Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology
Abstract
:1. Introduction
2. Traditional Usages
3. Phytochemistry
3.1. Terpenoids
3.2. Phenylpropanoids
3.3. Glycosides
3.4. Lignans
3.5. Lactones
3.6. Other Compounds
4. Pharmacology
4.1. Anti-Tumor Effects
4.2. Anti-Inflammatory and Analgesic Effects
4.3. Anti-diabetic and Anti-obesity Effects
4.4. Antibacterial and Antiviral Effects
4.5. Cardiovascular Protective Effects
4.6. Cytoprotective Effects
4.7. Neuroprotective Effects
4.8. Immunoregulation Effects
4.9. Anti-Tyrosinase Activity
4.10. Other Pharmacological Effects
4.11. Summary of Pharmacologic Effects
5. Toxicity
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HUVECs | human umbilical vein endothelial cells |
WEC | water extracts of C. cassia |
EEC | ethanol extracts of C. cassia |
EC | extracts of C. cassia |
EBC | extracts of barks of C. cassia |
ETC | extracts of twigs of C. cassia |
WEBC | water extracts of barks of C. cassia |
EEBC | ethanol extracts of barks of C. cassia |
MEBC | methanol extracts of barks of C. cassia |
WETC | water extracts of twigs of C. cassia |
EETC | ethanol extracts of twigs of C. cassia |
EOBC | essential oil of barks of C. cassia |
EOTC | essential oil of twigs of C. cassia |
EOC | essential oil of C. cassia |
EOLC | essential oil of leaves of C. cassia |
HEBC | hexane extracts of barks of C. cassia |
EAEBC | ethyl acetate extracts of barks of C. cassia |
AEBC | acetone extract of barks of C. cassia |
CcAgNPS | C. cassia silver nanoparticles |
CP | C. cassia powder |
MEC | methanol extracts of C. cassia |
References
- Wang, Y.H.; Avula, B.; Nanayakkara, N.P.D.; Zhao, J.P.; Khan, I.A. Cassia Cinnamon as a Source of Coumarin in Cinnamon-Flavored Food and Food Supplements in the United States. J. Agric. Food Chem. 2013, 61, 4470–4476. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 1963; p. 107. (In Chinese) [Google Scholar]
- Kwon, K.B.; Kim, E.K.; Jeong, E.S.; Lee, Y.H.; Lee, Y.R.; Park, J.W.; Ryu, D.G.; Park, B.H. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced β-cell damage by inhibiting NF-κB. World J. Gastroenterol. 2006, 12, 4331–4337. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.W.; Yang, G.E.; Kim, Y.B.; Eom, S.H.; Lew, J.H.; Kang, H. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement. Altern. Med. 2012, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.Y.; Zeng, F.X.; Zhu, R.X.; Zheng, Z.H. Exploration about the Clinical Application and Dosage of Cinnamon. Jilin J. Tradit. Chin. Med. 2019, 39, 317–320. [Google Scholar]
- Lin, H.Q.; Zhou, B.S.; Tan, J.; Wang, H.; Wu, F.L.; Liu, J.P.; Li, P.Y. Research Progress on Chemical Constituents, Pharmacological Activity and Clinical Application of Cinnamomi Cortex. Spec. Wild Econ. Anim. Plant Res. 2018, 40, 65–69. [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Health. Drug Specifications Promulgated by the Ministry of Public Health, PR China. The Preparation of Traditional Chinese Drug, Vol. 1; Ministry of Health, PRC: Beijing, China, 1990; p. 160. (In Chinese)
- Pharmacopoeia Committee of the Ministry of Health. Pharmaceutical Standards of the Ministry of Health (Tibetan Pharmaceutical Branch); People’s Health Publishing House: Beijing, China, 1964; p. 8377. (In Chinese) [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Health. Drug Specifications Promulgated by the Ministry of Public Health, PR China. The Preparation of Traditional Chinese Drug, Vol. 5; Ministry of Health, PRC: Beijing, China, 1993; p. 2. (In Chinese)
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 1332. (In Chinese) [Google Scholar]
- State Drug Administration. National Standards for Chinese Patent Medicine of the State Drug Administration (Nei Ke Pi Wei Branch); People’s Medical Publishing House: Beijing, China, 2002; p. 385. (In Chinese) [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 453. (In Chinese) [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 617. (In Chinese) [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 614. (In Chinese) [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 844. (In Chinese) [Google Scholar]
- State Pharmacopoeia Commission. National Drug Standards for New Drug Correction, Vol. 87; China Pharmaceutical Science and Technology Publishing House: Beijing, China, 2011; p. 4. (In Chinese) [Google Scholar]
- State Drug Administration. National Standards for Chinese Patent Medicine of the State Drug Administration (Nei Ke Pi Wei Branch); People’s Medical Publishing House: Beijing, China, 2002; p. 496. (In Chinese) [Google Scholar]
- State Drug Administration. National Standards for Chinese Patent Medicine of the State Drug Administration (Nei Ke Xin Xi Branch); People’s Medical Publishing House: Beijing, China, 2002; p. 91. (In Chinese) [Google Scholar]
- State Pharmacopoeia Commission. National Drug Standards for New Drug Correction, Vol. 52; China Pharmaceutical Science and Technology Publishing House: Beijing, China, 2008; p. 40. (In Chinese) [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Health. Drug Specifications Promulgated by the Ministry of Public Health, PR China. The Preparation of Traditional Chinese Drug, Vol. 12; Ministry of Health, PRC: Beijing, China, 1997; p. 2. (In Chinese)
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 449. (In Chinese) [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Health. Drug Specifications Promulgated by the Ministry of Public Health, PR China. The Preparation of Traditional Chinese Drug, Vol. 1; Ministry of Health, PRC: Beijing, China, 1990; p. 101. (In Chinese)
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 1061. (In Chinese) [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 1228. (In Chinese) [Google Scholar]
- State Pharmacopoeia Commission. National Drug Standards for New Drug Correction, Vol. 52; China Pharmaceutical Science and Technology Publishing House: Beijing, China, 2006; p. 29. (In Chinese) [Google Scholar]
- State Pharmacopoeia Commission. National Drug Standards for New Drug Correction, Vol. 64; China Pharmaceutical Science and Technology Publishing House: Beijing, China, 2008; p. 27. (In Chinese) [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Healt. Drug Specifications Promulgated by the Ministry of Public Health, PR China. The Preparation of Traditional Chinese Drug, Vol. 18; Ministry of Health, PRC: Beijing, China, 1998; p. 54. (In Chinese)
- Pharmacopoeia Committee of the Ministry of Health. Drug Specifications Promulgated by the Ministry of Public Health, PR China. The Preparation of Traditional Chinese Drug, Vol. 15; Ministry of Health, PRC: Beijing, China, 1997; p. 43. (In Chinese)
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 767. (In Chinese) [Google Scholar]
- State Pharmacopoeia Commission. National Drug Standards for New Drug Correction, Vol. 32; China Pharmaceutical Science and Technology Publishing House: Beijing, China, 2003; p. 10. (In Chinese) [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Health. Drug Specifications Promulgated by the Ministry of Public Health, PR China. The Preparation of Traditional Chinese Drug, Vol. 8; Ministry of Health, PRC: Beijing, China, 1993; p. 7. (In Chinese)
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part I; People’s Medical Publishing House: Beijing, China, 2015; p. 795. (In Chinese) [Google Scholar]
- Rao, Z.L.; Xu, F.; Wen, T.Q.; Wang, F.; Sang, W.T.; Zeng, N. Protective effects of essential oils from Rimulus cinnamon on endotoxin poisoning mice. Biomed. Pharmacother. 2018, 101, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Pannee, C.; Chandhanee, I.; Wacharee, L. Anti-inflammatory effects of essential oil from the leaves of Cinnamomum cassia and cinnamaldehyde on lipopolysaccharide-stimulated J774A.1 cells. J. Adv. Pharm. Technol. Res. 2014, 5, 164–170. [Google Scholar] [CrossRef]
- Xiong, Y.K.; Liu, X.L.; Mu, Z.J.; Yuan, E.; Sun, M.S.; You, Q.T.; Liu, Z.Y. Differences of Chemical Constituents of Volatile Oil from Cinnamomum before and after Drying and Comparison of Anti-Drug Resistant Bacteria Activities. Res. Explor. Lab. 2018, 37, 56–59. [Google Scholar]
- Li, Y.Q.; Kong, D.X.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy. Ind. Crop. Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Yan, Y.M.; Fang, P.; Yang, M.T.; Li, N.; Lu, Q.; Cheng, Y.X. Anti-diabetic nephropathy compounds from Cinnamomum cassia. J. Ethnopharmacol. 2015, 165, 141–147. [Google Scholar] [CrossRef]
- Pham, V.C.; Nguyen, T.T.A.; Vu, T.O.; Gao, T.Q.; Min, B.S.; Kim, J.A. Five new diterpenoids from the barks of Cinnamomum cassia (L.) J. Presl. Phytochem. Lett. 2019, 32, 23–28. [Google Scholar] [CrossRef]
- Zeng, J.F.; Xue, Y.B.; Shu, P.H.; Qian, H.Q.; Sa, R.J.; Xiang, M.; Li, X.N.; Luo, Z.W.; Yao, G.M.; Zhang, Y.H. Diterpenoids with Immunosuppressive Activities from Cinnamomum cassia. J. Nat. Prod. 2014, 77, 1948–1954. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.T.; Chang, W.L.; Hsu, J.C.; Shih, Y.; Chou, S.T. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. Bot. Stud. 2013, 54, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Yu, J.W.; Lu, F.L.; Lin, M.C.; Cheng, H.F. Differentiating parts of Cinnamomum cassia using LC-qTOF-MS in conjunction with principal component analysis. Biomed. Chromatogr. 2016, 30, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, T.M.; Khoi, N.M.; Ha, D.T.; Nhiem, N.X.; Tai, B.H.; Van Don, D.; Van Luong, H.; Son, D.C.; Bae, K. Xanthine oxidase inhibitory activity of constituents of Cinnamomum cassia twigs. Bioorg. Med. Chem. Lett. 2012, 22, 4625–4628. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.W.; Liang, Z.T.; Li, P.; Zhao, Z.Z.; Chen, J. Tissue-specific chemical profiling and quantitative analysis of bioactive components of Cinnamomum cassia by combining laser-microdissection with UPLC-Q/TOF-MS. Chem. Cent. J. 2018, 12, 71. [Google Scholar] [CrossRef]
- Liu, X.; Fu, J.; Yao, X.J.; Yang, J.; Liu, L.; Xie, T.G.; Jiang, P.C.; Jiang, Z.H.; Zhu, G.Y. Phenolic Constituents Isolated from the Twigs of Cinnamomum cassia and Their Potential Neuroprotective Effects. J. Nat. Prod. 2018, 81, 1333–1342. [Google Scholar] [CrossRef]
- Zeng, J.F.; Zhu, H.C.; Lu, J.W.; Hu, L.Z.; Song, J.C.; Zhang, Y.H. Two new geranylphenylacetate glycosides from the barks of Cinnamomum cassia. Nat. Prod. Res. 2017, 31, 1812–1818. [Google Scholar] [CrossRef]
- He, S.; Zeng, K.W.; Jiang, Y.; Tu, P.F. Nitric oxide inhibitory constituents from the barks of Cinnamomum cassia. Fitoterapia 2016, 112, 153–160. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, S.M.; Lu, Q.; Luo, J.; Cheng, Y.X. Identification of Compounds from the Water Soluble Extract of Cinnamomum cassia Barks and Their Inhibitory Effects against High-Glucose-Induced Mesangial Cells. Molecules 2013, 18, 10930–10943. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.F.; Xue, Y.B.; Lai, Y.J.; Yao, G.M.; Luo, Z.W.; Zhang, Y.H.; Zhang, J.W. A New Phenolic Glycoside from the Barks of Cinnamomum cassia. Molecules 2014, 19, 17727–17734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.J.; Lee, J.Y.; Choi, H.G.; Kim, S.Y.; Kim, E.; Shim, S.H.; Nam, J.W.; Kim, S.H.; Choi, H. Cinnamomulactone, a new butyrolactone from the twigs of Cinnamomum cassia and its inhibitory activity of matrix metalloproteinases. Arch. Pharm. Res. 2017, 40, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Cai, Z.C.; Qian, S.H.; Chen, M.H. A New Lactone from the Twigs of Cinnamomum cassia. Chem. Nat. Compd. 2017, 53, 234–236. [Google Scholar] [CrossRef]
- Kin, R.; Kato, S.; Kaneto, N.; Sakurai, H.; Hayakawa, Y.; Li, F.; Tanaka, K.; Saiki, I.; Yokoyama, S. Procyanidin C1 from Cinnamomi Cortex inhibits TGF-beta-induced epithelial-to-mesenchymal transition in the A549 lung cancer cell line. Int. J. Oncol. 2013, 43, 1901–1906. [Google Scholar] [CrossRef]
- Sun, L.; Zong, S.B.; Li, J.C.; Lv, Y.Z.; Liu, L.N.; Wang, Z.Z.; Zhou, J.; Cao, L.; Kou, J.P.; Xiao, W. The essential oil from the twigs of Cinnamomum cassia Presl alleviates pain and inflammation in mice. J. Ethnopharmacol. 2016, 194, 904–912. [Google Scholar] [CrossRef]
- Yang, X.Q.; Zheng, H.; Ye, Q.; Li, R.Y.; Chen, Y. Essential oil of cinnamon exerts anti-cancer activity against head and neck squamous cell carcinoma via attenuating epidermal growth factor receptor-tyrosine kinase. J. BUON 2015, 20, 1518–1525. [Google Scholar] [PubMed]
- Zao, D.; Sun, Y.; Chen, G. Inhibition Activity of Cinnamon Oil. J. Jilin Agric. Univ. 2013, 35, 402–405. [Google Scholar]
- Jones, P.; Altamura, S.; De Francesco, R.; Gallinari, P.; Lahm, A.; Neddermann, P.; Rowley, M.; Serafini, S.; Steinkuhler, C. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg. Med. Chem. Lett. 2008, 18, 1814–1819. [Google Scholar] [CrossRef]
- Hu, J.; Jing, H.; Lin, H.N. Sirtuin inhibitors as anticancer agents. Future Med. Chem. 2014, 6, 945–966. [Google Scholar] [CrossRef] [Green Version]
- Rettig, I.; Koeneke, E.; Trippel, F.; Mueller, W.C.; Burhenne, J.; Kopp-Schneider, A.; Fabian, J.; Schober, A.; Fernekorn, U.; von Deimling, A.; et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis. 2015, 6, e1657. [Google Scholar] [CrossRef]
- Patil, M.; Choudhari, A.S.; Pandita, S.; Islam, M.A.; Raina, P.; Kaul-Ghanekar, R. Cinnamaldehyde, Cinnamic Acid, and Cinnamyl Alcohol, the Bioactives of Cinnamomum cassia Exhibit HDAC8 Inhibitory Activity: An in vitro and in silico Study. Pharmacogn. Mag. 2017, 13, S645–S651. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Matsumoto, T.; Itoi, A.; Kawana, A.; Nishiyama, T.; Ogura, K.; Hiratsuka, A. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract. Biochem. Biophys. Res. Commun. 2011, 413, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Anzai, E.; Suzuki, Y.; Shimoda, M.; Saito, S.; Nishiyama, T.; Ogura, K.; Hiratsuka, A. Selective antagonization of activated Nrf2 and inhibition of cancer cell proliferation by procyanidins from Cinnamomi Cortex extract. Arch. Biochem. Biophys. 2015, 585, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Sakamoto, K.; Shinoda, A.; Takagi, C.; Ohno, S.; Nishiyama, T.; Ogura, K.; Hiratsuka, A. Procyanidins from Cinnamomi Cortex promote proteasome-independent degradation of nuclear Nrf2 through phosphorylation of insulin-like growth factor-1 receptor in A549 cells. Arch. Biochem. Biophys. 2017, 635, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Hsieh, Y.H.; Yang, S.F.; Chu, S.C.; Chen, P.N.; Hsieh, Y.S. Cinnamomum cassia extracts reverses TGF-1-induced epithelial-mesenchymal transition in human lung adenocarcinoma cells and suppresses tumor growth in vivo. Environ. Toxicol. 2017, 32, 1878–1887. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Horng, C.T.; Lee, Y.L.; Chen, P.N.; Lin, C.Y.; Liao, C.Y.; Hsieh, Y.S.; Chu, S.C. Cinnamomum Cassia Extracts Suppress Human Lung Cancer Cells Invasion by Reducing u-PA/MMP Expression through the FAK to ERK Pathways. Int. J. Med. Sci. 2018, 15, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.J.; Chung, T.W.; Lee, J.H.; Kim, B.S.; Kim, E.Y.; Lee, S.O.; Ha, K.T. Water-extracted branch of Cinnamomum cassia promotes lung cancer cell apoptosis by inhibiting pyruvate dehydrogenase kinase activity. J. Pharmacol. Sci. 2018, 138, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.L.; Cheng, F.C.; Wang, S.P.; Chou, S.T.; Shih, Y. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. Environ. Toxicol. 2017, 32, 456–468. [Google Scholar] [CrossRef]
- Yu, C.H.; Chu, S.C.; Yang, S.F.; Hsieh, Y.S.; Lee, C.Y.; Chen, P.N. Induction of apoptotic but not autophagic cell death by Cinnamomum cassia extracts on human oral cancer cells. J. Cell. Physiol. 2019, 234, 5289–5303. [Google Scholar] [CrossRef]
- Rad, S.K.; Kanthimathi, M.S.; Abd Malek, S.N.; Lee, G.S.; Looi, C.Y.; Wong, W.F. Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells. PLoS ONE 2015, 10, e0145216. [Google Scholar] [CrossRef]
- Koppikar, S.J.; Choudhari, A.S.; Suryavanshi, S.A.; Kumari, S.; Chattopadhyay, S.; Kaul-Ghanekar, R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 2010, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.C.; Deng, J.S.; Chiu, C.S.; Hou, W.C.; Huang, S.S.; Shie, P.H.; Huang, G.J. Anti-Inflammatory Activities of Cinnamomum cassia Constituents in Vitro and in Vivo. Evid. Based. Complement. Altern. 2012, 2012, 429320. [Google Scholar] [CrossRef]
- Gunawardena, D.; Karunaweera, N.; Lee, S.; van der Kooy, F.; Harman, D.G.; Raju, R.; Bennett, L.; Gyengesi, E.; Sucher, N.J.; Munch, G. Anti-inflammatory activity of cinnamon (C-zeylanicum and C-cassia) extracts - identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds. Food Funct. 2015, 6, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.Y.; Shim, D.W.; Kim, M.K.; Sun, X.; Koppula, S.; Yu, S.H.; Kim, H.B.; Kim, T.J.; Kang, T.B.; Lee, K.H. Protective effects of Cinnamomum cassia (Lamaceae) against gout and septic responses via attenuation of inflammasome activation in experimental models. J. Ethnopharmacol. 2017, 205, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Chauhan, P.; Singh, S. Evaluation of the anti-arthritic activity of Cinnamomum cassia bark extract in experimental models. Integr. Med. Res. 2018, 7, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Balayssac, D.; Ferrier, J.; Pereira, B.; Gillet, B.; Petorin, C.; Vein, J.; Libert, F.; Eschalier, A.; Pezet, D. Prevention of oxaliplatin-induced peripheral neuropathy by a polyamine-reduced diet-NEUROXAPOL: Protocol of a prospective, randomised, controlled, single-blind and monocentric trial. BMJ Open 2015, 5, e007479. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lee, J.H.; Kim, W.; Li, D.X.; Kim, Y.; Lee, K.; Kim, S.K. The Suppressive Effects of Cinnamomi Cortex and Its Phytocompound Coumarin on Oxaliplatin-Induced Neuropathic Cold Allodynia in Rats. Molecules 2016, 21, 1253. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.K.; Kim, W.; Kim, S.K. Phytochemicals of Cinnamomi Cortex: Cinnamic Acid, but not Cinnamaldehyde, Attenuates Axaliplatin-Induced Cold and Mechanical Hypeisensitivity in Rats. Nutrients 2019, 11, 432. [Google Scholar] [CrossRef]
- Jiang, Q.; Zou, S.Q.; Zhou, W.H.; Yi, Z.X.; Wu, X.C.; Gong, H.F. Optimization of Extraction Technology for Total Polyphenols from Cinnamomi Cortex and Investigation of its Hypoglycemic Effect. Chin. J. Exp. Med. Formul. 2013, 19, 21–23. [Google Scholar]
- Kang, B.H.; Racicot, K.; Pilkenton, S.J.; Apostolidis, E. Evaluation of the in vitro Anti-Hyperglycemic Effect of Cinnamomum cassia Derived Phenolic Phytochemicals, via Carbohydrate Hydrolyzing Enzyme Inhibition. Plant Food Hum. Nutr. 2014, 69, 155–160. [Google Scholar] [CrossRef]
- Kumar, I.M.K.; Issac, A.; Ninan, E.; Kuttan, R.; Maliakel, B. Enhanced anti-diabetic activity of polyphenol-rich de-coumarinated extracts of Cinnamomum cassia. J. Funct. Foods 2014, 10, 54–64. [Google Scholar] [CrossRef]
- Uslu, G.A.; Gelen, V.; Uslu, H.; Ozen, H. Effects of Cinnamomum cassia extract on oxidative stress, immunoreactivity of iNOS and impaired thoracic aortic reactivity induced by type II diabetes in rats. Braz. J. Pharm. Sci. 2018, 54. [Google Scholar] [CrossRef]
- Kouame, K.; Peter, A.I.; Akang, E.N.; Moodley, R.; Naidu, E.C.; Azu, O.O. Histological and biochemical effects of Cinnamomum cassia nanoparticles in kidneys of diabetic Sprague-Dawley rats. Bosn. J. Basic Med. 2019, 19, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Siaw, J.A.; Kang, H.W. Stimulatory Effects of Cinnamon Extract (Cinnamomum cassia) during the Initiation Stage of 3T3-L1 Adipocyte Differentiation. Foods 2016, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Song, M.Y.; Kang, S.Y.; Kang, A.; Hwang, J.H.; Park, Y.K.; Jung, H.W. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy. Am. J. Chin. Med. 2017, 45, 1017–1031. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.H.; Wang, X.Q. Study on antibacterial activity of cinnamon essential oil. J. Mianyang Norm. Univ. 2013, 32, 39–43. [Google Scholar]
- Sheng, L.N.; Zhu, M.J. Inhibitory effect of Cinnamomum cassia oil on non-O157 Shiga toxin-producing Escherichia coli. Food Control 2014, 46, 374–381. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, X.Y.; Wang, Y.F.; Jiang, P.P.; Quek, S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Vaillancourt, K.; LeBel, G.; Yi, L.; Grenier, D. In vitro antibacterial activity of plant essential oils against Staphylococcus hyicus and Staphylococcus aureus, the causative agents of exudative epidermitis in pigs. Arch. Microbiol. 2018, 200, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Li, M.; Huang, X.S.; Liang, H.M.; Li, J.L.; Huang, X.H. Study on the bacteriostatic effect of cinnamon oil on acne-inducing bacteria. J. Guangdong Pharm. Univ. 2018, 34, 719–723. [Google Scholar]
- Song, X.Q.; Sun, Y.; Zhang, Q.; Yang, X.B.; Zheng, F.; He, S.K.; Wang, Y.F. Failure of Staphylococcus aureus to Acquire Direct and Cross Tolerance after Habituation to Cinnamon Essential Oil. Microorganisms 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Nayme, K.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. Res. 2019, 10, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Zaidi, N.; Amraiz, D.; Afzal, F. In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza a Virus. J. Microbiol. Biotechnol. 2016, 26, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Lee, J.J.; Lee, J.H.; Cho, W.K.; Gu, M.J.; Lee, K.J.; Ma, J.Y. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors. Am. J. Chin. Med. 2015, 43, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.C.; Kim, H.J.; Kim, T.J. Water extract of Cinnamomum cassia suppresses angiogenesis through inhibition of VEGF receptor 2 phosphorylation. Biosci. Biotechnol. Biochem. 2015, 79, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.Z.; Yao, P.A.; Liu, X.N.; Feng, J.H.; Xu, X.; Gao, J.P. Cardioprotective effects of Rougui (Cinnamomi Cortex) on diabetic cardiomyopathy in rats. Shanghai J. Tradit. Chin. Med. 2018, 52, 69–74. [Google Scholar]
- Tankam, J.M.; Sawada, Y.; Ito, M. Regular ingestion of cinnamomi cortex pulveratus offers gastroprotective activity in mice. J. Nat. Med. Tokyo 2013, 67, 289–295. [Google Scholar] [CrossRef] [PubMed]
- ElKady, A.I.; Ramadan, W.S. The aqueous extract of cinnamon bark ameliorated cisplatin-induced cytotoxicity in vero cells without compromising the anticancer efficiency of cisplatin. Biomed. Pap. 2016, 160, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.S.; Lee, S.Y.; Jang, C.G. Involvement of 5-HT1A and GABAA receptors in the anxiolytic-like effects of Cinnamomum cassia in mice. Pharmacol. Biochem. Behav. 2007, 87, 164–170. [Google Scholar] [CrossRef]
- Jung, Y.H.; Kwon, S.H.; Hong, S.I.; Lee, S.O.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. 5-HT1A receptor binding in the dorsal raphe nucleus is implicated in the anxiolytic-like effects of Cinnamomum cassia. Pharmacol. Biochem. Behav. 2012, 103, 367–372. [Google Scholar] [CrossRef]
- Frydman-Marom, A.; Levin, A.; Farfara, D.; Benromano, T.; Scherzer-Attali, R.; Peled, S.; Vassar, R.; Segal, D.; Gazit, E.; Frenkel, D.; et al. Orally Administrated Cinnamon Extract Reduces bAmyloid Oligomerization and Corrects Cognitive Impairment inAlzheimer’s Disease Animal Models. PLoS ONE 2011, 6, e16564. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.J.; He, G.J.; Huang, H.C.; Li, Y. Protective Effect of Total Flavonoids of Cinnamomi Cortex on PC12 Cell Injured by 6-Hydroxydopamine. J. Chin. Med. Mater. 2017, 40, 2936–2940. [Google Scholar]
- Zada, W.; Zeeshan, S.; Bhatti, H.A.; Mahmood, W.; Rauf, K.; Abbas, G. Cinnamomum cassia: An implication of serotonin reuptake inhibition in animal models of depression. Nat. Prod. Res. 2016, 30, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.T.; Chang, W.L.; Chang, C.T.; Hsu, S.L.; Lin, Y.C.; Shih, Y. Cinnamomum cassia Essential Oil Inhibits α-MSH-Induced Melanin Production and Oxidative Stress in Murine B16 Melanoma Cells. Int. J. Mol. Sci. 2013, 14, 19186–19201. [Google Scholar] [CrossRef]
- Goswami, S.K.; Inamdar, M.N.; Jamwal, R.; Dethe, S. Effect of Cinnamomum cassia Methanol Extract and Sildenafil on Arginase and Sexual Function of Young Male Wistar Rats. J. Sex. Med. 2014, 11, 1475–1483. [Google Scholar] [CrossRef]
- Shakeel, M.; Jabeen, F.; Iqbal, R.; Chaudhry, A.S.; Zafar, S.; Ali, M.; Khan, M.S.; Khalid, A.; Shabbir, S.; Asghar, M.S. Assessment of Titanium Dioxide Nanoparticles (TiO2-NPs) Induced Hepato toxicity and Ameliorative Effects of Cinnamomum cassia in Sprague-Dawley Rats. Biol. Trace Elem. Res. 2017, 182, 57–69. [Google Scholar] [CrossRef]
- Sun, L.; Liu, L.N.; Li, J.C.; Lv, Y.Z.; Zong, S.B.; Zhou, J.; Wang, Z.Z.; Kou, J.P.; Xiao, W. The essential oil from the twigs of Cinnamomum cassia Presl inhibits oxytocin-induced uterine contraction in vitro and in vivo. J. Ethnopharmacol. 2017, 206, 107–114. [Google Scholar] [CrossRef]
- Okwor, I.; Uzonna, J. Social and Economic Burden of Human Leishmaniasis. Am. J. Trop. Med. Hyg. 2016, 94, 489–493. [Google Scholar] [CrossRef]
- Chappuis, F.; Sundar, S.; Hailu, A.; Ghalib, H.; Rijal, S.; Peeling, R.W.; Alvar, J.; Boelaert, M. Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 2007, 5, 873–882. [Google Scholar] [CrossRef]
- Afrin, F.; Chouhan, G.; Islamuddin, M.; Want, M.Y.; Ozbak, H.A.; Hemeg, H.A. Cinnamomum cassia exhibits antileishmanial activity against Leishmania donovani infection in vitro and in vivo. PLoS. Negl. Trop. D 2019, 13, e0007227. [Google Scholar] [CrossRef]
- Zhang, Y. 1 case of allergic reaction caused by processing cinnamon. China J. Chin. Mater. Med. 2002, 6, 480. [Google Scholar]
- García-Abujeta, J.L.; de Larramendi, C.H.; Berna, J.P.; Palomino, E.M.N. Mud bath dermatitis due to cinnamon oil. Contact Dermat. 2005, 52, 234. [Google Scholar] [CrossRef] [PubMed]
- Crawford, P. Effectiveness of Cinnamon for Lowering Hemoglobin A1C in Patients with Type 2 Diabetes: A Randomized, Controlled Trial. J. Am. Board Fam. Med. 2009, 22, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.W.; You, J.R.; Kim, Y.S.; Kim, S.H.; Cho, E.Y.; Yoon, J.H.; Kwon, E.; Jang, J.J.; Park, J.S.; Kim, H.C.; et al. In vitro and in vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology. Regul. Toxicol. Pharmacol. 2018, 95, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Kouame, K.; Peter, A.I.; Akang, E.N.; Adana, M.; Moodley, R.; Naidu, E.C.; Azu, O.O. Effect of long-term administration of Cinnamomum cassia silver nanoparticles on organs (kidneys and liver) of Sprague-Dawley rats. Turk. J. Biol. 2018, 42, 498–505. [Google Scholar] [CrossRef]
- Sheng, H.E.; Wang, H.L. Clinical study of Guifu Lizhong Wan in treating unstable angina pectoris with syndrome of Yang deficiency of heart and kidney. Acta. Chin. Med. 2016, 31, 1182–1185. [Google Scholar]
- Zhang, Q.; Peng, W.; Wei, S.J.; Wei, D.N.; Li, R.L.; Liu, J.; Peng, L.Y.; Yang, S.; Gao, Y.Y.; Wu, C.J.; et al. Guizhi-Shaoyao-Zhimu decoction possesses anti-arthritic effects on type II collagen-induced arthritis in rats via suppression of inflammatory reactions, inhibition of invasion & migration and induction of apoptosis in synovial fibroblasts. Biomed. Pharmacother. 2019, 118, 109367. [Google Scholar]
Prescription Name | Main Component | Traditional and Clinical Uses | Reference |
---|---|---|---|
Zi Shen Pills | Anemarrhenae Rhizoma, Phellodendri Chinensis Cortex, Cinnamomi Cortex | Treating dysuria due to accumulation heat in bladder | [7] |
Gui Fu Li Zhong Pills | Cinnamomi Cortex, Aconiti Lateralis Radix Praeparata, Codonopsis Radix, Glycyrrhizae Radix Et Rhizoma, Atractylodis, Macrocephalae Rhizoma, Roasted Ginger | Curing abdominal pain, diarrhoea and vomiting due to deficient cold of spleen and stomach, | [8] |
Ding Gui Wen Wei San | Caryophylli Flos, Cinnamomi Cortex | Curing abdominal pain caused by cold syndrome | [9] |
Jian Wei Shi Wei Pills | Granati Pericarpium, Amomi Fructus Rotundus, Chebulae Fructus, Cinnamomi Cortex, Piperis Fructus, Kaempferiae Rhizoma, Piperis Longi Fructus | Curing cacochylia, gasteremphraxis, vomiting and diarrhea | [10] |
Qi Wei Wei Tong Capsules | Aucklandiae Radix, Piperis Longifructus, Alpiniae Officinaru Mrhizoma, Galli Gigerii Endothelium Corneum, Euodiae Fructus, Cinnamomi Cortex | Treating diarrhoea, vomiting, poor appetite, gastroduodenal ulcer and superficial gastritis | [11] |
Qi Wei Pu Tao San | Gypsum Fibrosum, Carthami Flos, Glycyrrhizae Radix Et Rhizoma, Cyperi Rhizoma, Cinnamomi Cortex, Granati Pericarpium | Treating cough, asthma and chest tightness due to overwork and weakness | [12] |
Wu Wei Qing Zhuo San | Granati Pericarpium, Carthami Flos, Carthami Flos, Cinnamomi Cortex, Piperis Longi Fructus | Treating poor appetite, dyspepsia, gastralgia, belching, abdominal distention and diarrhea | [13] |
Wu Ling San | Poria, Alismatis Rhizoma, Polyporus, Cinnamomi Cortex, Atractylodis Macrocephalae Rhizoma | Treating dysuria, oedema, abdominal distension, diarrhoea and vomiting | [14] |
Zhong Jing Wei Ling Pills | Cinnamomi Cortex, Corydalis Rhizoma, Ostreae Concha, Foeniculi Fructus, Amomi Fructus, Alpiniae Officinarum Rhizoma, Paeoniae Radix Alba, Glycyrrhizae Radix Et Rhizoma | Treating poor appetite, stomachache, abdominal distension and diarrhoea due to weak spleen and stomach | [15] |
Er Xie Kang Tiemo | Caryophylli Flos, Piperis Fructus, Euodiae Fructus, Cinnamomi Cortex | Curing non-infectious diarrhea in children | [16] |
Ba Wei Rou Gui Capsules | Cinnamomi Cortex, Aucklandiae Radix, Paeoniae Radix Alba, Piperis Longi Fructus, Foeniculi Fructus, Amomi Fructus Rotundus, Alpiniae Officinarum Rhizoma, Glycyrrhizae Radix Et Rhizoma | Curing stomachache, poor appetite and dyspepsia due to asthenia cold of spleen and stomach | [17] |
Li Er Mian Capsules | Coptidis Rhizoma, Cinnamomi Cortex | Treating cardiopalmus, insomnia and dreamful sleep | [18] |
Qian Lie Gui Huang Pills | Rhei Radix Et Rhizoma, Gleditsiae Fructus Abnormalis, Cinnamomi Cortex, Typhae Pollen, Talcum, Cyathulae Radix | Treating hyperplasia of prostate gland | [19] |
Shi Quan Da Bu Tang Jiang | Codonopsis Radix, Atractylodis Macrocephalae Rhizoma, Poria, Glycyrrhizae Radix Et Rhizoma, Angelicae Sinensis Radix, Aconiti Radix Cocta, Paeoniae Radix Alba, Rehmanniae Radix Praeparata, Astragali Radix, Cinnamomi Cortex | Treating pallor, dizziness and palpitation, spontaneous perspiration, weariness of body, cold feet due to deficiency of Qi and blood | [20] |
Shi Di Shui | Borneolum, Zingiberis Rhizoma, Rhei Radix Et Rhizoma, Foeniculi Fructus, Cinnamomi Cortex, Capsici Fructus | Treating dizziness, nausea, abdominal pain, gastrointestinal discomfort caused by heat stroke. | [21] |
Shen Gui Li Zhong Pills | Ginseng Radix Et Rhizoma, Cinnamomi Cortex, Aconiti Lateralis Radix Praeparata, Zingiberis Rhizoma, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix Et Rhizoma | Curing acrohypothermy, gastrofrigid vomiting, hernia, algomenorrhea, abdominal pain and diarrhea due to deficiency of Yang Qi and asthenia cold of spleen and stomach | [22] |
Gu Ben Tong Xue Granules | Cynomorii Herba, Cuscutae Semen, Cinnamomi Cortex, Morindae Officinalis Radix, Astragali Radix, Dioscoreae Rhizoma, Aconiti Lateralis Radix Praeparata, Lycii Fructus, Codonopsis Radix, Epimedi Folium | Treating mild primary thrombocytopenic purpura | [23] |
Fu Fang Zao Fan Pills | Melanteritum, Panacis, Quinquefolii Radix, Hippocampus, Cinnamomi Cortex, Jujubae Fructus, Juglandis Semen | Treating aplastic anemia, aleucocytosis, thrombocytopenia, myelodysplastic syndrome | [24] |
Xiao Er Fu Xie Tie | Caryophylli Flos, Cinnamomi Cortex, Piperis Longi Fructus | Treating non-infectious diarrhea in children duo to asthenia cold of spleen and stomach | [25] |
Shao Fu Zhu Yu Granules | Cinnamomi Cortex, Angelicae Sinensis Radix, Typhae Pollen, Paeoniae Radix Rubra, Foeniculi Fructus, Corydalis Rhizoma, Myrrha, Aconiti Radix Cocta | Treating irregular menstruation, dysmenorrhea, lumbago and leukorrhea due to blood stasis and cold | [26] |
Xin Bao Pills | Daturae Flos, Ginseng Radix Et Rhizoma, Cinnamomi Cortex, Aconiti Lateralis Radix Praeparata, Borneolum Syntheticum, Notoginseng Radix Et Rhizoma | Treating chronic cardiac insufficiency, bradycardia and angina pectoris | [27] |
Xin Tong Ning Di Wan | Cinnamomi Cortex, Aconiti Radix Cocta, Cyperi Rhizoma | Treating coronary disease and angina pectoris | [28] |
You Gui Pills | Rehmanniae Radix Praeparata, Aconiti Lateralis Radix Praeparata, Cinnamomi Cortex, Dioscoreae Rhizoma, Corni Fructus, Cuscutae Semen, Lycii Fructus, Angelicae Sinensis Radix, Eucommiae Cortex | Treating listlessness, spermatorrhea, asynodia, loose stool and frequent micturition due to deficiency of Yang Qi of kidney | [29] |
Shi Wei Fu Zheng Granules | Ginseng Radix Et Rhizoma, Rehmanniae Radix Praeparata, Atractylodis Macrocephalae Rhizoma, Astragali Radix, Poria, Paeoniae Radix Alba, Angelicae Sinensis Radix, Cinnamomi Cortex, Glycyrrhizae Radix Et Rhizoma, Aconiti Radix Cocta | Treating aleucocytosis, decrease of immune function caused by tumor radiotherapy and chemotherapy | [30] |
Ba Wei Shen Qi Pills | Rehmanniae Radix Praeparata, Dioscoreae Rhizoma, Poria, Schisandrae Chinensis Fructus, Cinnamomi Cortex, Alismatis Rhizoma, Aconiti Lateralis Radix Praeparata, Moutan Cortex | Treating edematous, cough, dyspnea, frequent micturition and loose stool duo to deficiency Yang of kidney | [31] |
Dai Wen Jiu Gao | Capsici Fructus, Cinnamomi Cortex, Zineiberis Rhizoma Rrcens, Cinnamon Oil | Curing chronic rheumatic arthritis, chronic gastroenteritis | [32] |
Classification | No. | Chemical Component | Part of Plant | Ref. |
---|---|---|---|---|
Terpenoids | 1 | endo-borneol | Twig | [33] |
2 | (−)-α-terpineol | Twig | [33] | |
3 | 1-terpineol | Leaves | [34] | |
4 | cis-β-terpineol | Leaves | [34] | |
5 | α-terpineol | Bark, leaves | [34,35] | |
6 | β-bisabolene | Bark, twig | [33,36] | |
7 | α-bisabolol | Bark, twig | [33,36] | |
8 | linalool | Bark | [36] | |
9 | camphene | Bark | [36] | |
10 | β-pinene | Bark | [36] | |
11 | camphor | Bark | [36] | |
12 | geranyl acetate | Bark | [36] | |
13 | cinnzeylanol | Bark | [37] | |
14 | anhydrocinnzeylanol | Bark | [37] | |
15 | cinnzeylanone | Bark | [37] | |
16 | 2,3-dehydroanhydrocinnzeylanine | Bark | [38] | |
17 | 1-acetylcinncassiol A | Bark | [38] | |
18 | anhydrocinnzeylanine | Bark | [38] | |
19 | 18S-cinncassiol A 19-O-β-d-glucopyranoside | Bark | [38] | |
20 | 18R-cinncassiol A 19-O-β-d-glucopyranoside | Bark | [38] | |
21 | 18-hydroxycinnzeylanine | Bark | [38] | |
22 | cinncassiol A | Bark | [38] | |
23 | cinncassiol B | Bark | [38] | |
24 | cinncassiol C | Bark | [38] | |
25 | cinncassiol D | Bark | [38] | |
26 | cinncassiol E | Bark | [38] | |
27 | cinncassiol F | Bark | [39] | |
28 | cinncassiol G | Bark | [39] | |
29 | 16-O-β-d-glucopyranosyl-19-deoxycinncassiol G | Bark | [39] | |
30 | cinnacasol | Bark | [39] | |
31 | perseanol | Bark | [39] | |
32 | cinncassiol D1 | Bark | [39] | |
33 | D1 glucoside | Bark | [39] | |
34 | D2 glucoside | Bark | [39] | |
35 | D3 glucoside | Bark | [39] | |
36 | D4 glucoside | Bark | [39] | |
37 | 18-hydroxyperseanol | Bark | [39] | |
38 | curcumene | Twig | [33] | |
39 | δ-cadinene | Twig | [33] | |
40 | espatulenol | Twig | [33] | |
41 | caryophyllene oxide | Twig | [33] | |
42 | trans-caryophyllene | Bark | [40] | |
43 | germacrene D | Bark | [40] | |
44 | caryophyllene | Bark, leaves | [34,35] | |
45 | α-cubebene | Bark | [35] | |
46 | (–)-isoledene | Bark | [35] | |
47 | α-bulnesene | Bark | [35] | |
48 | patchouli alcohol | Bark | [35] | |
49 | α-copaene | Bark | [35] | |
50 | α-muurolene | Bark, twig | [33,35] | |
51 | α-cadinol | Bark, twig | [33,35] | |
52 | copaene | Bark | [36] | |
53 | isoledene | Bark | [36] | |
54 | 1-(1,5-dimethyl-4-hexenyl)-4-methylbenzene | Bark | [36] | |
55 | cedrene | Bark | [36] | |
56 | α-calacorene | Bark | [36] | |
57 | cinnamoid A | Bark | [37] | |
58 | cinnamoid B | Bark | [37] | |
59 | cinnamoid C | Bark | [37] | |
60 | cinnamoid D | Bark | [37] | |
61 | cinnamoid E | Bark | [37] | |
62 | (−)-15-hydroxytmuurolol | Bark | [37] | |
63 | 15-hydroxy-α-cadinol | Bark | [37] | |
64 | ent-4β,10α- dihydroxyaromadendrane | Bark | [37] | |
Phenylpropanoids | 65 | cinnamaldehyde | Bark | [40] |
66 | cis-2-methoxycinnamic acid | Bark, twig, leaves | [40] | |
67 | coniferaldehyde | Twig | [33] | |
68 | o-methoxycinnamaldehyde | Bark | [40] | |
69 | 2-methoxycinnamaldehyde | Bark, twig | [33,35] | |
70 | 2′-methoxycinnamaldehyde | Bark, twig | [33,35] | |
71 | cinnamylalcohol | Bark, twig | [33,36] | |
72 | cis-cinnamaldehyde | Bark | [36] | |
73 | trans-cinnamaldehyde | Bark | [36] | |
74 | ethyl cinnamate | Bark | [36] | |
75 | eugenol | Bark, leaves | [34,36] | |
76 | cinnamyl acetate | Bark, leaves | [34,36] | |
77 | 2-hydroxycinnamic acid | Bark, twig | [41,42] | |
78 | 2-hydroxycinnamaldehyde | Bark, twig | [41,42] | |
79 | 4-methoxycinnamaldehyde | Bark, twig | [41,42] | |
80 | cinnamic acid | Bark, twig | [41,42] | |
Glycosides | 81 | cinnacasolide A | Twig | [42] |
82 | cinnacasolide B | Twig | [42] | |
83 | cinnacasolide C | Twig | [42] | |
84 | cinnacasside A | Bark, twig | [43,44] | |
85 | cinnacasside C | Bark, twig | [43,44] | |
86 | cinnacasside B | Bark | [45] | |
87 | cinnacasside F | Bark | [45] | |
88 | cinnacasside G | Bark | [45] | |
89 | cinnacassoside D | Bark | [46] | |
90 | cinnacassoside A | Bark | [47] | |
91 | cinnacassoside B | Bark | [47] | |
92 | cinnacassoside C | Bark | [47] | |
93 | 3,4,5-trimethoxyphenol-β-d–apiofuranosyl (1→6)-β-d-glucopyranoside | Bark | [47] | |
94 | 3-trimethoxy-4- hydroxyphenoll-β-d–apiofuranosyl (1→6)-β-d-glucopyranoside | Bark | [47] | |
95 | 3,4-dimethoxyphenol-β-d–apiofuranosyl (1→6)-β-d-glucopyranoside | Bark | [47] | |
96 | (−)-lyoniresinol 3α-O-β-d-glucopyranoside | Bark | [47] | |
97 | methyl-2-phenylpropanoate-2-O-β-dapiofuranosyl-(1→6)-O-β-d–glucopyranoside | Bark | [48] | |
98 | cinnacasolide E | Bark | [48] | |
99 | 3,4,5-trimethoxyphenol-β-d-apiofuranosyl-(1→6)-O-β-d-glucopyranoside | Bark | [48] | |
100 | Samwiside | Bark | [48] | |
101 | phenol-β-d-apiofuranosyl-(1→6)-O-β-d-glucopyranoside | Bark | [48] | |
102 | (6R,7R,8R)-7a-[(β-d-glucopyranosyl) oxy] lyoniresinol | Bark | [48] | |
103 | (6S,7R,8R)-7a-[(β-d-glucopryanosyl) oxy] lyoniresinol | Bark | [48] | |
104 | (6R,7S,8S)-7a-[(β-d-glucopyranosyl) oxy] lyoniresinol | Bark | [48] | |
Lignans | 105 | cinncassin E | Bark | [46] |
106 | cinncassin D | Bark | [46] | |
107 | picrasmalignan A | Bark | [46] | |
108 | (+)-leptolepisol C | Bark | [46] | |
109 | (−)-(7R,8S,7′R,8′S)-syringaresinol | Bark | [46] | |
110 | (+)-isolariciresinol | Bark | [46] | |
111 | (−)-secroisolariciresinol | Bark | [46] | |
112 | (+)-erythro-(7R,8S)-guaiacylglycerol-8-vanillin ether | Bark | [46] | |
113 | (+)-threo-(7S,8S)-guaiacylglycerol-β-coniferyl aldehyde ether | Bark | [46] | |
114 | (+)-erythro-(7S,8R)-guaiacylglycerol-β-coniferyl aldehyde ether | Bark | [46] | |
115 | (−)-erythro-(7R,8S)-guaiacylglycerol-β-O-4′-sinapoyl ether | Bark | [46] | |
116 | (−)-erythro-(7S,8R)-syringylglycerol-8-O-4′- (sinapoyl alcohol) ether | Bark | [46] | |
117 | (7S,8R)-lawsonicin | Bark | [46] | |
118 | 5′-methoxylariciresinol | Bark | [46] | |
119 | (+)-(7′R,8R,8′R)-5,5′-dimethoxylariciresinol | Bark | [46] | |
120 | (+)-(7′S,8R,8′R)-5,5′-dimethoxylariciresinol | Bark | [46] | |
121 | cinnacassin F | Twig | [44] | |
122 | cinnacassin G | Twig | [44] | |
123 | cinnacassin H | Twig | [44] | |
124 | cinnacassin I | Twig | [44] | |
125 | cinnacassin J | Twig | [44] | |
126 | cinnacassin K | Twig | [44] | |
127 | cinnacassin L | Twig | [44] | |
128 | cinnacassin M | Twig | [44] | |
129 | cinnacassin N | Twig | [44] | |
130 | cinnacassin O | Twig | [44] | |
Lactones | 131 | cinnamomulactone | Twig | [49] |
132 | 5R-methyl-3-heptatriacontyl-2(5H)-furanone | Twig | [50] | |
133 | cinncassin A2 | Twig | [44] | |
134 | cinncassin A3 | Twig | [44] | |
135 | cinncassin A4 | Twig | [44] | |
136 | cinncassin A5 | Twig | [44] | |
137 | cinncassin A6 | Twig | [44] | |
138 | cinncassin A7 | Twig | [44] | |
139 | cinncassin A1 | Twig | [44] | |
Other Compounds | 140 | benzyl benzoate | Twig | [33] |
141 | 2-hydroxybenzaldehyde | Twig | [33] | |
142 | 3-phenylpropanol | Twig | [33] | |
143 | 2,2,4,6,6-pentamethylheptane | Bark | [40] | |
144 | 2,5,9-trimethyldecane | Bark | [40] | |
145 | 2-ethyl-5-propylphenol | Bark | [40] | |
146 | 3,4-dimethoxyphenethyl alcohol | Bark | [40] | |
147 | 2,5-dimethylundecane | Bark | [40] | |
148 | benzaldehyde | Bark, twig | [33,40] | |
149 | phenylethyl alcohol | Bark, twig | [33,40] | |
150 | 2-methoxyphenylacetone | Bark | [35] | |
151 | benzenepropanal | Bark, twig | [33,35] | |
152 | acetophenone | Bark, twig | [33,36] | |
153 | benzene,1,3-dimethyl | Bark | [36] | |
154 | styrene | Bark | [36] | |
155 | 1,3-pentanediol,2,2,4-trimethyl | Bark | [36] | |
156 | decanal | Bark | [36] | |
157 | dodecane, 2,6,10-trimethyl | Bark | [36] | |
158 | epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin | Bark | [51] | |
159 | rosavin | Bark, twig | [42,47] | |
160 | coumarin | Bark, twig | [36,49] | |
161 | dihydromelilotoside | Twig | [42] | |
162 | methyl dihydromelilotoside | Twig | [42] | |
163 | evofolin B | Bark, twig | [44,47] | |
164 | cinnamomoside A | Twig | [44] | |
165 | cinncassin C | Bark | [46] | |
166 | cinncassin B | Bark | [46] |
Effects | Detail | Extracts/Compounds | Concentration/Dose | In Vivo/In Vitro | Ref. |
---|---|---|---|---|---|
Anti-tumor Effects | Lung cancer | ||||
Inhibiting Nrf2-regulated enzyme activity and Nrf2 expression | procyanidins | Cell lines of A549, 0–300 μg/mL | in vitro | [59] | |
Inhibiting Nrf2 expression and cell proliferation | procyanidins | Cell lines of A549, LK-2 and LU-99, 2.5 μg/mL | in vitro | [60] | |
Inhibiting Nrf2 expression and activation of IGF-1R phosphorylation | procyanidins | Cell lines of A549, LU-99, 10 μg/mL | in vitro | [61] | |
Inhibiting TGF-β-induced EMT | WEBC procyanidin C1 | Cell lines of A549, 12.5–200 μg/mL 1.25–40 μg/mL | in vitro | [51] | |
Inhibiting TGF-b1-induced EMT | EEC EEC | Cell lines of A549, H1299, 20–60 μg/mL 100,200 mg/Kg | in vitro in vivo | [62] | |
Repressing u-PA/MMP-2 via FAK to ERK1/2 pathways | EEC | Cell lines of A549, H1299, 0–60 μg/mL | in vitro | [63] | |
Inhibiting the activity of pyruvate dehydrogenase kinase (PDHK) | WETC | Cell lines of A549, H1299 and LLC, 0–200 μg/mL | in vitro | [64] | |
Oral cancer | |||||
Cytotoxic effects on HSC-3 cells | EOC cinnamaldehyde | HSC-3 cell line, 2.5–40 μg/mL, IC50 = 13.7 μg/mL 2.5–40 μg/mL, IC50 = 10 μg/mL | in vitro | [65] | |
Enhancement of autophagy markers to induce cell apoptosis | EETC | 0–100 μg/mL 250, 500 mg/Kg | in vitro in vivo | [66] | |
Breast cancer | |||||
Cytotoxic effects on MCF-7 and MDA-MB-231 | HEBC | Cell lines of MCF-7 and MDA-MB-231, 50, 100, 200 μg/mL, IC50 = 34 μg/mL, IC50 = 32.42 μg/mL | in vitro | [67] | |
Cervical cancers | |||||
Inducing cell apoptosis | WEBC | SiHa cell line, 0–80 μg/mL | in vitro | [68] | |
Head and neck squamous cell carcinoma (HNSCC) | |||||
Inhibiting EGFR-TK activity | EOTC | 0.625–10 μg/mL | in vivo | [53] | |
Anti-Inflammatory and Analgesic Effects | Inhibiting LPS-stimulated inflammatory and carrageenan induced hind paw edema | cinnamaldehyde | murine macrophage cell line RAW264.7, 6.25–50 μM 1.25, 2.5 and 5 mg/kg | in vitro in vivo | [69] |
Inhibiting LPS-stimulated inflammatory | WEBC | 20, 100 and 500 mg/kg peritoneal macrophages, 10, 50, 100, 200, and 400 μg/mL | in vivo in vitro | [4] | |
Inhibiting LPS-stimulated inflammatory | EOLC cinnamaldehyde | Macrophage J774A.1 cells, 1.25–20 μg/mL, IC50 = 6.1 ± 0.25 μg/mL IC50 = 9.97 ± 0.35 μg/mL | in vitro | [34] | |
Inhibitory effects on NO production and TNF-α | EAEBC | RAW 264.7 and J774A.1 macrophages, IC50 = 19.7 ± 78.4 μg/mL, LC50 = 140 ± 9.0 μg/mL | in vitro | [70] | |
Inhibiting carrageenan induced hind paw Edema, oxytocin and acetic acid-induced abdominal constriction test | EOTC | 15, 30, and 60 mg/kg | in vivo | [52] | |
Inhibitory effects on NO production | EAEBC | BV-2 cells | in vitro | [46] | |
Inhibiting LPS-induced septic shock and inflammasome | EEBC | 25, 50 and 100 mg/kg | in vivo | [71] | |
Inhibiting matrix metalloproteinases | cinnamomulactone | FLS cells, 0.1, 1, 10 and 100 μM | in vitro | [49] | |
Inhibiting Complete Freund’s adjuvant (CFA)-induced arthritis | WEBC | 50, 100 and 200 mg/kg | in vivo | [72] | |
Inhibitory effects against Oxaliplatin-Induced Neuropathic Cold Allodynia | WEBC coumarin | 100, 200 and 400 mg/kg 10 mg/kg | in vivo | [74] | |
Inhibitory effects against oxaliplatin-induced neuropathic cold allodynia | cinnamic acid | 10, 20 and 40 mg/kg | in vivo | [75] | |
Anti-diabetic and obesity effect | Exhibiting potent hypoglycemic activity | WEBC | 100, 250 and 500 mg/kg insulinoma RINm5F cells, 0.125, 0.25, 0.5 and 1.0 mg/mL | in vivo in vitro | [3] |
Exhibiting potent hypoglycemic activity | polyphenols | 10 and 50 mg/kg | in vivo | [76] | |
Inhibiting α-glucosidase, Sucrase and Maltase | AEBC | IC50 = 0.474 mg/mL, IC50 = 0.10 mg/mL, IC50 = 0.38 mg/mL | in vitro | [77] | |
Exhibiting potent hypoglycemic activity | de-coumarinated extracts | 200 mg/kg | in vivo | [78] | |
Inhibiting diabetic nephropathy | EEBC | Rat mesangial cells, 10 μM | in vitro | [47] | |
Inhibiting diabetic nephropathy | EEBC | Rat mesangial cells, 10, 30 and 50 μg/mL | in vitro | [37] | |
Preventing chronic complications of experimentally induced type II diabetes | EBC | 500, 1000 and 1500 mg/kg | in vivo | [79] | |
Protecting diabetic kidney | CcAgNPS | 5, 10 and 200 mg/kg | in vivo | [80] | |
Preventing of obesity | EC | 3T3-L1 cell, 50, 100 and 200 μg/mL | in vitro | [81] | |
Preventing high-fat diet-induced obesity | WEBC | 100, 300 mg/kg C2C12 myoblasts, 0.1, 0.2 mg/mL | in vivo in vitro | [82] | |
Antibacterial and Antiviral Effects | Inhibitory effects against Staphylococcus aureus, Aspergillus niger, Bacillus subtilis and Escherichia coli | EOBC | MIC = 200, 200, 200 and 400 μg/mL | in vitro | [54] |
Inhibitory effects against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa | EOBC | MIC = 0.28, 0.28, 0.56 and 0.11 mg/mL | in vitro | [83] | |
Inhibitory effects against non-O157 STECs | EOBC | MIC = 0.025% (v/v) | in vitro | [84] | |
Inhibitory effects against Escherichia coli and Staphylococcus | EOBC | MIC = 1.0 mg/mL | in vitro | [85] | |
Inhibitory effect against Staphylococcus hyicus and Staphylococcus aureus | EOC | MIC = 0.078% | in vitro | [86] | |
Inhibitory effects against propionibacterium acnes, Staphylococcus Epidermidis and Staphylococcus aureus | EOBC | MIC = 0.156, 0.313 and 0.25 μL/mL | in vitro | [87] | |
Inhibitory effect against Staphylococcus aureus | EOC | MIC = 500 μL/L | in vitro | [88] | |
Inhibitory effects against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa | EOBC | MIC = 4.88, 4.88, and 19.53 μg/mL | in vitro | [89] | |
Inhibitory effects against avian influenza virus subtype H7N3 | CcAgNPS | IC50 = 125 μg/mL | in vitro | [90] | |
Cardiovascular Protective Effects | Inhibiting proliferation of vascular smooth muscle cells | WEBC | Rat aortic VSMCs, 10, 30 and 50 μg/mL | in vitro | [91] |
Inhibiting angiogenesis | WEC | HUVECs, 0–100 μg/mL | in vitro | [92] | |
Preventing diabetic cardiomyopathy | WEBC | 750 mg/kg | in vivo | [93] | |
Cytoprotective Effects | Protecting against gastric ulcers induced by stress, ethanol or HCl | CP | 2, 10 and 100 mg/g per feed | in vivo | [94] |
Ameliorating cisplatin-induced cytotoxicity | WEBC | Vero cell line, 10–50 μg/mL | in vitro | [95] | |
Neuroprotective Effects | Regulating the 5-HT1A and GABAergic system | EEC | In the acute experiment, 250, 500 and 750 mg/mL In the chronic experiment, 50, 75 and 100 mg/mL | in vivo | [96] |
Region specific change of 5-HT1A receptors | EEBC | 100, 750 mg/mL | in vivo | [97] | |
Correct cognitive impairment | WEC | 0.75 mg/mL PC12 cell line, 1, 10 and 100 μg/mL, IC50 = 0.7 μg/mL | in vivo in vitro | [98] | |
Neuroprotective effect | total flavonoids | PC12 cell line 20–100 μg/mL | in vitro | [99] | |
Inhibiting serotonin reuptake | EC | 25 and 50 mg/kg | in vivo | [100] | |
Immunoregulation Effects | Inhibitory effects against proliferation of T cell and B cell | EEBC cinncassiol G and cinnacasol | 100 μg/mL 50 and 100 μM | in vitro | [39] |
Inhibitory effects against proliferation of T cell | phenolic glycosides | 12.5–200 μM | in vitro | [48] | |
Inhibitory effects against proliferation of T cell and B cell | cinnacasside F | 400 μM | in vitro | [45] | |
Anti-tyrosinase Activity | Inhibitory effects against tyrosinase | EOBC trans-cinnamaldehyde | IC50 = 6.16 ± 0.04 mg/mL IC50 = 4.04 ± 0.08 mg/mL | in vitro | [40] |
Inhibitory effects against tyrosinase | EOC trans-cinnamaldehyde | B16 melanoma cells, 1.0, 2.0, 2.5 and 5.0 μg/mL, IC50 = 6.16 ± 0.04 mg/mL 1.0, 2.0 and 2.5 μg/mL, IC50 = 4.04 ± 0.08 mg/mL | in vitro | [101] | |
Other Pharmacological Effects | Inhibitory effects against xanthine oxidase | ETC | IC50 = 7.8–36.3 μg/mL | in vitro | [42] |
Improving sexual function in young male rats | MEC | 0.1, 1, 10, and 100 μg/mL, IC50 = 61.72 ± 2.20 μg/mL 100 mg/kg | in vitro in vivo | [102] | |
Ameliorating hepatotoxicity | MEBC | 50, 100 and 150 mg/kg | in vivo | [103] | |
Inhibiting spontaneous uterus contractions | EOTC | Myometrial cells, 15, 30 and 60 mg/kg 25, 50 and 100 μg/mL, IC50 = 361.3 μg/mL | in vivo in vitro | [104] | |
Inhibitory effect against Leishmania donovani infection | EBC | Peritoneal macrophages, IC50 = 33.66 ± 3.25 μg/mL 50 and 100 mg/kg | in vitro in vivo | [107] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Fan, L.; Fan, S.; Wang, J.; Luo, T.; Tang, Y.; Chen, Z.; Yu, L. Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Molecules 2019, 24, 3473. https://doi.org/10.3390/molecules24193473
Zhang C, Fan L, Fan S, Wang J, Luo T, Tang Y, Chen Z, Yu L. Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Molecules. 2019; 24(19):3473. https://doi.org/10.3390/molecules24193473
Chicago/Turabian StyleZhang, Chunling, Linhong Fan, Shunming Fan, Jiaqi Wang, Ting Luo, Yu Tang, Zhimin Chen, and Lingying Yu. 2019. "Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology" Molecules 24, no. 19: 3473. https://doi.org/10.3390/molecules24193473
APA StyleZhang, C., Fan, L., Fan, S., Wang, J., Luo, T., Tang, Y., Chen, Z., & Yu, L. (2019). Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Molecules, 24(19), 3473. https://doi.org/10.3390/molecules24193473