Solidago graminifolia L. Salisb. (Asteraceae) as a Valuable Source of Bioactive Polyphenols: HPLC Profile, In Vitro Antioxidant and Antimicrobial Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Quantification of Total Bioactive Compounds
2.2. Qualitative and Quantitative Analysis of Polyphenols
2.3. The Evaluation of In Vitro Antioxidant Activity
2.4. The Evaluation of Antibacterial Activity
2.5. The evaluation of Antifungal Activity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Preparation of Natural Extracts
3.4. Quantitative Analyses
3.5. LC-MS/MS Analysis of Polyphenols. Apparatus and Chromatographic Conditions
3.6. The Evaluation of In Vitro Antioxidant Activity
3.7. The Evaluation of Antibacterial Activity
3.8. The Evaluation of Antifungal Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wozniak, D.; Slusarczyk, S.; Domaradzi, K.; Drys, A.; Matkowski, A. Comparison of Polyphenol Profile and Antimutagenic and Antioxidant Activities in Two Species Used as Source of Solidaginis herba—Goldenrod. Chem. Biodivers. 2018, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Goulart, S.; Izabel, M.; Moritz, G.; Luise, K.; Liz, R.; Paulo, E.; Fr, S. Anti-inflammatory evaluation of Solidago chilensis Meyen in a murine model of pleuresy. J. Ethnopharmacol. 2007, 113, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Motaal, A.A.; Ezzat, S.M.; Tadros, M.G.; El, H.I. In vivo anti-inflammatory activity of caffeoylquinic acid derivatives from Solidago virgaurea in rats. Pharm. Biol. 2016, 54, 2864–2870. [Google Scholar] [CrossRef] [PubMed]
- Laurençon, L.; Sarrazin, E.; Chevalier, M.; Prêcheur, I.; Herbette, G.; Fernandez, X. Triterpenoid saponins from the aerial parts of Solidago virgaurea alpestris with inhibiting activity of Candida albicans yeast-hyphal conversion. Phytochemistry 2013, 86, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Starks, C.M.; Williams, R.B.; Goering, M.G.; O’Neil-Johnson, M.; Norman, V.L.; Hu, J.F.; Garo, E.; Hough, G.W.; Rice, S.M.; Eldridge, G.R. Antibacterial clerodane diterpenes from Goldenrod (Solidago virgaurea). Phytochemistry 2010, 71, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Kalemba, D.; Thiem, B. Constituents of the essential oils of four micropropagated Solidago species. Flavour Fragr. J. 2004, 19, 40–43. [Google Scholar] [CrossRef]
- Demir, H.; Acik, L.; Bali, E.B.; Koc, Y.; Kaynak, G. Antioxidant and antimicrobial activities of Solidago virgaurea extracts. Afr. J. Biotechnol. 2009, 8, 274–279. [Google Scholar]
- Zielińka, M.; Kostrzewa, A.; Ignatowicz, E.; Budzianowski, J. The flavonoids, quercetin and isorhamnetin 3-O-acylglucosides diminish neutrophil oxidative metabolism and lipid peroxidation. Acta Biochim. Pol. 2001, 48, 183–189. [Google Scholar]
- Kołodziej, B. Antibacterial and antimutagenic activity of extracts aboveground parts of three Solidago species: Solidago virgaurea L.; Solidago canadensis L. and Solidago gigantea Ait. J. Med. Plants Res. 2011, 5, 6770–6779. [Google Scholar] [CrossRef]
- Leuschner, J. Anti-inflammatory, spasmolytic and diuretic effects of a commercially available Solidago gigantea Herb. extract. Arzneimittelforschung 1995, 45, 165–168. [Google Scholar] [PubMed]
- Liz, R.; Vigil, S.V.G.; Goulart, S.; Izabel, M.; Moritz, G.; Schenkel, E.P.; Fröde, T.S. The anti-inflammatory modulatory role of Solidago chilensis Meyen in the murine model of the air pouch. J. Pharm. Pharmacol. 2008, 60, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kim, J.H.; Jang, Y.S.; Kim, C.H.; Lee, J.Y.; Lim, S.S. Anti-obesity effect of Solidago virgaurea var. gigantea extract through regulation of adipogenesis and lipogenesis pathways in high-fat diet-induced obese mice (C57BL/6N). Food Nutr. Res. 2017, 61, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.S.; Wang, Z.; Lee, J.M.; Lee, J.Y.; Lim, S.S. Screening of Korean natural products for anti-adipogenesis properties and isolation of kaempferol-3-o-rutinoside as a potent anti-adipogenetic compound from Solidago virgaurea. Molecules 2016, 21, 226. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.C.; Goodarzi, G.; Watabe, M.; Bandyopadhyay, S.; Pai, S.K.; Watabe, K. Antineoplastic activity of Solidago virgaurea on prostatic tumor cells in an SCID mouse model. Nutr. Cancer 2002, 43, 76–81. [Google Scholar] [CrossRef]
- Sung, H.; Lee, O.; Son, K.; Park, N.S.; Kim, M.R.; Kim, J.G.; Moon, D.C. Cytotoxic Constituents from Solidago virga-aurea var, gigantea MIQ. Arch. Pharm. Res. 1999, 22, 633–637. [Google Scholar] [CrossRef] [PubMed]
- De Barros, M.; Mota Da Silva, L.; Boeing, T.; Somensi, L.B.; Cury, B.J.; De Moura Burci, L.; Santin, J.R.; De Andrade, S.F.; Monache, F.D.; Cechinel-Filho, V. Pharmacological reports about gastroprotective effects of methanolic extract from leaves of Solidago chilensis (Brazilian arnica) and its components quercitrin and afzelin in rodents. Naunyn Schmiedebergs Arch. Pharmacol. 2016, 389, 403–417. [Google Scholar] [CrossRef]
- Bucciarelli, A.; Minetti, A.; Milczakowskyg, C.; Skliar, M. Evaluation of gastroprotective activity and acute toxicity of Solidago chilensis Meyen (Asteraceae). Pharm. Biol. 2010, 48, 1025–1030. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Rodriguez, J.; Astudillo, L. Gastroprotective activity of the diterpene solidagenone and its derivatives on experimentally induced gastric lesions in mice. J. Ethnopharmacol. 2002, 81, 111–115. [Google Scholar] [CrossRef]
- Budzianowski, J. The urological effect of leiocarposides. Drog. Rep. 1999, 12, 20–21. [Google Scholar]
- Chodera, A.; Dabrowska, K.; Bobkiewicz-Kozlowska, T.; Tkaczyk, J.; Skrzypczak, L.; Budzianowski, J. Effect of leiocarposide on experimental urinary calculi in rats. Acta Pol. Pharm. 1988, 45, 181–186. [Google Scholar]
- Chodera, A.; Dabrowska, K.; Sloderbach, A.; Skrzypczak, L.; Budzianowski, J. Effect of flavonoid fractions of Solidago virgaurea L on diuresis and levels of electrolytes. Acta Pol. Pharm. 1991, 48, 35–37. [Google Scholar] [PubMed]
- El Ghazaly, M.; Khayyal, M.T.; Okpanyi, S.N.; Arens-Corell, M. Study of the anti-inflammatory activity of Populus tremula, Solidago virgaurea and Fraxinus excelsior. Arzneimittelforschung 1992, 42, 333–336. [Google Scholar] [PubMed]
- Tamura, E.K.; Jimenez, R.S.; Waismam, K.; Gobbo-Neto, L.; Lopes, N.P.; Malpezzi-Marinho, E.A.L.; Marinho, E.A.V.; Farsky, S.H.P. Inhibitory effects of Solidago chilensis Meyen hydroalcoholic extract on acute inflammation. J. Ethnopharmacol. 2009, 122, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Metzner, J.; Hirschelmann, R.; Hiller, K. Antiphlogistic and analgesic effects of leiocarposide, a phenolic bisglucoside of Solidago virgaurea L. Pharmazie 1984, 39, 869–870. [Google Scholar] [PubMed]
- Apáti, P.; Kéry, Á.; Houghton, P.J.; Steventon, G.B.; Kite, G. In-vitro effect of flavonoids from Solidago canadensis extract on glutathione S-transferase. J. Pharm. Pharmacol. 2006, 58, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedula, V.S.; Zhou, B.N.; Gao, Z.; Thomas, S.J.; Hecht, S.M.; Kingston, D.G. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase beta. Bioorg. Med. Chem. 2004, 12, 6271–6275. [Google Scholar] [CrossRef] [PubMed]
- Plohmann, B.; Bader, G.; Hiller, K.; Franz, G. Immunomodulatory and antitumoral effects of triterpenoid saponins. Pharmazie 1997, 52, 953–957. [Google Scholar] [PubMed]
- Bader, G.; Seibold, M.; Tintelnot, K.; Hiller, K. Cytotoxicity of triterpenoid saponins. Part 2. Relationships between the structures of glycosides of polygalacic acid and their activities against pathogenic Candida species. Pharmazie 2000, 55, 72–74. [Google Scholar]
- Yarnell, E. Botanical medicines for the urinary tract. Artic. World J. Urol. 2002, 20, 285–293. [Google Scholar]
- Cai, T.; Caola, I.; Tessarolo, F.; Piccoli, F.; D’Elia, C.; Caciagli, P.; Nollo, G.; Malossini, G.; Nesi, G.; Mazzoli, S.; et al. Solidago, orthosiphon, birch and cranberry extracts can decrease microbial colonization and biofilm development in indwelling urinary catheter: A microbiologic and ultrastructural pilot study. World J. Urol. 2014, 32, 1007–1014. [Google Scholar] [CrossRef]
- Melzig, M.; Löser, B.; Bader, G.; Papsdorf, G. European goldenrod as anti-inflammatory drug. Z. Für Phyther. 2000, 21, 67–70. [Google Scholar]
- Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-814774-0. [Google Scholar]
- Meyer, B.; Schneider, W.; Elstner, E. Antioxidative properties of alcoholic extracts from Fraxinus excelsior, Populus tremula and Solidago virgaurea. Arzneimittelforschung 1995, 45, 174–176. [Google Scholar] [PubMed]
- Borchert, V.E.; Czyborra, P.; Fetscher, C.; Goepel, M.; Michel, M.C. Extracts from Rhois aromatica and Solidaginis virgaurea inhibit rat and human bladder contraction. Naunyn Schmiedebergs Arch. Pharmacol. 2004, 369, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.; Pérez-Vizcaíno, F.; Zarzuelo, A.; Jiménez, J.; Tamargo, J. Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1993, 239, 1–7. [Google Scholar] [CrossRef]
- Duarte, J.; Pérez Vizcaíno, F.; Utrilla, P.; Jiménez, J.; Tamargo, J.; Zarzuelo, A. Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen. Pharmacol. 1993, 24, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Brantner, A. The antimicrobial activity of Solidago-containing phytourologica. Drog. Rep. 1999, 12, 27–28. [Google Scholar]
- Thiem, B.; Goślińska, O. Antimicrobial activity of Solidago virgaurea L. from in vitro cultures. Fitoterapia 2002, 73, 514–516. [Google Scholar] [CrossRef]
- Bader, G.; Kulhanek, Y.; Ziegler-Bohme, H. Antifungal action of glycosides of polygalacic acid. Pharmazie 1990, 45, 618–680. [Google Scholar] [PubMed]
- Choi, S.; Choi, S.; Bae, S.; Pyo, S.; Lee, K. Immunobiological [correction of Immunobioloical] activity of a new benzyl benzoate from the aerial parts of Solidago virga-aurea var. gigantea. Arch. Pharm. Res. 2005, 28, 49–54. [Google Scholar] [CrossRef] [PubMed]
- El-Tantawy, W.H. Biochemical effects of Solidago virgaurea extract on experimental cardiotoxicity. J. Physiol. Biochem. 2014, 70, 33–42. [Google Scholar] [CrossRef]
- Dajdok, Z.; Nowak, A. Solidago graminifolia (L.) Elliott in Poland-spreading and habitat preferences. In Plant Invasions: Human Perception, Ecological Impacts and Management; Tokarska-Guzik, B., Brock, J., Brundu, G., Child, L., Daehler, C., Pysek, P., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2008; pp. 101–116. [Google Scholar]
- Fitter, A.H. Flora Europaea, 7th ed.; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 2010; Volume 14. [Google Scholar]
- Lam, J.; Christensen, L.P.; Färch, T.; Thomasen, T. Acetylenes from the roots of Solidago species. Phytochemistry 1992, 31, 4159–4161. [Google Scholar] [CrossRef]
- Budzianowski, J. Two di-C-glycosylflavones from Solidago graminifolia. Sci. Pharm. 1990, 58, 413–416. [Google Scholar]
- Kalemba, D.; Weyerstahl, P.; Marschall, H. Constituents of the essential oil of Solidago graminifolia (L.) salisb. Flavour Fragr. J. 1994, 9, 269–274. [Google Scholar] [CrossRef]
- Thiem, B.; Wesolowska, M.; Skrzypczak, L.; Budzianowski, J. Phenolic compounds in two Solidago, L. species from in vitro culture. Acta Pol. Pharm. Drug Res. 2001, 58, 277–281. [Google Scholar]
- Derda, M.; Hadaś, E.; Thiem, B. Plant extracts as natural amoebicidal agents. Parasitol. Res. 2009, 104, 705–708. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. A critical review on polyphenols and health benefits of black soybeans. Nutrients 2017, 9, 1–17. [Google Scholar]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Pandey, K.; Rizvi, S. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Effect of solvent type and extraction conditions on the recovery of Phenolic compounds from artichoke waste. Chem. Eng. Trans. 2014, 39, 463–468. [Google Scholar]
- Hsieh, C.W.; Ko, W.C.; Ho, W.J.; Chang, C.K.; Chen, G.J.; Tsai, J.C. Antioxidant and hepatoprotective effects of Ajuga nipponensis extract by ultrasonic-assisted extraction. Asian Pac. J. Trop. Med. 2016, 9, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H. Bin Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Shao, D.; Atungulu, G.G.; Pan, Z.; Yue, T.; Zhang, A.; Li, X. Study of Optimal Extraction Conditions for Achieving High Yield and Antioxidant Activity of Tomato Seed Oil. J. Food Sci. 2012, 77, 202–208. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Tejada, S.; Setzer, W.N.; Gortzi, O.; Sureda, A.; Braidy, N.; Daglia, M.; Manayi, A.; Nabavi, S.M. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Curr. Neuropharmacol. 2016, 15, 471–479. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic Effects of Plant Flavonoids. Biomed. Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015, 106, 256–271. [Google Scholar] [CrossRef]
- Pereira, R.P.; Fachinetto, R.; De Souza Prestes, A.; Puntel, R.L.; Santos Da Silva, G.N.; Heinzmann, B.M.; Boschetti, T.K.; Athayde, M.L.; Bürger, M.E.; Morel, A.F.; et al. Antioxidant effects of different extracts from melissa officinalis, matricaria recutita and cymbopogon citratus. Neurochem. Res. 2009, 34, 973–983. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of malaysia young ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 162750, 1–16. [Google Scholar] [CrossRef]
- Hong, C.O.; Lee, H.A.; Rhee, C.H.; Choung, S.Y.; Lee, K.W. Separation of the Antioxidant Compound Quercitrin from Lindera obtusiloba Blume and Its Antimelanogenic Effect on B16F10 Melanoma Cells. Biosci. Biotechnol. Biochem. 2013, 77, 58–64. [Google Scholar] [CrossRef]
- Coqueiro, A.; Regasini, L.O.; Skrzek, S.C.G.; Queiroz, M.M.F.; Silva, D.H.S.; Da Silva Bolzani, V. Free radical scavenging activity of Kielmeyera variabilis (Clusiaceae). Molecules 2013, 18, 2376–2385. [Google Scholar] [CrossRef]
- Salvat, A.; Antonacci, L.; Fortunato, R.H.; Suarez, E.Y.; Godoy, H.M. Antimicrobial activity in methanolic extracts of several plant species from northern Argentina. Phytomedicine 2004, 11, 230–234. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abreu, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346–357. [Google Scholar] [CrossRef]
- Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93, 3205–3208. [Google Scholar] [CrossRef]
- Bajko, E.; Kalinowska, M.; Borowski, P.; Siergiejczyk, L.; Lewandowski, W. 5-O-Caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. LWT Food Sci. Technol. 2016, 65, 471–479. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Abdollahi, M.; Rahimi, R. Role of dietary polyphenols in the management of peptic ulcer. World J. Gastroenterol. 2015, 21, 6499–6517. [Google Scholar] [CrossRef]
- Mishra, D.; Joshi, S.; Bisht, G.; Pilkhwal, S. Chemical composition and antimicrobial activity of solidago canadensis linn. Root essential oil. J. Basic Clin. Pharm. 2010, 1, 187–190. [Google Scholar]
- Morel, A.F.; Dias, G.O.; Porto, C.; Simionatto, E.; Stuker, C.Z.; Dalcol, I.I. Antimicrobial activity of extractives of Solidago microglossa. Fitoterapia 2006, 77, 453–455. [Google Scholar] [CrossRef]
- Webster, D.; Taschereau, P.; Belland, R.J.; Sand, C.; Rennie, R.P. Antifungal activity of medicinal plant extracts; preliminary screening studies. J. Ethnopharmacol. 2008, 115, 140–146. [Google Scholar] [CrossRef]
- Uma, K.; Huang, X.; Kumar, B.A. Antifungal effect of plant extract and essential oil. Chin. J. Integr. Med. 2017, 23, 233–239. [Google Scholar] [CrossRef]
- Martínez, G.; Regente, M.; Jacobi, S.; Del Rio, M.; Pinedo, M.; de la Canal, L. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Physiol. 2017, 140, 30–35. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Lu, C.; Gong, Y.; Li, M.; Sun, S. Promising Antifungal Targets Against Candida albicans Based on Ion Homeostasis. Front. Cell. Infect. Microbiol. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Sung, W.S.; Lee, D.G. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl. Chem. 2010, 82, 219–226. [Google Scholar] [CrossRef]
- Pepeljnjak, S.; Kustrak, D.; Vukusic, I. Investigation of the antimycotic activity of Solidago virgaurea and Solidago gigantea extracts. Pharm. Pharmacol. Lett. 1998, 8, 85–86. [Google Scholar]
- Vila, R.; Mundina, M.; Tomi, F.; Furlan, R.; Zacchino, S.; Casanova, J.; Cañigueral, S. Composition and antifungal activity of the essential oil of Solidago chilensis. Planta Med. 2002, 68, 164–167. [Google Scholar] [CrossRef]
- Taămasş, M.; Toiu, A.; Oniga, I.; Deliu, C.; Oltean, B.; Coldea, G. Quantitative determination of total polyphenols and flavonoids from indigenous species of Epilobium of wild origin and “in vitro” regenerated plantlets. Contrib. Bot. 2009, 44, 119–123. [Google Scholar]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.M.; Moldovan, C.; Oniga, I. Phytochemical composition, antioxidant, antimicrobial and in vivo anti-inflammatory activity of traditionally used Romanian Ajuga laxmannii (Murray) Benth. (“nobleman’s beard”-barba împăratului). Front. Pharmacol. 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.-M.; Moldovan, C.; Oniga, I.; Toiu, A.; Mocan, A.; et al. Comparative Phytochemical Profile, Antioxidant, Antimicrobial and In Vivo Anti-Inflammatory Activity of Different Extracts of Traditionally Used Romanian Ajuga genevensis L. and A. reptans L. (Lamiaceae). Molecules 2019, 24, 1597. [Google Scholar] [CrossRef]
Sample Availability: No samples are available from the authors. |
Extract | Yield (mg/g) | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg RE/g) |
---|---|---|---|
Petroleum ether extract (PEE) | 121.2 ± 1.39 | 40.67 ± 1.87 | 98.44 ± 3.81 |
Chloroform extract (CE) | 40.51 ± 1.02 | 18.74 ± 0.16 | 45.63 ± 1.06 |
Ethanol extract (EE) | 317.17 ± 3.42 | 192.69 ± 2.64 | 151.41 ± 2.44 |
Methanol extract (ME) | 295.4 ± 3.15 | 179.04 ± 2.55 | 130.58 ± 2.08 |
Aqueous extract (AE) | 280.01 ± 3.01 | 166.29 ± 2.08 | 128.37 ± 1.82 |
Polyphenolic Compound | [M − H]− m/z | Main Daughter Ions | RT a,b,c ± SD (min) | Polyphenol Content mg/100 g Extract |
---|---|---|---|---|
Caftaric acid | 311 | 148.6, 178.6 | 3.34 b ± 0.05 | <LOQ |
Gentisic acid | 153 | 108.7 | 3.69 b ± 0.04 | <LOQ |
Chlorogenic acid | 353 | 178.7, 190.7 | 5.6 b ± 0.05 | 997.88 ± 7.63 |
p-Coumaric acid | 163 | 118.7 | 9.18 b ± 0.08 | 9.89 ± 0.27 |
Ferulic acid | 193 | 133.7, 148.7, 177.6 | 12.8 b ± 0.10 | 1.04 ± 0.05 |
Hyperoside | 463 | 254.9, 270.9, 300.7 | 19.02 b ± 0.12 | 253.19 ± 1.58 |
Rutin | 609 | 254.9, 270.9, 300.7, 342.8 | 20.06 b ± 0.15 | <LOQ |
Quercitrin | 447 | 178.8, 300.7 | 23.44 b ± 0.13 | 431.59 ± 2.94 |
Quercetin | 301 | 150.6, 178.6, 272.7 | 26.8 b ± 0.11 | 130.33 ± 1.04 |
Luteolin | 285 | 150.6, 174.6, 198.6, 240.7 | 29.64 b ± 0.19 | 2.7 ± 0.09 |
Kaempferol | 285 | 150.6, 256.7 | 32.48 b ± 0.07 | 45.53 ± 3.82 |
Gallic acid | 169 | 169 * | 1.5 c ± 0.09 | 3.22 ± 0.11 |
Protocatechuic acid | 153 | 153 * | 2.8 c ± 0.15 | 64.08 ± 4.53 |
Vanillic acid | 167 | 167 * | 6.7 c ± 0.17 | 2.52 ± 0.08 |
Syringic acid | 197 | 197 * | 8.4 c ± 0.11 | 7.19 ± 0.51 |
Rosmarinic acid | 359 | 160.6, 178.6, 196.7 | 2.2 a ± 0.18 | 19.23 ± 0.88 |
Extract | DPPH Scavenging Activity IC50 (μg/mL) | ABTS Scavenging Activity (mg TE/g dw) |
---|---|---|
Ethanol extract (EE) | 12.61 ± 0.74 | 249.55 ± 3.02 |
Methanol extract (ME) | 20.39 ± 0.31 | 196.81 ± 2.35 |
Aqueous extract (AE) | 28.44 ± 0.59 | 165.31 ± 2.06 |
Extract/Bacterial Strain | S. aureus | P. aeruginosa | L. monocytogenes | E. coli | S. typhimurium |
---|---|---|---|---|---|
Ethanol extract MIC (mg/mL) | 0.04 ± 0.001 | 1.56 ± 0.01 | 1.56 ± 0.02 | 1.56 ± 0.01 | 3.12 ± 0.03 |
Ethanol extract MBC (mg/mL) | 0.09 ± 0.002 | 3.12 ± 0.02 | 3.12 ± 0.03 | 3.1 ± 0.02 | 6.25 ± 0.07 |
Methanol extract MIC (mg/mL) | 0.09 ± 0.001 | 3.12 ± 0.01 | 1.56 ± 0.02 | 3.12 ± 0.01 | 3.12 ± 0.04 |
Methanol extract MBC (mg/mL) | 0.19 ± 0.001 | 6.25 ± 0.04 | 3.12 ± 0.02 | 6.25 ± 0.05 | 6.25 ± 0.03 |
Aqueous extract MIC (mg/mL) | 0.09 ± 0.001 | 3.12 ± 0.01 | 3.12 ± 0.03 | 3.12 ± 0.01 | 3.12 ± 0.04 |
Aqueous extract MBC (mg/mL) | 0.19 ± 0.001 | 6.25 ± 0.04 | 6.25 ± 0.05 | 6.25 ± 0.05 | 6.25 ± 0.03 |
Gentamycin MIC (μg/mL) | 0.03 ± 0.001 | 1.2 ± 0.02 | 0.07 ± 0.001 | 1.2 ± 0.01 | 2.4 ± 0.03 |
Gentamycin MBC (μg/mL) | 0.07 ± 0.002 | 2.4 ± 0.04 | 0.15 ± 0.01 | 2.4 ± 0.05 | 4.8 ± 0.07 |
Extract/Bacterial Strain | Aspergillus flavus | Aspergillus niger | Candida albicans | Candida parapsilosis | Penicillium fumiculosum |
---|---|---|---|---|---|
Ethanol extract MIC (mg/mL) | 0.05 ± 0.008 | 0.05 ± 0.002 | 0.01 ± 0.006 | 0.01 ± 0.003 | 0.05 ± 0.004 |
Ethanol extract MFC (mg/mL) | 0.1 ± 0.002 | 0.1 ± 0.003 | 0.02 ± 0.003 | 0.02 ± 0.002 | 0.1 ± 0.003 |
Methanol extract MIC (mg/mL) | 0.05 ± 0.006 | 0.1 ± 0.005 | 0.02 ± 0.007 | 0.01 ± 0.004 | 0.1 ± 0.006 |
Methanol extract MFC (mg/mL) | 0.1 ± 0.002 | 0.2 ± 0.006 | 0.05 ± 0.004 | 0.02 ± 0.006 | 0.2 ± 0.005 |
Aqueous extract MIC (mg/mL) | 0.1 ± 0.005 | 0.1 ± 0.004 | 0.05 ± 0.008 | 0.05 ± 0.006 | 0.1 ± 0.007 |
Aqueous extract MFC (mg/mL) | 0.2 ± 0.006 | 0.2 ± 0.008 | 0.1 ± 0.006 | 0.1 ± 0.007 | 0.2 ± 0.006 |
Gentamycin MIC (μg/mL) | 0.15 ± 0.03 | 0.15 ± 0.03 | 0.1 ± 0.02 | 0.1 ± 0.02 | 0.15 ± 0.03 |
Gentamycin MFC (μg/mL) | 0.3 ± 0.05 | 0.3 ± 0.06 | 0.2 ± 0.04 | 0.2 ± 0.04 | 0.3 ± 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toiu, A.; Vlase, L.; Vodnar, D.C.; Gheldiu, A.-M.; Oniga, I. Solidago graminifolia L. Salisb. (Asteraceae) as a Valuable Source of Bioactive Polyphenols: HPLC Profile, In Vitro Antioxidant and Antimicrobial Potential. Molecules 2019, 24, 2666. https://doi.org/10.3390/molecules24142666
Toiu A, Vlase L, Vodnar DC, Gheldiu A-M, Oniga I. Solidago graminifolia L. Salisb. (Asteraceae) as a Valuable Source of Bioactive Polyphenols: HPLC Profile, In Vitro Antioxidant and Antimicrobial Potential. Molecules. 2019; 24(14):2666. https://doi.org/10.3390/molecules24142666
Chicago/Turabian StyleToiu, Anca, Laurian Vlase, Dan Cristian Vodnar, Ana-Maria Gheldiu, and Ilioara Oniga. 2019. "Solidago graminifolia L. Salisb. (Asteraceae) as a Valuable Source of Bioactive Polyphenols: HPLC Profile, In Vitro Antioxidant and Antimicrobial Potential" Molecules 24, no. 14: 2666. https://doi.org/10.3390/molecules24142666
APA StyleToiu, A., Vlase, L., Vodnar, D. C., Gheldiu, A. -M., & Oniga, I. (2019). Solidago graminifolia L. Salisb. (Asteraceae) as a Valuable Source of Bioactive Polyphenols: HPLC Profile, In Vitro Antioxidant and Antimicrobial Potential. Molecules, 24(14), 2666. https://doi.org/10.3390/molecules24142666