Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing
Abstract
:1. Introduction
2. Sensing of Halides and Halogen-Containing Anions
2.1. Sensing of Fluorides
2.2. Sensing of Chlorides
2.3. Sensing of Hypochlorite and Perchlorate
2.4. Iodide Sensing
3. Sensing of Cyanide
4. Sensing of Sulphur-Containing Oxoanions
4.1. Sensing of Bisulphite
4.2. Sensing of Sulphite
4.3. Sensing of Bisulphate
5. Sensing of Phosphorus-Containing Anions
5.1. Sensing of Phosphates
5.2. Sensing of Pyrophosphates
5.3. Sensing of Adenosine Triphosphates
6. Sensing of Nitrogen-Containing Oxoanions
6.1. Sensing of Nitrates
6.2. Sensing of Nitrites
7. Sensing of Other Anions
7.1. Sensing of Carbonates
7.2. Sensing of Perrhenate
7.3. Sensing of L-Lactate
7.4. Sensing of Citrates
7.5. Sensing of Anionic Surfactants
8. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Basabe-Desmonts, L.; Reinhoudt, D.N.; Crego-Calama, M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 2007, 36, 993. [Google Scholar] [CrossRef] [PubMed]
- Moragues, M.E.; Martinez-Manez, R.; Sancenon, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem. Soc. Rev. 2011, 40, 2593–2643. [Google Scholar] [CrossRef] [PubMed]
- Santos-Figueroa, L.E.; Moragues, M.E.; Climent, E.; Agostini, A.; Martinez-Manez, R.; Sancenon, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem. Soc. Rev. 2013, 42, 3489–3613. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 2014, 114, 590–659. [Google Scholar] [CrossRef] [PubMed]
- Ashton, T.D.; Jolliffe, K.A.; Pfeffer, F.M. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem. Soc. Rev. 2015, 44, 4547–4595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Kwon, B.; Liu, W.; Anslyn, E.V.; Wang, P.; Kim, J.S. Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem. Rev. 2015, 115, 7893–7943. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef]
- Lin, V.S.; Chen, W.; Xian, M.; Chang, C.J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem. Soc. Rev. 2015, 44, 4596–4618. [Google Scholar] [CrossRef]
- Pradhan, T.; Jung, H.S.; Jang, J.H.; Kim, T.W.; Kang, C.; Kim, J.S. Chemical sensing of neurotransmitters. Chem. Soc. Rev. 2014, 43, 4684–4713. [Google Scholar] [CrossRef]
- Kaur, N.; Chopra, S.; Singh, G.; Raj, P.; Bhasin, A.; Sahoo, S.K.; Kuwar, A.; Singh, N. Chemosensors for biogenic amines and biothiols. J. Mater. Chem. B 2018, 6, 4872–4902. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Hu, Y.; Yoon, J. Fluorescent probes and bioimaging: Alkali metals, alkaline earth metals and pH. Chem. Soc. Rev. 2015, 44, 4619–4644. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.R.C.; Sahoo, S.K.; Kamila, S.; Singh, N.; Kaur, N.; Hyland, B.W.; Callan, J.F. Optical probes for the detection of protons, and alkali and alkaline earth metal cations. Chem. Soc. Rev. 2015, 44, 4415–4432. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal. Chem. 2018, 90, 533–555. [Google Scholar] [CrossRef] [PubMed]
- Förster, T. Excimers. Angew. Chem. Int. Ed. Engl. 1969, 8, 333–343. [Google Scholar] [CrossRef]
- Mei, J.; Hong, Y.; Lam, J.W.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Leung, N.L.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332–4353. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, E.; Lam, J.W.Y.; Tang, B.Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377. [Google Scholar] [CrossRef]
- Chen, J.; Tang, B.Z. Restricted Intramolecular Rotations: A Mechanism for Aggregation-Induced Emission. In Aggregation-Induced Emission: Fundamentals and Applications; Qin, A., Tang, B.Z., Eds.; John Wiley and Sons Ltd.: Chichester, West Sussex, UK, 2013; Volumes 1 and 2, pp. 307–322. [Google Scholar]
- Leung, N.L.C.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J.W.Y.; Tang, B.Z. Restriction of Intramolecular Motions: The General Mechanism behind Aggregation-Induced Emission. Chem.-Eur. J. 2014, 20, 15349–15353. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.-X.; Tao, X.-T.; Ren, Y.; Li, Y.; Yang, J.-X.; Yu, W.-T.; Wang, L.; Jiang, M.-H. Synthesis, Structure, and Aggregation-Induced Emission of a Novel Lambda (Λ)-Shaped Pyridinium Salt Based on Tröger’s Base. J. Phys. Chem. C 2007, 111, 12811–12816. [Google Scholar] [CrossRef]
- Nishiuchi, T.; Tanaka, K.; Kuwatani, Y.; Sung, J.; Nishinaga, T.; Kim, D.; Iyoda, M. Solvent-Induced Crystalline-State Emission and Multichromism of a Bent π-Surface System Composed of Dibenzocyclooctatetraene Units. Chem.-Eur. J. 2013, 19, 4110–4116. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi, S. Hybridization of a Flexible Cyclooctatetraene Core and Rigid Aceneimide Wings for Multiluminescent Flapping π Systems. Chem.-Eur. J. 2014, 20, 2193–2200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Zhang, T.; Liang, X.J. Aggregation-Induced Emission: Lighting up Cells, Revealing Life! Small 2016, 12, 6451–6477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 2015, 7, 11486–11508. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R.T.; Leung, C.W.; Lam, J.W.; Tang, B.Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228–4238. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, H.; Hong, Y.; Tang, B.Z. Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater. Horiz. 2016, 3, 283–293. [Google Scholar] [CrossRef]
- Liang, J.; Tang, B.Z.; Liu, B. Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 2015, 44, 2798–2811. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471–2487. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Li, Q.; Li, Z. Blue AIEgens: Approaches to control the intramolecular conjugation and the optimized performance of OLED devices. J. Mater. Chem. C 2016, 4, 2663–2684. [Google Scholar] [CrossRef]
- La, D.D.; Bhosale, S.V.; Jones, L.A.; Bhosale, S.V. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Tang, B.Z. Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sens. 2017, 2, 1382–1399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Lam, J.W.Y.; Tang, B.Z. Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter 2013, 9, 4564. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Lam, J.W.; Tang, B.Z. Mechanochromic Luminescence of Aggregation-Induced Emission Luminogens. J. Phys. Chem. Lett. 2015, 6, 3429–3436. [Google Scholar] [CrossRef]
- Gale, P.A.; Caltagirone, C. Fluorescent and colorimetric sensors for anionic species. Coord. Chem. Rev. 2018, 354, 2–27. [Google Scholar] [CrossRef]
- Gale, P.A.; Caltagirone, C. Anion sensing by small molecules and molecular ensembles. Chem. Soc. Rev. 2015, 44, 4212–4227. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, G.; Fegade, U.A.; Singh, A.; Sahoo, S.K.; Kuwar, A.S.; Singh, N. Anion sensing with chemosensors having multiple NH recognition units. TrAC Trends Anal. Chem. 2017, 95, 86–109. [Google Scholar] [CrossRef]
- Itai, K.; Tsunoda, H. Highly sensitive and rapid method for determination of fluoride ion concentrations in serum and urine using flow injection analysis with a fluoride ion-selective electrode. Clin. Chim. Acta 2001, 308, 163–171. [Google Scholar] [CrossRef]
- Konieczka, P.; Zygmunt, B.; Namiesnik, J. Comparison of Fluoride Ion-Selective Electrode Based Potentiometric Methods of Fluoride Determination in Human Urine. Bull. Environ. Contam. Toxicol. 2000, 64, 794–803. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.F.; Yoon, J. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem. Rev. 2014, 114, 5511–5571. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Qiu, F.; Zhang, F.; Mai, Y.; Wang, Y.; Fu, S.; Tang, R.; Zhuang, X.; Feng, X. A dual-boron-cored luminogen capable of sensing and imaging. Chem. Commun. 2015, 51, 5298–5301. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.R.; Sarkar, S.K.; Thilagar, P. Aggregation-Induced Emission and Sensing Characteristics of Triarylborane-Oligothiophene-Dicyanovinyl Triads. Chemistry 2016, 22, 17215–17225. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhuang, Z.; Lin, G.; Wang, Z.; Shen, P.; Xiong, Y.; Wang, B.; Chen, S.; Zhao, Z.; Tang, B.Z. A new blue AIEgen based on tetraphenylethene with multiple potential applications in fluorine ion sensors, mechanochromism, and organic light-emitting diodes. New J. Chem. 2018, 42, 4089–4094. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Cao, D. Synthesis, photoluminescence, chromogenic and fluorogenic discrimination of fluoride and cyanide based on a triphenylamine-tri(2-formyl BODIPY) conjugate. Sens. Actuators B Chem. 2017, 241, 1224–1234. [Google Scholar] [CrossRef]
- Alam, P.; Kachwal, V.; Rahaman Laskar, I. A multi-stimuli responsive “AIE” active salicylaldehyde-based Schiff base for sensitive detection of fluoride. Sens. Actuators B Chem. 2016, 228, 539–550. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, X.; Wu, Y.; Wang, J.; Dong, X.; Zhang, G.; Li, Y.; Fan, X. An AIE based tetraphenylethylene derivative for highly selective and light-up sensing of fluoride ions in aqueous solution and in living cells. RSC Adv. 2016, 6, 59400–59404. [Google Scholar] [CrossRef]
- Du, M.; Huo, B.; Li, M.; Shen, A.; Bai, X.; Lai, Y.; Liu, J.; Yang, Y. A “Turn-On” fluorescent probe for sensitive and selective detection of fluoride ions based on aggregation-induced emission. RSC Adv. 2018, 8, 32497–32505. [Google Scholar] [CrossRef]
- Bineci, M.; Bağlan, M.; Atılgan, S. AIE active pyridinium fused tetraphenylethene: Rapid and selective fluorescent “turn-on” sensor for fluoride ion in aqueous media. Sens. Actuators B Chem. 2016, 222, 315–319. [Google Scholar] [CrossRef]
- Lee, D.; Lee, C.; Jun, E.J.; Lee, M.; Park, S.; Yoon, J. Selective Recognition of Fluoride by using a Benzobisimidazolium Derivative through Aggregation-Induced Fluorescence. ChemistryOpen 2017, 6, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Gong, G.F.; Fan, Y.Q.; Chen, Y.Y.; Wang, J.; Guan, X.W.; Liu, J.; Zhang, Y.M.; Yao, H.; Wei, T.B. Anion induced supramolecular polymerization: A novel approach for the ultrasensitive detection and separation of F−. Chem. Commun. 2019, 55, 3247–3250. [Google Scholar] [CrossRef]
- Hiremath, S.D.; Gawas, R.U.; Mascarenhas, S.C.; Ganguly, A.; Banerjee, M.; Chatterjee, A. A water-soluble AIE-gen for organic-solvent-free detection and wash-free imaging of Al3+ ions and subsequent sensing of F− ions and DNA tracking. New J. Chem. 2019, 43, 5219–5227. [Google Scholar] [CrossRef]
- Mehdi, H.; Pang, H.; Gong, W.; Dhinakaran, M.K.; Wajahat, A.; Kuang, X.; Ning, G. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel–gel states. Org. Biomol. Chem. 2016, 14, 5956–5964. [Google Scholar] [CrossRef] [PubMed]
- Kathiravan, A.; Sundaravel, K.; Jaccob, M.; Dhinagaran, G.; Rameshkumar, A.; Arul Ananth, D.; Sivasudha, T. Pyrene Schiff Base: Photophysics, Aggregation Induced Emission, and Antimicrobial Properties. J. Phys. Chem. B 2014, 118, 13573–13581. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, Z.; Yu, Z.; Zheng, J.; Fang, M.; Wu, J.; Tian, Y.; Zhou, H. Schiff base particles with aggregation-induced enhanced emission: Random aggregation preventing π-π stacking. J. Mater. Chem. C 2013, 1, 6952–6959. [Google Scholar] [CrossRef]
- Jentsch, T.J.; Stein, V.; Weinreich, F.; Zdebik, A.A. Molecular Structure and Physiological Function of Chloride Channels. Physiol. Rev. 2002, 82, 503–568. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.M.; Engle, J.M.; Fairley, K.C.; Robitshek, T.E.; Haley, M.M.; Johnson, D.W. “Off-on” aggregation-based fluorescent sensor for the detection of chloride in water. Org. Biomol. Chem. 2015, 13, 4266–4270. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, D.; Zhang, Q.; He, T.; Lu, C.; Shen, X.; Tang, D.; Qiu, H.; Zhang, M.; Yin, S. A fluorescent cross-linked supramolecular network formed by orthogonal metal-coordination and host–guest interactions for multiple ratiometric sensing. Polym. Chem. 2018, 9, 399–403. [Google Scholar] [CrossRef]
- Wang, C.; Ji, H.; Li, M.; Cai, L.; Wang, Z.; Li, Q.; Li, Z. A highly sensitive and selective fluorescent probe for hypochlorite in pure water with aggregation induced emission characteristics. Faraday Discuss. 2017, 196, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, P.; Gao, M.; Zeng, F.; Qin, A.; Wu, S.; Tang, B.Z. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem. Commun. 2016, 52, 7288–7291. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P.; Gong, Y.; Ding, C. Two-photon AIE based fluorescent probe with large stokes shift for selective and sensitive detection and visualization of hypochlorite. Sens. Actuators B Chem. 2019, 278, 73–81. [Google Scholar] [CrossRef]
- Gu, J.; Li, X.; Zhou, Z.; Liao, R.; Gao, J.; Tang, Y.; Wang, Q. Synergistic regulation of effective detection for hypochlorite based on a dual-mode probe by employing aggregation induced emission (AIE) and intramolecular charge transfer (ICT) effects. Chem. Eng. J. 2019, 368, 157–164. [Google Scholar] [CrossRef]
- Chao, D.; Zhang, Y. A water–soluble cationic Ir(III) complex for turn–on sensing of ClO4− based on aggregation–induced emission. Sens. Actuators B Chem. 2017, 245, 599–604. [Google Scholar] [CrossRef]
- Li, N.; Liu, Y.Y.; Li, Y.; Zhuang, J.B.; Cui, R.R.; Gong, Q.; Zhao, N.; Tang, B.Z. Fine Tuning of Emission Behavior, Self-Assembly, Anion Sensing, and Mitochondria Targeting of Pyridinium-Functionalized Tetraphenylethene by Alkyl Chain Engineering. ACS Appl. Mater. Interfaces 2018, 10, 24249–24257. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yao, L.; Zhang, J.; Mu, Y.; Chi, Z.; Su, C.Y. A luminescent silver-phosphine tetragonal cage based on tetraphenylethylene. Dalton Trans. 2016, 45, 1668–1673. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Liu, L.; Liu, J.; Zheng, F.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. An efficient iodide ion chemosensor and a rewritable dual-channel security display material based on an ion responsive supramolecular gel. RSC Adv. 2017, 7, 38210–38215. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Jiang, X.M.; Liu, L.; Chen, J.F.; Zhang, Y.M.; Yao, H.; Wei, T.B. A novel supramolecular organogel based on acylhydrazone functionalized pillar[5]arene acts as an I(-) responsive smart material. Soft Matter 2017, 13, 7222–7226. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, X.; Kim, H.N.; Yoon, J. Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev. 2010, 39, 127–137. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Chen, X.; Yoon, J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev. 2014, 43, 4312–4324. [Google Scholar] [CrossRef]
- Pati, P.B. Organic chemodosimeter for cyanide: A nucleophilic approach. Sens. Actuators B Chem. 2016, 222, 374–390. [Google Scholar] [CrossRef]
- Udhayakumari, D. Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016. Sens. Actuators B Chem. 2018, 259, 1022–1057. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Li, Y.; Yu, J. Solvatochromic AIE luminogens as supersensitive water detectors in organic solvents and highly efficient cyanide chemosensors in water. Chem. Sci. 2014, 5, 2710. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Z.; Li, X.; Ågren, H.; Su, J. Highly sensitive detection of low-level water content in organic solvents and cyanide in aqueous media using novel solvatochromic AIEE fluorophores. RSC Adv. 2015, 5, 12191–12201. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Lu, X.; Yan, C.; Xu, Y.; Hang, X.; Qu, J.; Liu, R. A highly selective and sensitive fluorescent chemosensor for detection of CN−, SO32− and Fe3+ based on aggregation-induced emission. J. Mater. Chem. C 2016, 4, 383–390. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Chen, W.; Sun, G.; Sun, L.; Su, J. A simple AIE-based chemosensor for highly sensitive and selective detection of Hg2+ and CN−. Tetrahedron 2016, 72, 5620–5625. [Google Scholar] [CrossRef]
- Keshav, K.; Dvivedi, A.; Ravikanth, M. Synthesis of Dicyanovinyl SubstitutedE-Diphenyldipyrroethene and its Selective Application for Cyanide Sensing. ChemistrySelect 2017, 2, 2014–2020. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Yang, X.; Tang, L.; Zhou, Y.; Liu, R.; Qu, J. A new aggregation-induced emission active fluorescent probe for sensitive detection of cyanide. Sens. Actuators B Chem. 2017, 241, 1043–1049. [Google Scholar] [CrossRef]
- Chua, M.H.; Zhou, H.; Lin, T.T.; Wu, J.; Xu, J. Triphenylethylenyl-based donor–acceptor–donor molecules: Studies on structural and optical properties and AIE properties for cyanide detection. J. Mater. Chem. C 2017, 5, 12194–12203. [Google Scholar] [CrossRef]
- Lu, X.-L.; Xia, M. Detection of cyanide by a novel probe with a V-shaped structure based on aggregation of the probe adduct. RSC Adv. 2016, 6, 85787–85794. [Google Scholar] [CrossRef]
- Zou, Q.; Tao, F.; Wu, H.; Yu, W.W.; Li, T.; Cui, Y. A new carbazole-based colorimetric and fluorescent sensor with aggregation induced emission for detection of cyanide anion. Dye. Pigment. 2019, 164, 165–173. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, S. Fluorescence light-up detection of cyanide in water based on cyclization reaction followed by ESIPT and AIEE. Analyst 2017, 142, 4825–4833. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Sun, T.; Li, T.; Guo, Z.; Pang, H. Highly sensitive and selective colorimetric/fluorescent probe with aggregation induced emission characteristics for multiple targets of copper, zinc and cyanide ions sensing and its practical application in water and food samples. Sens. Actuators B Chem. 2018, 266, 730–743. [Google Scholar] [CrossRef]
- Yao, H.; Wang, J.; Song, S.-S.; Fan, Y.-Q.; Guan, X.-W.; Zhou, Q.; Wei, T.-B.; Lin, Q.; Zhang, Y.-M. A novel supramolecular AIE gel acts as a multi-analyte sensor array. New J. Chem. 2018, 42, 18059–18065. [Google Scholar] [CrossRef]
- Ma, X.-Q.; Wang, Y.; Wei, T.-B.; Qi, L.-H.; Jiang, X.-M.; Ding, J.-D.; Zhu, W.-B.; Yao, H.; Zhang, Y.-M.; Lin, Q. A novel AIE chemosensor based on quinoline functionalized Pillar[5]arene for highly selective and sensitive sequential detection of toxic Hg2+ and CN−. Dye. Pigment. 2019, 164, 279–286. [Google Scholar] [CrossRef]
- Lin, Q.; Guan, X.-W.; Fan, Y.-Q.; Wang, J.; Liu, L.; Liu, J.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. A tripodal supramolecular sensor to successively detect picric acid and CN− through guest competitive controlled AIE. New J. Chem. 2019, 43, 2030–2036. [Google Scholar] [CrossRef]
- Gabr, M.T.; Pigge, F.C. A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt(ii) complex. Dalton Trans. 2018, 47, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Gu, X.; Zhang, G.; Zhang, D. A highly selective fluorescence turn-on detection of cyanide based on the aggregation of tetraphenylethylene molecules induced by chemical reaction. Chem. Commun. 2012, 48, 12195–12197. [Google Scholar] [CrossRef] [PubMed]
- Diwan, U.; Kumar, V.; Mishra, R.K.; Rana, N.K.; Koch, B.; Singh, M.K.; Upadhyay, K.K. A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO3−. Anal. Chim. Acta 2016, 929, 39–48. [Google Scholar] [CrossRef]
- Chao, J.; Wang, H.; Zhang, Y.; Yin, C.; Huo, F.; Sun, J.; Zhao, M. A novel pyrene-based dual multifunctional fluorescent probe for differential sensing of pH and HSO3− and their bioimaging in live cells. New J. Chem. 2018, 42, 3322–3333. [Google Scholar] [CrossRef]
- Lin, T.; Su, X.; Wang, K.; Li, M.; Guo, H.; Liu, L.; Zou, B.; Zhang, Y.-M.; Liu, Y.; Zhang, S.X.-A. An AIE fluorescent switch with multi-stimuli responsive properties and applications for quantitatively detecting pH value, sulfite anion and hydrostatic pressure. Mater. Chem. Front. 2019, 3, 1052–1061. [Google Scholar] [CrossRef]
- Gao, T.; Cao, X.; Ge, P.; Dong, J.; Yang, S.; Xu, H.; Wu, Y.; Gao, F.; Zeng, W. A self-assembled fluorescent organic nanoprobe and its application for sulfite detection in food samples and living systems. Org. Biomol. Chem. 2017, 15, 4375–4382. [Google Scholar] [CrossRef] [PubMed]
- Sabater, P.; Zapata, F.; Lopez, B.; Fernandez, I.; Caballero, A.; Molina, P. Enhancement of anion recognition exhibited by a zinc-imidazole-based ion-pair receptor composed of C-H hydrogen- and halogen-bond donor groups. Dalton Trans 2018, 47, 15941–15947. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-Q.; Liu, J.; Zhang, J.; Yang, T.; Guo, W. Fluorescent probe for biological gas SO2 derivatives bisulfite and sulfite. Chem. Commun. 2013, 49, 2637–2639. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, K.; Wu, M.-Y.; Liu, Y.-H.; Xie, Y.-M.; Yu, X.-Q. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for biological SO2 derivatives in living cells. Chem. Commun. 2015, 51, 10236–10239. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pan, J.; Jiang, X.; Qin, C.; Zeng, L.; Zhang, H.; Zhang, J.F. A mitochondria-targeted ratiometric fluorescent probe for rapid, sensitive and specific detection of biological SO2 derivatives in living cells. Biosens. Bioelectron. 2016, 77, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qu, Y.; Wang, L.; Huang, L.; Rui, Y.; Cao, J.; Xu, J. Dipyridylphenylamine-based chemodosimeter for sulfite with optimizing ratiometric signals via synchronous fluorescence spectroscopy. Dye. Pigment. 2017, 136, 175–181. [Google Scholar] [CrossRef]
- Gómez, M.; Perez, E.G.; Arancibia, V.; Iribarren, C.; Bravo-Díaz, C.; García-Beltrán, O.; Aliaga, M.E. New fluorescent turn-off probes for highly sensitive and selective detection of SO2 derivatives in a micellar media. Sens. Actuators B Chem. 2017, 238, 578–587. [Google Scholar]
- Dai, X.; Zhang, T.; Du, Z.-F.; Cao, X.-J.; Chen, M.-Y.; Hu, S.-W.; Miao, J.-Y.; Zhao, B.-X. An effective colorimetric and ratiometric fluorescent probe for bisulfite in aqueous solution. Anal. Chim. Acta 2015, 888, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Qian, J.; Sun, Q.; Bai, H.; Zhang, W. Colorimetric and ratiometric fluorescent detection of sulfite in water via cationic surfactant-promoted addition of sulfite to α,β-unsaturated ketone. Anal. Chim. Acta 2013, 788, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, D.; Zhao, Y.; Yang, X.J.; Wang, Y.Y.; Wu, B. Anion-coordination-induced turn-on fluorescence of an oligourea-functionalized tetraphenylethene in a wide concentration range. Angew. Chem. Int. Ed. Engl. 2014, 53, 6632–6636. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.X.; Wang, J.H.; Zheng, Y.S. Selective Fluorescence Turn-On Sensing of Phosphate Anion in Water by Tetraphenylethylene Dimethylformamidine. Chem. Asian J. 2019, 14, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Gao, G.; Lan, J.; You, J. An AIE active monoimidazolium skeleton: High selectivity and fluorescence turn-on for H2PO4− in acetonitrile and ClO4− in water. Chem. Commun. 2014, 50, 5623–5625. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-R.; Li, K.; Wang, M.-Q.; Wang, B.-L.; Wang, X.; Yu, X.-Q. The dicyclen–TPE zinc complex as a novel fluorescent ensemble for nanomolar pyrophosphate sensing in 100% aqueous solution. Org. Chem. Front. 2014, 1, 1276–1279. [Google Scholar] [CrossRef]
- Xu, H.R.; Li, K.; Jiao, S.Y.; Pan, S.L.; Zeng, J.R.; Yu, X.Q. Tetraphenylethene-pyridine salts as the first self-assembling chemosensor for pyrophosphate. Analyst 2015, 140, 4182–4188. [Google Scholar] [CrossRef] [PubMed]
- Chao, D.; Ni, S. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine-Zn(II) complexes. Sci. Rep. 2016, 6, 26477. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yu, W.; Li, X.; Zhao, X.; Zhang, Y.; Song, P.; Yin, Y.; Xi, R.; Meng, M. Pyrophosphate-triggered intermolecular cross-linking of tetraphenylethylene molecules for multianalyte detection. Sens. Actuators B Chem. 2018, 266, 170–177. [Google Scholar] [CrossRef]
- Li, P.F.; Liu, Y.Y.; Zhang, W.J.; Zhao, N. A Fluorescent Probe for Pyrophosphate Based on Tetraphenylethylene Derivative with Aggregation-Induced Emission Characteristics. ChemistrySelect 2017, 2, 3788–3793. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, H.; Kang, Y.; Li, X.; Jiang, H.; Xue, B.; Wang, Y.; Lü, X.; Zhu, X. Water soluble Ln(III)-based metallopolymer with AIE-active and ACQ-effect lanthanide behaviors for detection of nanomolar pyrophosphate. Sens. Actuators B Chem. 2019, 282, 999–1007. [Google Scholar] [CrossRef]
- Noguchi, T.; Roy, B.; Yoshihara, D.; Tsuchiya, Y.; Yamamoto, T.; Shinkai, S. Tailoring of the desired selectivity and the turn-on detection range in a self-assembly-based fluorescence sensory system. Chem. Sci. 2015, 6, 3863–3867. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Y.; Su, C.; Barboiu, M. Dynameric Frameworks with Aggregation-Induced Emission for Selective Detection of Adenosine Triphosphate. ChemPlusChem 2018, 83, 506–513. [Google Scholar] [CrossRef]
- Jiang, G.; Zhu, W.; Chen, Q.; Shi, A.; Wu, Y.; Zhang, G.; Li, X.; Li, Y.; Fan, X.; Wang, J. A new tetraphenylethylene based AIE sensor with light-up and tunable measuring range for adenosine triphosphate in aqueous solution and in living cells. Analyst 2017, 142, 4388–4392. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yang, M.; Zhang, C.; Ma, Y.; Qin, Y.; Lei, Z.; Chang, L.; Lei, L.; Wang, T.; Yang, Y. Aggregation-induced emission (AIE)-active fluorescent probes with multiple binding sites toward ATP sensing and live cell imaging. J. Mater. Chem. B 2017, 5, 8525–8531. [Google Scholar] [CrossRef]
- Wang, H.; Ji, X.; Li, Y.; Li, Z.; Tang, G.; Huang, F. An ATP/ATPase responsive supramolecular fluorescent hydrogel constructed via electrostatic interactions between poly(sodium p-styrenesulfonate) and a tetraphenylethene derivative. J. Mater. Chem. B 2018, 6, 2728–2733. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, N.; Cui, J.; Wang, C.; Wang, S.; Zhang, G.; Dong, X.; Zhang, D.; Li, G. AIE-doped poly(ionic liquid) photonic spheres: A single sphere-based customizable sensing platform for the discrimination of multi-analytes. Chem. Sci. 2017, 8, 6281–6289. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Shiraki, T.; Dawn, A.; Tsuchiya, Y.; Lien le, T.N.; Yamamoto, T.; Shinkai, S. Nonlinear fluorescence response driven by ATP-induced self-assembly of guanidinium-tethered tetraphenylethene. Chem. Commun. 2012, 48, 8090–8092. [Google Scholar] [CrossRef]
- Chen, S.; Ni, X.-L. Development of an AIE based fluorescent probe for the detection of nitrate anions in aqueous solution over a wide pH range. RSC Adv. 2016, 6, 6997–7001. [Google Scholar] [CrossRef]
- Chatterjee, A.; Khandare, D.G.; Saini, P.; Chattopadhyay, A.; Majik, M.S.; Banerjee, M. Amine functionalized tetraphenylethylene: A novel aggregation-induced emission based fluorescent chemodosimeter for nitrite and nitrate ions. RSC Adv. 2015, 5, 31479–31484. [Google Scholar] [CrossRef]
- Anuradha, A.; Latham, K.; Bhosale, S.V. Selective detection of nitrite ion by an AIE-active tetraphenylethene dye through a reduction step in aqueous media. RSC Adv. 2016, 6, 45009–45013. [Google Scholar] [CrossRef]
- Qiu, J.; Jiang, S.; Guo, H.; Yang, F. An AIE and FRET-based BODIPY sensor with large Stoke shift: Novel pH probe exhibiting application in CO32− detection and living cell imaging. Dye. Pigment. 2018, 157, 351–358. [Google Scholar] [CrossRef]
- Desai, A.M.; Singh, P.K. An Ultrafast Molecular-Rotor-Based Fluorescent Turn-On Sensor for the Perrhenate Anion in Aqueous Solution. Chem. Eur. J. 2019, 25, 2035–2042. [Google Scholar] [CrossRef]
- Zhang, Z.; Kwok, R.T.K.; Yu, Y.; Tang, B.Z.; Ng, K.M. Sensitive and Specific Detection of l-Lactate Using an AIE-Active Fluorophore. ACS Appl. Mater. Interfaces 2017, 9, 38153–38158. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Wang, J.; Jiang, T.; Lu, N.; Hua, J. Diketopyrrolopyrrole-Based Ratiometric/Turn-on Fluorescent Chemosensors for Citrate Detection in the Near-Infrared Region by an Aggregation-Induced Emission Mechanism. Anal. Chem. 2016, 88, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Lu, N.; Hang, Y.; Yang, J.; Mei, J.; Wang, J.; Hua, J.; Tian, H. Dimethoxy triarylamine-derived terpyridine–zinc complex: A fluorescence light-up sensor for citrate detection based on aggregation-induced emission. J. Mater. Chem. C 2016, 4, 10040–10046. [Google Scholar] [CrossRef]
- Liu, C.; Hang, Y.; Jiang, T.; Yang, J.; Zhang, X.; Hua, J. A light-up fluorescent probe for citrate detection based on bispyridinum amides with aggregation-induced emission feature. Talanta 2018, 178, 847–853. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, L.; Su, J.; Liu, S. A sensitive and visible fluorescence-turn-on probe for the CMC determination of ionic surfactants. Chem. Commun. 2014, 50, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Wang, L.; Chen, J.; Li, S.; Lu, G.; Wang, L.; Wang, Y.; Ren, L.; Qin, A.; Tang, B.Z. Aggregation-Induced Emission Active Probe for Light-Up Detection of Anionic Surfactants and Wash-Free Bacterial Imaging. Chemistry 2016, 22, 5107–5112. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Cao, X.; Dong, J.; Liu, Y.; Lv, W.; Li, C.; Feng, X.; Zeng, W. A novel water soluble multifunctional fluorescent probe for highly sensitive and ultrafast detection of anionic surfactants and wash free imaging of Gram-positive bacteria strains. Dye. Pigment. 2017, 143, 436–443. [Google Scholar] [CrossRef]
- Lin, Q.; Lu, T.T.; Zhu, X.; Wei, T.B.; Li, H.; Zhang, Y.M. Rationally introduce multi-competitive binding interactions in supramolecular gels: A simple and efficient approach to develop multi-analyte sensor array. Chem. Sci. 2016, 7, 5341–5346. [Google Scholar] [CrossRef]
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
A1 | 280, 329, 394 | 486 (soln) e; ca. 525 (aggr) f | - | Green/Blue (aggr) f | Quenched | 1.02 μM | Reaction with boron centre | [43] |
A2 | 434 | 481 | 9 (soln) e; 17 (aggr) f | Green (in PMMA) | Quenched | 1.52 ppm | Reaction with boron centre | [44] |
A3 | 468 | 567 (soln) e 590 (aggr) f | 1.5 (soln) e; 5.6 (aggr) f | Yellow (in PMMA) | Partially quenched | 2.82 ppm | Reaction with boron centre | [44] |
A4 | 368 | 409 (soln) e; 481 (film) g | 1 (soln) e; 64 (film) | Blue (aggr) f; Partially | Quenched | - | Reaction with boron centre | [45] |
A5 | 495 | 524 (soln) e; 540 (aggr) f | 21 (soln) e | Green (aggr) f | Weak teal | 0.345 μM | Reaction with boron centre | [46] |
A6 | 305, 350 | 530 (soln) e; 559 (solid) g | 0.1 (soln) e; 19 (solid) g | Yellow (aggr; solid) f,g | Bright green | 14.0 pM | Hydrogen bonding of Schiff Base’s OH with F− followed by deprotonation | [47] |
A7 | ~388 | 536 (aggr) f; 508 (+F−) h | - | - | Green, turn-on | 90 nM | F−-mediated cleavage of triisopropylsily group | [48] |
A8 | ~315 | 470 | - | - | Blue, turn-on | 3.8 nM | F−-mediated cleavage of thiophosphinate group leading to AIE | [49] |
A9 | ~370 | 550 (soln) e 470 (+F−) h | - | Orange (aggr) f | Green | 0.6 mM | Displacement of I− counter-anion leading to twisted conformation | [50] |
A10 | 340 (+F−) h | 430 (+F−) h | - | - | Blue; enhanced | 0.202 μM | Aggregation with F− | [51] |
A11 | - | 430 | - | - | Blue; turn-on | 8.67 nM | Supramolecular assembly with F− | [52] |
A12 | - | 468 (+Al3+) h | - | Blue (+Al3+) h | Quenched | 0.6 μM | Regeneration of A12 from its complex with Al3+ via forming AlF3 | [53] |
A13 | - | 410 | - | Blue (Gel) g; Brilliant-Blue- | Green (Gel + Zn2+ + F−) g,h; greenish yellow (Gel + F−) g,h | 1.3 μM | Changes in supramolecular interactions involved in gelation of A13 | [54] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
A14 | - | 515 (aggr, + Cl−) e,g | - | - | Bright green, turn-on | - | Coordination with Cl− | [58] |
A15 | - | 460 (Gel) f; 445 (Gel + Cl−) f,g | - | Blue (gel) f | Quenched | 24.9 μM | Degradation of supramolecular polymeric network | [59] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
Hypochlorite (ClO−) Sensors | ||||||||
A16 | 250, 321 | 470 (aggr) f | 1.0 (soln) e; 33.0 (aggr) f | Sky blue (aggr) f | Quenched | 28 nM | Boronic ester groups converted to –OH groups, then A16 further oxidised to water-soluble quinone form | [60] |
A17 | ~340, 420 | ~595 (aggr) f | - | Strong red FL (aggr) f | Weak green | 0.47 μM | 1,1′-dicyanovinyl group converted to aldehyde group | [61] |
A18 | 538 | 514 (aggr, +ClO−) f,h | 15.7 (+ClO−) h | - | Blue-green, turn-on | 13.2 nM | Cleavage of C=C bond into aldehyde group, detaching the indole group that causes TICT. | [62] |
A19 | - | 469 (aggr) f | 1.1; 6.7(+ClO−) h | Blue (aggr) f; | Blue, enhanced | 75 nM | Cleavage of C=C bond carrying 2-thioxo-dihydro-pyrimidine-4,6-dione groups. | [63] |
Perchlorate (ClO4−) Sensors | ||||||||
A20 | ~375 | 650 (soln) e; 632 (aggr, +ClO4−) f,h | - | - | Red, turn-on | 0.96 μM | ClO4−-mediated aggregation | [64] |
E2a | 396 | 580 (soln) e; 570 (aggr) f; 575 (solid) g | 14.2 (soln) e; 2.1 (aggr) f; 35.9 (solid) g | Red (soln) e | Orange | 0.38 μM | ClO4− induced self-assembly/aggregation | [65] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
A21 | ~310, 365 (solid) f | 490 (soln) e; 530 (solid) f | 45 (soln) e; 89 (solid) f | Green (solid) f | Quenched | - | Emission quenched due to ionic interaction between Ag+ and I− | [66] |
A22 | - | ~525 | - | Blue | Quenched | 0.1 μM | Emission quenched due to the release and coordination of Pb2+ with I− | [67] |
A23 | - | 410 | - | Blue | Quenched | 94 nM | Emission quenched due to changes in supramolecular interactions involving I− | [68] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
B1a | ~400 (aggr) f | 547 (aggr) f | - | Green-yellow (aggr) f | Weak blue | 63 ppm | Nucleophilic addition of CN− to dicyanovinyl- group | [73] |
B1b | ~400 (aggr) f | 565 (aggr) f | - | Orange (aggr) f | Weak blue | 109 ppm | Nucleophilic addition of CN− to dicyanovinyl- group | [73] |
B2a | 387–407 (soln) e | 628 (soln) e; 600 (aggr) f | 24 (Solid) g | Orange (aggr) f | Quenched | 0.32 μM | Nucleophilic addition of CN− to dicyanovinyl- group | [74] |
B2b | 385–404 (soln) e | 625 (soln) e; 600 (aggr) f | 22 (Solid) g | Red (soln) e; orange (aggr) f | Quenched | 0.29 μM | Nucleophilic addition of CN− to dicyanovinyl- group | [74] |
B3a | 437 (soln) e; 465 (aggr) f | 568 (aggr) f | - | Orange (aggr) f | Quenched | 9.88 nM | Nucleophilic addition of CN− to dicyanovinyl- group | [75] |
B3b | 440 | 650 (aggr) f | - | Red (aggr) f | Quenched | 0.11 nM | Nucleophilic addition of CN− to dicyanovinyl- group | [76] |
B4 | 340, 390, 460 (soln) e | 605 (soln) e | - | Orange (soln) e | Quenched | - | Nucleophilic addition of CN− to dicyanovinyl- group | [77] |
B5 | ~450 (aggr) f | 580 (aggr) f | - | Orange (aggr) f | Quenched | 0.22 μM | Nucleophilic addition of CN− to cyanoethylene- group | [78] |
B6a | 562 (soln) e | - | - | Non emissive (aggr; solid) f,g | Blue | 24.5 μM | Nucleophilic addition of CN− to 1,1-dicyanomethylidene group | [79] |
B6b | 443 (soln) e | 629 (aggr) f; 653 (solid) g | - | Weak red (aggr, solid) f,g | - | 1.7 μM | Nucleophilic addition of CN− to 1,1-dicyanomethylidene group | [79] |
B6c | 386 (soln) e | 573 (soln) e; 543 (solid) g | 0.4 (soln) e; 3.0 (aggr) f | Yellow (aggr; solid) f,g | Blue | 5.07 μM | Nucleophilic addition of CN− to 1,1-dicyanomethylidene group | [79] |
B7 | 380 | 435 | - | Blue | Enhanced | 55 nM | Nucleophilic attack of CN− to indolium moiety disrupts ICT effect | [80] |
B8 | 434 (soln) e | 547 (soln) e; 623 (aggr) f | - | Green (soln) e; orange (aggr) f | Quenched | 67.4 nM | Nucleophilic attack of CN− to C=C bond interrupting ICT between carbazole and barbituric acid | [81] |
B9 | 356 (soln) e | n.d. (soln; aggr) e,f; 464 (soln, +CN−) e,h; 508 (aggr, +CN−) f,h | 36.6 (soln, +CN−) e,h | No emission | Blue (soln) e green (aggr) f | 0.592 μM | Underwent oxidative cyclization reaction after deprotonation of −OH by CN− to generate hydroxyphenyl-benzoxazole | [82] |
B10 | 396, 411 (soln) e | 530 (soln) e; 584 (aggr) f | 0.21 (solid) g | Green (aggr) f | Yellow | 0.81 μM | Deprotonation of OH groups by CN− leading to ICT effect that red-shifts fluorescence | [83] |
B11 | 410 (soln) e | 516 (Gel); 498 (Gel, +CN−) g,h | - | Green (gel) g | Blue (gel) g | 3.02 μM | Deprotonation of OH and NH groups by CN− disrupts hydrogen bonding in self-assembly | [84] |
B12 | - | 410 (aggr) f | 11.24 (soln) e; 37.8 (aggr) f | Blue (aggr) f; quenched (+Hg2+) h | Blue FL recovered | 77.1 nM | CN− reinstates self-assembly of B12 by removing Hg2+ in B12-Hg adduct as Hg(CN)2 | [85] |
B13 | ~345 | 435 (aggr) f | - | Blue (aggr) f; quenched (+picric acid) h | Blue FL recovered | 0.745 μM | CN− reinstates self-assembly of B13 by causing B13-Picric acid adduct to break apart | [86] |
B14 | 313 | 498 (soln) e; 458 (aggr) f | 3.9 (soln) e; 24 (aggr) f | - | Blue, turn-on | 0.59 μM | Coordination of CN− to Co(II) centre decreases complex solubility | [87] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
Bisulphite (HSO3−) Sensors | ||||||||
C1 | 480 (soln) e; ~460, 562 (aggr) f | 615 (soln) e; 467 (aggr) f | 69.3 (aggr) f | Red (soln) e; Green (aggr) f | Blue | 89 nM | Nucleophilic addition to C=C linkage effectively cuts off ICT between pyrene and benzthiazolium unit. | [89] |
C2 | 390 (soln) e; 435 (aggr) f | 440 (soln) e; 460 (aggr) f; | 7.8 (DMSO); 2.9 (MeCN); 19.9 (aggr) f | Yellow | Quenched | 1.9 nM | Nucleophilic addition to C=C linkage effectively cuts off ICT between pyrene and pyridine unit. | [90] |
C3 | 436 | 504 (aggr, +HSO3−) e,h | 4.52 (crystal) g | Red | Green, Turn-on | 1.04 ppm | Nucleophilic addition to C=C bond of aqueous-soluble sensor produces insoluble AIE product. | [91] |
Sulphite (SO3−) Sensors | ||||||||
C4 | 402 (soln) e; 420 (aggr) f | 616 (soln) e; 570 (aggr) f | 1.9 (soln) e | Yellow (aggr; solid) f,g | Weak blue | 7.4 nM | Nucleophilic addition of SO32− to dicyanovinyl group | [92] |
B3a | 437 (soln) e; 465 (aggr) f | 568 (aggr) f | - | Orange (aggr) f | Quenched | 0.107 μM | Nucleophilic addition of SO32− to dicyanovinyl group | [75] |
Bisulphate (HSO4−) Sensor | ||||||||
C5 | - | 482 | 5.78 | Blue | Enhanced | - | Selective recognition of HSO4− guest within ion-pair receptor C5 at imidazole binding sites | [93] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
Phosphate (PO43−; HPO42−) Sensors | ||||||||
D1 | 340 | 454 | - | Blue | Enhanced | - | Anion exchange and complex formation. | [103] |
D2 | - | 500 (aggr) f; 494 (+PO43−; + HPO42−) h | 9.1; 41.3 (+PO43−) h | Blue | Enhanced | - | Anion-coordination induced emission | [101] |
D3 | 257, 310 | 493 (aggr) f; 502 (aq., +PO43−) e,h | - | Blue-green (aggr) f | Turn-on | - | Aqueous soluble dihydrogen chloride salt transformed to less soluble mono-hydrogen chloride salt leading to aggregation. | [102] |
Pyrophosphate (PPi) Sensors | ||||||||
D5 | ~350 (aq.) e | 468 (aq.) e | 0.426 (aq.) e; 1.757 (+PPi) h | - | Blue, turn-on | 22.8 nM | Coordination of Zn(II) centres with PPi leading to poorer solubility and aggregation of D2-PPi complexes | [104] |
D6a | ~370 | 625 (soln)e; 531 (aq., +PPi) e,h | 0.136 (aq.) e; 3.283 (+PPi) h | - | Green-yellow, turn-on | 133 nM | PPi replaces iodide counteranion and forms nanoparticles via supramolecular self-assembly. | [105] |
D6b | ~380 | 625 (soln) e; 562 (aq., +PPi) e,h | 0.127 (aq.) e, 4.143 (+PPi) h | - | Orange, turn-on | 118 nM | PPi replaces iodide counteranion and forms nanoparticles via supramolecular self-assembly. | [105] |
D7 | 285, 316, 387 | 570 (aq.) e; 515 (+PPi) h | - | - | Green, turn-on | 5.37 nM | Coordination of Zn(II) centre with PPi leading to poorer solubility and aggregation of D4-PPi complexes. | [106] |
D8 | - | 470 (aggr; aq., +PPi) e,f,h | 0.5 (aq.) e; 19 (aq., +PPi) e,h | Blue emission (aggr) f | Blue, turn on | 66.7 nM | Supramolecular self-assembly of PPi and D5 via hydrogen bonding leading to poorer solubility and aggregation | [107] |
D9 | 350 | 500 (+PPi) h | - | No emission | Green, turn-on | 56 nM | Competitive coordination of PPi with Cu2+ releases AIE-active TPE-dipicolylamine ligand | [108] |
D10a | 400 | 420, 613 | - | Blue (soln) e | Pink; quenching of Eu3+’s 613nm emission | ~200 nM | Competitive coordination of PPi with Eu3+ releases terpyridine-polymeric ligand | [109] |
D10b | 400 | 450, 613 | - | Blue (soln) e | Pink; quenching of Eu3+’s 613nm emission | 12 nM | Competitive coordination of PPi with Eu3+ releases terpyridine-polymeric ligand | [109] |
ATP Sensors | ||||||||
D11 | 371 | 514 | - | - | Blue-green, turn on | 6 μM | Guanidinium-ATP binding via electrostatic interactions led to aggregation of adduct. | [110] |
D12a | 330 | 516 (+ATP) | - | - | Green, turn-on | - | Guanidinium-ATP binding via electrostatic interactions led to aggregation of adduct. | [111] |
D12b | 330 | 516 (+ATP) | - | - | Green, turn-on | - | Guanidinium-ATP binding via electrostatic interactions led to aggregation of adduct. | [111] |
D13 | ~370 | ~535 (soln) e; ~575 (aggr) f; 500 (+ATP) | - | Weak orange (soln) e; Yellow (aggr) f | Intense green | 75 nM | Binding and aggregation of D13 and ATP via electrostatic interactions and hydrophobic interactions | [112] |
D14a | 432 | 609 (THF soln) e | 14.23 (solid) g | Yellow (solid) g | Orange, enhanced | ~20 ppm | Specific binding and aggregation of D14a and ATP | [113] |
D14b | 437 | 614 (THF soln) e | 8.57 (solid) g | Orange (solid) g | Orange, enhanced | ~3 ppm | Specific binding and aggregation of D14b and ATP | [113] |
D14c | 451 | 614 (THF soln) e | 13.86 (solid) g | Orange (solid) g | Orange, enhanced | 0.3 ppm | Specific binding and aggregation of D14c and ATP | [113] |
D15 | - | ~480 | - | Blue (gel) g | Quenched | - | Disintegration of self-assembled AIE hydrogel D15 | [114] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
Nitrate (NO3−) Sensors | ||||||||
E1 | - | 626 (crystal) g; ~600 (aggr) f; 625 (soln) e | - | Strong Yellow (aggr) f | Yellow, turn-on | 0.475 μM | Ionic self-assembly with NO3− in water | [117] |
E2a | 396 | 580 (soln) e; 570 (aggr) f; 575 (solid) g | 14.2 (soln) e; 2.1 (aggr) f; 35.9 (solid) g | Red (soln) e; | Bright yellow | 0.43 μM | NO3− induced self-assembly/aggregation | [65] |
E2b | 396 | 580 (soln) e; 570 (aggr) f; 560 (solid) g | 13.8 (soln) e; 2.0 (aggr) f; 34.7 (solid) g | Red (soln) e; | Bright yellow | - | NO3− induced self-assembly/aggregation | [65] |
Nitrite (NO2−) Sensors | ||||||||
E3 | ~345 | 447 (aggr) f | - | Blue (aggr) f | Quenched | 0.6 μM | Diazotization of amino group in the presence of NO2− followed by coupling with naphthol to form non-fluorescent coupled-product | [118] |
E4 | 273, 345 (soln) e | 510 (+H+) h | - | Weak blue (+H+) h | Enhanced | 17.7 ppb | Diazotization reaction resulting in the conversion of amino groups to hydroxyl groups. | [119] |
λabs (nm) a | λem (nm) b | Φ (%) c | Original Emission Colour | Emission Colour/Change in the Presence of Anion | L.O.D d | Mechanism of Detection | Ref. | |
---|---|---|---|---|---|---|---|---|
Carbonate (CO32−) Sensor | ||||||||
F1 | 361, 505 (soln) e | 370, 528 (soln) e | - | Green (aggr) f | Quenched | 40 μM | pH sensitivity of phenol group with pKa value close to that of CO32− | [120] |
Perrhenate (ReO4−) Sensor | ||||||||
F2 | 412 | 490 (aq.) e; 520 (+ReO4−) h | - | - | Turn-on | 260 μM | ReO4− forms contact ion pair with cationic F2 leading to aggregation hence AIE | [121] |
L-Lactate Sensor | ||||||||
F3 | 373 | 530 | - | - | Green, turn-on | 5.5 μM | H2O2 converted from L-Lactate in the presence of LOx oxidises methylene phenyl boronic ester group of F3 to generate emissive AIE product. | [122] |
Citrate Sensors | ||||||||
F4a | 500 | 564 (soln) e; 650 (aggr) f | - | Yellow-green (soln) e | Red, turn-on | 0.18 μM | Aggregation of F4a upon coordination with citrate leading to emission turn-on due to AIE | [123] |
F4b | 505 | 672 (aggr) f | - | - | Red, turn-on | 0.89 μM | Aggregation of F4b upon coordination with citrate leading to emission turn-on due to AIE | [123] |
F5 | 418 | ~625 | - | - | Yellowish-green, turn-on | 0.35 μM | Coordination of citrate to Zn(II) centre weakens its fluorescence quenching effect on F5. Aggregation of F5-citrate complex led to emission enhancement. | [124] |
F6 | ~305 | 485 (aggr) f | - | - | Blue, enhanced | 0.1 μM | Aggregation of F6 upon coordination with citrate leading to emission turn-on due to AIE | [125] |
Anionic Surfactant Sensors | ||||||||
F7 | - | 324, 484 | 55 (aggr) f | - | Blue, turn-on | - | Aggregation of F7 leading o emission turn-on at surfactants’ CMC. | [126] |
F8 | 286, 334 | 450 (aq.) e; 510 (solid) g | 0.2 (aq) e; 8.5 (+SDBS) | - | Green, turn-on | 0.051 μM | Micelles formation leading to RIR in F8 hence emission turn-on | [127] |
F9 | 320 (soln) e; 425 (aggr) f | 650 (soln) e; 600 (aggr) f; 650 (+SDS) | 1.4 (soln) e; 16 (aggr) f | - | Red, turn-on | 48 nM | Aggregate formation between AIE-active F9 and SDS caused emission turn-on | [128] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, M.H.; Shah, K.W.; Zhou, H.; Xu, J. Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing. Molecules 2019, 24, 2711. https://doi.org/10.3390/molecules24152711
Chua MH, Shah KW, Zhou H, Xu J. Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing. Molecules. 2019; 24(15):2711. https://doi.org/10.3390/molecules24152711
Chicago/Turabian StyleChua, Ming Hui, Kwok Wei Shah, Hui Zhou, and Jianwei Xu. 2019. "Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing" Molecules 24, no. 15: 2711. https://doi.org/10.3390/molecules24152711
APA StyleChua, M. H., Shah, K. W., Zhou, H., & Xu, J. (2019). Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing. Molecules, 24(15), 2711. https://doi.org/10.3390/molecules24152711