.; Kannan, C.; Annaduarai, G. Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int. J. Pharma Biosci. 2012, 3, 12. [Google Scholar]
- Chu, B.S.; Ichikawa, S.; Kanafusa, S.; Nakajima, M. Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. J. Am. Oil Chem. Soc. 2007, 84, 1053–1062. [Google Scholar] [CrossRef]
- Chen, L.; Remondetto, G.E.; Subirade, M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 2006, 17, 272–283. [Google Scholar] [CrossRef]
- Spernath, A.; Aserin, A. Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid Interface Sci. 2006, 128–130, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Filippos, K.; Santipharp, P.; Yunhui, W. Applications of nanoparticles in oral delivery of immediate release formulations. Curr. Nanosci. 2007, 3, 183–190. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E.A.; Weiss, J. Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 2007, 72, R109–R124. [Google Scholar] [CrossRef]
- Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophys. 2008, 3, 146–154. [Google Scholar] [CrossRef]
- Acosta, E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 2009, 14, 3–15. [Google Scholar] [CrossRef]
- Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010, 5, 1595–1616. [Google Scholar] [CrossRef] [PubMed]
- Bourne, N.; Wathes, D.C.; Lawrence, K.E.; McGowan, M.; Laven, R.A. The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK. Vet. J. 2008, 177, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Girard, C.L.; Matte, J.J. Effects of intramuscular injections of vitamin B12 on lactation performance of dairy cows fed dietary supplements of folic acid and rumen-protected methionine. J. Dairy Sci. 2005, 88, 671–676. [Google Scholar] [CrossRef]
- Griffiths, L.M.; Loeffler, S.H.; Socha, M.T.; Tomlinson, D.J.; Johnson, A.B. Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Anim. Feed Sci. Technol. 2007, 137, 69–83. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Shafer-Weaver, K.; DeRosa, D. Immunobiology of the mammary gland. J. Dairy Sci. 1997, 80, 1851–1865. [Google Scholar] [CrossRef]
- Jukola, E.; Hakkarainen, J.; Saloniemi, H.; Sankari, S. Blood selenium, vitamin E, vitamin A, and beta-carotene concentrations and udder health, fertility treatments, and fertility. J. Dairy Sci. 1996, 79, 838–845. [Google Scholar] [CrossRef]
- Duncan, C.W.; Huffman, C.F.; Mitchell, R.; Reid, J.T. Symptom of scurvy observed in a herd of cattle. J. Dairy Sci. 1994, 24, 636. [Google Scholar]
- Wolf, G. Uptake of ascorbic acid by human neutrophils. Nutr. Rev. 1993, 51, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Siegel, B.V. Enhancement of interferon production by poly(rI)-poly(rC) in mouse cell cultures by ascorbic acid. Nature 1975, 254, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Archer, M.C.; Tannenbaum, S.R.; Fan, T.Y.; Weisman, M. Reaction of nitrite with ascorbate and its relation to nitrosamine formation. J. Nat. Cancer Ins. 1975, 54, 1203–1205. [Google Scholar] [CrossRef] [PubMed]
- Nandan, D.; Clarke, E.P.; Ball, E.H.; Sanwal, B.D. Ethyl-3,4-dihydroxybenzoate inhibits myoblast differentiation: Evidence for an essential role of collagen. J. Cell Biol. 1990, 110, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, T.; Nakada, M.; Fukase, M.; Imai, Y.; Kinoshita, Y.; Fujita, T. Effects of ascorbic acid on alkaline phosphatase activity and hormone responsiveness in the osteoblastic osteosarcoma cell line UMR-106. Calc. Tissue Inst. 1986, 39, 171–174. [Google Scholar] [CrossRef]
- Kawada, T.; Aoki, N.; Kamei, Y.; Maeshige, K.; Nishiu, S.; Sugimoto, E. Comparative investigation of vitamins and their analogues on terminal differentiation, from preadipocytes to adipocytes, of 3T3-L1 cells. Comp. Biochem. Physiol. A Com. Physiol. 1990, 96, 323–326. [Google Scholar] [CrossRef]
- Preynat, A.; Lapierre, H.; Thivierge, M.C.; Palin, M.F.; Matte, J.J.; Desrochers, A.; Girard, C.L. Effects of supplementation of folic acid and vitamin B12 and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J. Dairy Sci. 2009, 92, 677–689. [Google Scholar] [CrossRef]
- Kim, T.I.; Kim, T.G.; Lim, D.H.; Kim, S.B.; Park, S.M.; Lim, H.J.; Kim, H.J.; Ki, K.S.; Kwon, E.G.; Kim, Y.J.; et al. The effect of nanoemulsified methionine and cysteine on the in vitro expression of casein in bovine mammary epithelial cells. Asian-Australas. J. Anim. Sci. 2019, 32, 257–264. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. SoftMats 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Muller, R.H. Zeta-potential and Particle Charge in the Laboratory Practice Introduction to Theory, Practical and Data Interpretation; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 1996; p. 3. [Google Scholar]
- Justin, V. Physicochemical Characterization of a Nanodispersion, Obtained with a Phase Inversion Temperature Technique. Master’s Thesis, Ghent University, Ghent, Belgium, 2015. [Google Scholar]
- Arkers, M. Lactation and the Mammary Gland; Blackwell Publishing Professional: Ames, IA, USA, 2002; p. 291. [Google Scholar]
- Choi, Y.J.; Keller, W.L.; Berg, I.E.; Park, C.S.; Mackinlay, A.G. Casein gene expression in bovine mammary gland. J. Dairy Sci. 1988, 71, 2898–2903. [Google Scholar] [CrossRef]
- Teyssot, B.; Houdebine, L.M. Role of Prolactin in the Transcription of P-Casein and 28-S Ribosomal Genes in the Rabbit Mammary Gland. Eur. J. Biochem. 1980, 110, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, A.A.; Richards, D.A.; Kessler, D.J.; Rosen, J.M. Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 1982, 257, 3598–3605. [Google Scholar] [PubMed]
- Ono, M.; Perry, J.W.; Oka, T. Concentration-dependent differential effects of cortisol on synthesis of alpha-lactalbumin and of casein in cultured mouse mammary gland explants: Importance of prolactin concentration. Vitro 1981, 17, 121–128. [Google Scholar] [CrossRef]
- Talhouk, R.S.; Neiswander, R.L.; Schanbacher, F.L. Morphological and functional differentiation of cyopreserved lactating bovine mammary cells cultured on floating collagen gels. Tissue Cell 1993, 25, 799–816. [Google Scholar] [CrossRef]
- Huynh, H.T.; Robitaille, G.; Turner, J.D. Establishment of bovine mammary epithelial cells (MAC-T): An in vitro model for bovine lactation. Exp. Cell Res. 1991, 197, 191–199. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Gene | Forward Primer (5′-3′) | Reverse Primer (3′-5′) | Source |
---|---|---|---|
αs2 casein | AGCTCTCCACCAGTGAGGAA | GCAAGGCGAATTTCTGGTAA | NM_174528.2 |
β casein | GTGAGGAACAGCAGCAGCAAACA | TTTTGTGGGAGGCTGTTAGG | NM_181008 |
κ casein | CCAGGAGCAAAACCAAGAAC | TGCAACTGGTTTCTGTTGGT | NM_174294 |
GAPDH | GGGTCATCATCTCTGCACCT | GGTCATAAGTCCCTCCACGA | XM_001252479 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-I.; Kim, T.-G.; Lim, D.-H.; Kim, S.-B.; Park, S.-M.; Hur, T.-Y.; Ki, K.-S.; Kwon, E.-G.; Vijayakumar, M.; Kim, Y.-J. Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells. Molecules 2019, 24, 2566. https://doi.org/10.3390/molecules24142566
Kim T-I, Kim T-G, Lim D-H, Kim S-B, Park S-M, Hur T-Y, Ki K-S, Kwon E-G, Vijayakumar M, Kim Y-J. Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells. Molecules. 2019; 24(14):2566. https://doi.org/10.3390/molecules24142566
Chicago/Turabian StyleKim, Tae-Il, Tae-Gyun Kim, Dong-Hyun Lim, Sang-Bum Kim, Seong-Min Park, Tai-Young Hur, Kwang-Seok Ki, Eung-Gi Kwon, Mayakrishnan Vijayakumar, and Young-Jun Kim. 2019. "Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells" Molecules 24, no. 14: 2566. https://doi.org/10.3390/molecules24142566
APA StyleKim, T. -I., Kim, T. -G., Lim, D. -H., Kim, S. -B., Park, S. -M., Hur, T. -Y., Ki, K. -S., Kwon, E. -G., Vijayakumar, M., & Kim, Y. -J. (2019). Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells. Molecules, 24(14), 2566. https://doi.org/10.3390/molecules24142566