Development and Validation of a Simple LC-MS Method for the Quantification of Oxytocin in Dog Saliva
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS Conditions and Sample Preparation
2.2. Validation Results
2.2.1. Linearity, Limit of Detection (LOD), and Limit of Quantification (LOQ)
2.2.2. Precision and Recovery
2.2.3. Matrix Effect
2.2.4. Stability
2.3. Comparison to the Existing LC-MS Methods
2.4. Measurement of OT in Dog Saliva
3. Materials and Methods
3.1. Reagent and Materials
3.2. Saliva Collection and Preparation of Calibration Curve
3.3. Sample Preparation for LC-MS Analysis
3.4. LC-MS Analysis
3.5. Method Validation
3.5.1. Linearity, LOD, and LOQ
3.5.2. Precision and Recovery
3.5.3. Matrix Effect
3.5.4. Stability
3.6. Application of Method to Dog Saliva Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carter, C.S.; Pournajafi-Nazarloo, H.; Kramer, K.M.; Ziegler, T.E.; White-Traut, R.; Bello, D.; Schwertz, D. Oxytocin: behavioral associations and potential as a salivary biomarker. Ann. N. Y. Acad. Sci. 2007, 1098, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Uvnas-Moberg, K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 1998, 23, 819–835. [Google Scholar] [CrossRef]
- Bakermans-Kranenburg, M.J.; van I Jzendoorn, M.H. Sniffing around oxytocin: review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Transl. Psychiatry 2013, 3, 258. [Google Scholar] [CrossRef] [PubMed]
- Ross, H.E.; Young, L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocr. 2009, 30, 534–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Berardis, D.; Marini, S.; Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A.; Mazza, M.; Valchera, A.; Fornaro, M.; Cavuto, M.; Srinivasan, V.; et al. The role of intranasal oxytocin in the treatment of patients with schizophrenia: a systematic review. CNS Neurol. Disord. Drug. Targets 2013, 12, 252–264. [Google Scholar] [CrossRef]
- Kosfeld, M.; Heinrichs, M.; Zak, P.J.; Fischbacher, U.; Fehr, E. Oxytocin increases trust in humans. Nature 2005, 435, 673–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLean, E.L.; Gesquiere, L.R.; Gruen, M.E.; Sherman, B.L.; Martin, W.L.; Carter, C.S. Endogenous oxytocin, vasopressin, and aggression in domestic dogs. Front. Psychol. 2017, 8, 1613. [Google Scholar] [CrossRef] [PubMed]
- Beetz, A.; Uvnas-Moberg, K.; Julius, H.; Kotrschal, K. Psychosocial and psychophysiological effects of human-Animal interactions: The possible role of oxytocin. Front. Psychol. 2012, 3, 234. [Google Scholar] [CrossRef]
- Romero, T.; Nagasawa, M.; Mogi, K.; Hasegawa, T.; Kikusui, T. Oxytocin promotes social bonding in dogs. Proc. Natl. Acad. Sci. USA 2014, 111, 9085–9090. [Google Scholar] [CrossRef] [Green Version]
- Oliva, J.L.; Rault, J.L.; Appleton, B.; Lill, A. Oxytocin enhances the appropriate use of human social cues by the domestic dog (Canis familiaris) in an object choice task. Anim. Cogn. 2015, 18, 767–775. [Google Scholar] [CrossRef]
- Ilea, A.; Andrei, V.; Feurdean, C.N.; Babtan, A.M.; Petrescu, N.B.; Campian, R.S.; Bosca, A.B.; Ciui, B.; Tertis, M.; Sandulescu, R.; et al. Saliva, A magic biofluid available for multilevel assessment and a mirror of general health-a systematic review. Biosens. (Basel) 2019, 9, 27. [Google Scholar] [CrossRef]
- Hofman, L.F. Human saliva as a diagnostic specimen. J. Nutr. 2001, 131, 1621–1625. [Google Scholar] [CrossRef]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Cobb, M.L.; Iskandarani, K.; Chinchilli, V.M.; Dreschel, N.A. A systematic review and meta-analysis of salivary cortisol measurement in domestic canines. Domest. Anim. Endocrinol. 2016, 57, 31–42. [Google Scholar] [CrossRef]
- Parra, M.D.; Tecles, F.; Martinez-Subiela, S.; Ceron, J.J. C-reactive protein measurement in canine saliva. J. Vet. Diagn. Investig. 2005, 17, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.J.; Hazon, N.; Lonergan, M.; Pomeroy, P.P. Validation of an enzyme-Linked immunoassay (ELISA) for plasma oxytocin in a novel mammal species reveals potential errors induced by sampling procedure. J. Neurosci. Methods 2014, 226, 73–79. [Google Scholar] [CrossRef]
- Szeto, A.; McCabe, P.M.; Nation, D.A.; Tabak, B.A.; Rossetti, M.A.; McCullough, M.E.; Schneiderman, N.; Mendez, A.J. Evaluation of enzyme immunoassay and radioimmunoassay methods for the measurement of plasma oxytocin. Psychosom. Med. 2011, 73, 393–400. [Google Scholar] [CrossRef]
- Kukucka, M.A.; Misra, H.P. Determination of oxytocin in biological samples by isocratic high-performance liquid chromatography with coulometric detection using C18 solid-phase extraction and polyclonal antibody-Based immunoaffinity column purification. J. Chromatogr. B Biomed. Appl. 1994, 653, 139–145. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Fast, D.M.; Lin, Z.; Steenwyk, R. Ultra sensitive quantitation of endogenous oxytocin in rat and human plasma using a two-dimensional liquid chromatography-tandem mass spectrometry assay. Anal. Biochem. 2011, 416, 45–52. [Google Scholar] [CrossRef]
- Brandtzaeg, O.K.; Johnsen, E.; Roberg-Larsen, H.; Seip, K.F.; MacLean, E.L.; Gesquiere, L.R.; Leknes, S.; Lundanes, E.; Wilson, S.R. Proteomics tools reveal startlingly high amounts of oxytocin in plasma and serum. Sci. Rep. 2016, 6, 31693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriyama, E.; Kataoka, H. Automated analysis of oxytocin by on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Chromatography 2015, 2, 382–391. [Google Scholar] [CrossRef]
- Karbiwnyk, C.M.; Faul, K.C.; Turnipseed, S.B.; Andersen, W.C.; Miller, K.E. Determination of oxytocin in a dilute IV solution by LC-MS(n). J. Pharm. Biomed. Anal. 2008, 48, 672–677. [Google Scholar] [CrossRef] [PubMed]
- MacLean, E.L.; Gesquiere, L.R.; Gee, N.; Levy, K.; Martin, W.L.; Carter, C.S. Validation of salivary oxytocin and vasopressin as biomarkers in domestic dogs. J. Neurosci. Methods 2018, 293, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groschl, M.; Rauh, M. Influence of commercial collection devices for saliva on the reliability of salivary steroids analysis. Steroids 2006, 71, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, T.; Ghimenti, S.; Piga, I.; Biagini, D.; Onor, M.; Fuoco, R.; Di Francesco, F. Influence of sampling on the determination of warfarin and warfarin alcohols in oral fluid. PLoS ONE 2014, 9, 114430. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | Spiked (pg/mL) | Recovery | Intraassay CV | Interassay CV |
---|---|---|---|---|
LOQ | 40 | 93.0% (37.2 ± 4.2) | 6.2% (37.4 ± 2.3) | 9.9% (36.9 ± 3.8) |
Low | 200 | 92.7% (185.3 ± 35.9) | 5.4% (187.5 ± 10.1) | 5.5% (182.0 ± 10.6) |
Medium | 400 | 87.8% (351.1 ± 38.2) | 5.7% (360.4 ± 20.5) | 4.7% (348.8 ± 19.8) |
High | 800 | 96.2% (769.7 ± 78.5) | 1.6% (781.5 ± 12.9) | 9.6% (763.1 ± 83.0) |
Sample | Spiked (pg/mL) | Matrix Effects (%) | CV 1 (%) |
---|---|---|---|
Low | 200 | 94.4 ± 4.3 | 4.6 |
High | 800 | 95.8 ± 14.3 | 14.9 |
Sample | Spiked (pg/mL) | 3 Cycles Freeze/Thaw (−80 °C/RT 1) | RT, 4 h | RT, 24 h | 4 °C, 4 h | 4 °C, 24 h | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean (%) | CV 2 (%) | Mean (%) | CV (%) | Mean (%) | CV (%) | Mean (%) | CV (%) | Mean (%) | CV (%) | ||
Low | 200 | 94.9 (171.1 ± 19.0) | 11.1 | 99.3 (179.0 ± 22.9) | 12.8 | 87.6 (157.8 ± 21.4) | 13.6 | 97.8 (176.2 ± 20.8) | 11.8 | 97.6 (175.9 ±2.5) | 1.4 |
High | 800 | 96.5 (689.9 ± 17.2) | 2.8 | 99.5 (708.9 ± 19.9) | 3.2 | 92.6 (665.2 ± 34.2) | 5.8 | 98.9 (705.4 ±64.9) | 10.4 | 98.6 (702.9 ±54.7) | 8.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Marti, D.W.; Anderson, R.E. Development and Validation of a Simple LC-MS Method for the Quantification of Oxytocin in Dog Saliva. Molecules 2019, 24, 3079. https://doi.org/10.3390/molecules24173079
Wang L, Marti DW, Anderson RE. Development and Validation of a Simple LC-MS Method for the Quantification of Oxytocin in Dog Saliva. Molecules. 2019; 24(17):3079. https://doi.org/10.3390/molecules24173079
Chicago/Turabian StyleWang, Lei, Dakota W. Marti, and Rachel E. Anderson. 2019. "Development and Validation of a Simple LC-MS Method for the Quantification of Oxytocin in Dog Saliva" Molecules 24, no. 17: 3079. https://doi.org/10.3390/molecules24173079
APA StyleWang, L., Marti, D. W., & Anderson, R. E. (2019). Development and Validation of a Simple LC-MS Method for the Quantification of Oxytocin in Dog Saliva. Molecules, 24(17), 3079. https://doi.org/10.3390/molecules24173079