High Performance Size Exclusion Chromatography-Inductively Coupled Plasma-Mass Spectrometry to Study the Copper and Cadmium Complexation with Humic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Reagents
2.2. HPSEC-UVvis-ICP-MS System
2.3. ASV System
2.4. Cadmium and Copper Complexation
3. Results and Discussion
3.1. HA Characterization Using SEC-UV-ICP-MS
3.2. Cd and Cu Complexation: Comparison Between ASV and HPSEC-ICP-MS Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moiseenko, T.I. Bioavailability and Ecotoxicity of Metals in Aquatic Systems: Critical Contamination Levels. Geochem. Int. 2019, 57, 737–750. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, II; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Kördel, W.; Dassenakis, M.; Lintelmann, J.; Padberg, S. The importance of natural organic material for environmental processes in waters and soil. Pure Appl. Chem. 1997, 69, 1571–1600. [Google Scholar] [CrossRef]
- Tipping, E. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Steelman, D.K.; Xiong, S.; Pletcher, P.D.; Smith, E.; Switzer, J.M.; Medvedev, G.A.; Delgass, W.N.; Caruthers, J.M.; Abu-Omar, M.M. Effects of pendant ligand binding affinity on chain transfer for 1-hexene polymerization catalyzed by single-site zirconium amine bis-phenolate complexes. J. Am. Chem. Soc. 2013, 135, 6280–6288. [Google Scholar] [CrossRef] [PubMed]
- Elkins, K.M.; Nelson, D.J. Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coord. Chem. Rev. 2002, 228, 205–225. [Google Scholar] [CrossRef]
- Janoš, P.; Hůla, V.; Bradnová, P.; Pilařová, V.Š. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents. Chemosphere 2009, 75, 732–738. [Google Scholar] [CrossRef]
- Watanabe, C.H.; Monteiro, A.S.C.; Gontijo, E.S.J.; Lira, V.S.; Bueno, C.D.; Kumar, N.T.; Fracacio, R.; Rosa, A.H. Toxicity assessment of arsenic and cobalt in the presence of aquatic humic substances of different molecular sizes. Ecotoxicol. Environ. Saf. 2017, 139, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Perelomov, L.V.; Sarkar, B.; Sizova, O.I.; Chilachava, K.B.; Shvikin, A.Y.; Perelomova, I.V.; Atroshchenko, Y.M. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species. Ecotoxicol. Environ. Saf. 2018, 151, 178–183. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. The European Parliament Directive 2002/95/EC. Off. J. Eur. Union 2003, 37, 19–23. [Google Scholar]
- Corami, F.; Capodaglio, G.; Turetta, C.; Bragadin, M.; Calace, N.; Petronio, B.M. Complexation of cadmium and copper by fluvial humic matter and effects on their toxicity. Ann. Chim. 2007, 97, 25–37. [Google Scholar] [CrossRef]
- Sánchez-Marín, P.; Aierbe, E.; Lorenzo, J.I.; Mubiana, V.K.; Beiras, R.; Blust, R. Dynamic modeling of copper bioaccumulation by Mytilus edulis in the presence of humic acid aggregates. Aquat Toxicol. 2016, 178, 165–170. [Google Scholar] [CrossRef]
- Whitby, H.; van den Berg, C.M.G. Evidence for copper-binding humic substances in seawater. Mar. Chem. 2015, 173, 282–290. [Google Scholar] [CrossRef]
- Lalas, S.; Athanasiadis, V.; Dourtoglou, V.G. Humic and Fulvic Acids as Potentially Toxic Metal Reducing Agents in Water. Clean Soil Air Water 2017, 46, 1–13. [Google Scholar] [CrossRef]
- Buffle, J. Complexation Reactions in Aquatic Systems: Analytical Approach; Ellis Horwood Ltd.: Chichester, UK, 1988. [Google Scholar]
- Dudal, Y.; Gérard, F. Accounting for natural organic matter in aqueous chemical equilibrium models: A review of the theories and applications. Earth Sci. Rev. 2004, 66, 199–216. [Google Scholar] [CrossRef]
- McDonald, S.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Analytical chemistry of freshwater humic substances. Anal. Chim. Acta 2004, 527, 105–124. [Google Scholar] [CrossRef]
- Benincasa, M.A.; Cartoni, G.; Imperia, N. HPLC of humic substances fractionated by flow FFF. J. Sep. Sci. 2003, 26, 429–432. [Google Scholar] [CrossRef]
- Luster, J.; Lloyd, T.; Sposito, G.; Fry, I.V. Multi-wavelength molecular fluorescence spectrometry for quantitative characterization of copper(II) and aluminum(III) complexation by dissolved organic matter. Environ. Sci. Technol. 1996, 30, 1565–1574. [Google Scholar] [CrossRef]
- Braungardt, C.B.; Achterberg, E.P.; Axelsson, B.; Buffle, J.; Graziottin, F.; Howell, K.A.; Illuminati, S.; Scarponi, G.; Tappin, A.D.; Tercier-Waeber, M.L.; et al. Analysis of dissolved metal fractions in coastal waters: An inter-comparison of five voltammetric in situ profiling (VIP) systems. Mar. Chem. 2009, 114, 47–55. [Google Scholar] [CrossRef]
- Illuminati, S.; Annibaldi, A.; Truzzi, C.; Tercier-Waeber, M.L.; Noel, S.; Braungardt, C.B.; Achterberg, E.P.; Howell, K.A.; Turner, D.; Marini, M.; et al. In-situ trace metal (Cd, Pb, Cu) speciation along the Po River plume (Northern Adriatic Sea) using submersible systems. Mar. Chem. 2019, 21, 47–63. [Google Scholar] [CrossRef]
- Van Den Berg, C.M.G.; Donat, T.J.R. Determination and data evaluation of Copper complexation by organic-ligands in sea-water using Cathodic Stripping Voltammetry at varying detection windows. Anal. Chim. Acta 1992, 257, 281–291. [Google Scholar] [CrossRef]
- Capodaglio, G.; Scarponi, G.; Toscano, G.; Barbante, C.; Cescon, P. Speciation of trace metals in seawater by Anodic Stripping Voltammetry: Critical Analytical Steps. Fresenius J. Anal. Chem. 1995, 351, 386–392. [Google Scholar] [CrossRef]
- Muller, F.L.L.; Kester, D.R. Kinetic approach to trace metal complexation in seawater: Application to Zinc and Cadmium. Environ. Sci. Technol. 1990, 24, 224–232. [Google Scholar] [CrossRef]
- Lage, O.M.; Soares, H.M.V.M.; Vasconcelos, M.T.S.D.; Parente, A.M.; Salema, R. Toxicity effects of copper(II) on the marine dinoflagellate Amphidinium carterae: Influence of metal speciation. Eur. J. Phycol. 1996, 31, 341–348. [Google Scholar] [CrossRef]
- De Nobili, M.; Chen, Y. Size exclusion chromatography of humic substances: Limits, perspectives and prospectives. Soil Sci. 1999, 164, 825–833. [Google Scholar] [CrossRef]
- Wu, F.; Evans, D.; Dillon, P.; Schiff, S. Molecular size distribution characteristics of the metal? DOM complexes in stream waters by high-performance size-exclusion chromatography (HPSEC) and high-resolution inductively coupled plasma mass spectrometry (ICP-MS). J. Anal. At. Spectrom. 2004, 19, 979. [Google Scholar] [CrossRef]
- Stolpe, B.; Hassellöv, M.; Andersson, K.; Turner, D.R. High resolution ICPMS as an on-line detector for flow field-flow fractionation; multi-element determination of colloidal size distributions in a natural water sample. Anal. Chim. Acta 2005, 535, 109–121. [Google Scholar] [CrossRef]
- Laborda, F.; Bolea, E.; Górriz, M.P.; Martin-Ruiz, M.P.; Ruiz-Begueria, S.; Castillo, J.R. A speciation methodology to tudy the contributions of humic-like and fulvic-like acids to the mobilization of metals from compost using size exclusion chromatography–ultraviolet absorption–inductively coupled plasma mass spectrometry and deconvolution an. Anal. Chim. Acta 2008, 606, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Laborda, F.; Ruiz-Beguería, S.; Bolea, E.; Castillo, J.R. Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 392–398. [Google Scholar] [CrossRef]
- Merdy, P.; Bonnefoy, A.; Martias, C.; Garnier, C.; Huclier, S. Use of fluorescence spectroscopy and voltammetry for the analysis of metal-organic matter interactions in the New Caledonia lagoon. Int. J. Environ. Anal. Chem. 2012, 92, 868–893. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humicchemistry and implications in soil science. In Advances in Agronomy, 75th ed.; Academic Press: Cambridge, MA, USA, 2002; pp. 57–134. [Google Scholar]
- Scarponi, G.; Capodaglio, G.; Cescon, P.; Frache, R.; Cosma, B. Anodic Stripping Voltammetric determination of the contamination of seawater samples by cadmium, lead and copper during filtration and storage. Anal. Chim. Acta 1982, 135, 263–276. [Google Scholar] [CrossRef]
- Bolea, E.; Gorriz, M.P.; Bouby, M.; Laborda, F.; Castillo, J.R.; Geckeis, H. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: A comparative approach. J. Chromatogr. A 2006, 1129, 236–246. [Google Scholar] [CrossRef]
- Kostanski, L.K.; Keller, D.M.; Hamielec, A.E. Size-exclusion chromatography—A review of calibration methodologies. J. Biochem. Biophys. Methods 2004, 58, 159–186. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, G.; Turetta, C.; Toscano, G.; Gambaro, A.; Scarponi, G.; Cescon, P. Cadmium, lead and copper complexation in antarctic coastal seawater. Evolution during the austral summer. Int. J. Environ. Anal. Chem. 1998, 71, 195–226. [Google Scholar] [CrossRef]
- Ranaldo, M.; Toscano, G.; Radaelli, M.; Scalabrin, E.; Capodaglio, G. Nicotiana langsdorffii wild type and genetically modified exposed to chemical and physical stress: Changes in element content. Int. J. Environ. Anal. Chem. 2015, 95, 349–365. [Google Scholar] [CrossRef]
- Capodaglio, G.; Toscano, G.; Scarponi, G.; Cescon, P. Lead Speciation in the Surface Waters of the Ross Sea (Antarctica). Ann. Chim. 1989, 79, 543–559. [Google Scholar]
- Capodaglio, G.; Scarponi, G.; Toscano, G.; Cescon, P. Cadmium complexation in surface seawater of Terra Nova Bay (Antarctica). Ann. Chim. 1991, 81, 279–296. [Google Scholar]
- Capodaglio, G.; Toscano, G.; Scarponi, G.; Cescon, P. Copper Complexation in the Surface Sea Water of Terra Nova Bay (ANTARCTICA). Int. J. Environ. Anal. Chem. 1994, 55, 129–148. [Google Scholar] [CrossRef]
- Scarponi, G.; Capodaglio, G.; Barbante, C.; Cescon, P. Anodic stripping voltammetric titration procedure for the study of the trace metal complexation in sea water. In Element Speciation in Bioinorganic Chemistry; Caroli, S., Ed.; Wiley: New York, NY, USA, 1996; pp. 363–418. [Google Scholar]
- Lee, Y.K.; Hur, J. Using two-dimensional correlation size exclusion chromatography (2D-CoSEC) to explore the size-dependent heterogeneity of humic substances for copper binding. Environ. Pollut. 2017, 227, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Beyer, B.L.; Vogt, B.; Erlenkeuser, H. Soil Organic Matter Composition and Transformation in a Swamp Soil from Algae of Coastal Continental Antarctica. Soil Biol. Biochem. 1995, 27, 1279–1288. [Google Scholar] [CrossRef]
- Calace, N.; Campanella, L.; De Paolis, F.; Petronio, M. Characterization of Humic Acids Isolated from Antarctic Soils. Int. J. Environ. Anal. Chem. 1995, 60, 71–78. [Google Scholar] [CrossRef]
- Grzybowski, W. Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated from Baltic Sea water. Oceanologia 2000, 42, 473–482. [Google Scholar]
- Xue, H.; Sigg, L. Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters. Aquat Geochem. 1999, 5, 313–335. [Google Scholar] [CrossRef]
- Plaza, C.; Brunetti, G.; Senesi, N.; Polo, A. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy. Environ. Sci. Technol. 2006, 40, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Louis, Y.; Garnier, C.; Lenoble, V.; Mounier, S.; Cukrov, N.; Omanovic, D.; Pizeta, I. Kinetic andequilibrium studies of copper-dissolved organic matter complexation in water column of the stratified Krka River estuary (Croatia). Mar. Chem. 2009, 114, 110–119. [Google Scholar] [CrossRef]
- Muller, F.L.L. Evaluation of the effects of natural dissolved and colloidal organic ligands on the electrochemical lability of Cu, Pb and Cd in the Arran Deep, Scotland. Mar. Chem. 1999, 67, 43–60. [Google Scholar] [CrossRef]
- Abate, G.; Masini, J.C. Complexation of Cd(II) and Pb(II) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models. Org. Geochem. 2002, 33, 1171–1182. [Google Scholar] [CrossRef]
- Kinniburgh, D.G.; Milne, C.J.; Benedetti, M.F.; Pinheiro, J.P.; Filius, J.; Koopal, L.K.; VanRiemsdijk, W.H. Metalion binding by humic acid: Application of the NICA-Donnan model. Environ. Sci. Technol. 1996, 30, 1687–1698. [Google Scholar] [CrossRef]
- Barančíková, G.; Makovníková, J. The influence of humic acid quality on the sorption and mobility of heavy metals. Plant Soil Environ. 2003, 49, 565–571. [Google Scholar] [CrossRef]
- Peña-Méndez, E.M.; Gajdošová, D.; Novotná, K.; Prosek, P.; Have, J. Mass spectrometry of humic substances of different origin including those from Antarctica: A comparative study. Talanta 2005, 67, 880–890. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the soil humic acids used for this study are available from the authors. |
Element | ASV | HPSEC-ICP-MS | |
---|---|---|---|
Cd | Cl1 | 16.9 | 0.95 |
logK1 | 8.31 | 8.02 | |
Cl2 | 16.5 | 8.06 | |
logK2 | 6.97 | 6.18 | |
Cu | CL1 | 166 | 38.2 |
logK1 | 7.23 | 9.52 | |
CL2 | 101.2 | ||
logK2 | 6.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radaelli, M.; Scalabrin, E.; Toscano, G.; Capodaglio, G. High Performance Size Exclusion Chromatography-Inductively Coupled Plasma-Mass Spectrometry to Study the Copper and Cadmium Complexation with Humic Acids. Molecules 2019, 24, 3201. https://doi.org/10.3390/molecules24173201
Radaelli M, Scalabrin E, Toscano G, Capodaglio G. High Performance Size Exclusion Chromatography-Inductively Coupled Plasma-Mass Spectrometry to Study the Copper and Cadmium Complexation with Humic Acids. Molecules. 2019; 24(17):3201. https://doi.org/10.3390/molecules24173201
Chicago/Turabian StyleRadaelli, Marta, Elisa Scalabrin, Giuseppa Toscano, and Gabriele Capodaglio. 2019. "High Performance Size Exclusion Chromatography-Inductively Coupled Plasma-Mass Spectrometry to Study the Copper and Cadmium Complexation with Humic Acids" Molecules 24, no. 17: 3201. https://doi.org/10.3390/molecules24173201
APA StyleRadaelli, M., Scalabrin, E., Toscano, G., & Capodaglio, G. (2019). High Performance Size Exclusion Chromatography-Inductively Coupled Plasma-Mass Spectrometry to Study the Copper and Cadmium Complexation with Humic Acids. Molecules, 24(17), 3201. https://doi.org/10.3390/molecules24173201