Fresh and Aromatic Virgin Olive Oil Obtained from Arbequina, Koroneiki, and Arbosana Cultivars
Abstract
:1. Introduction
2. Results and Discussion
2.1. LOX Pathway Volatile Compounds
2.2. Photosynthetic Pigments
3. Materials and Methods
3.1. Raw Material
3.2. Olive Oil Extraction
3.3. Analysis of Photosynthetic Pigments: Chlorophylls and Carotenoids
3.4. Analysis of Volatile Compounds
3.5. Experimental Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Covas, M.; Fitó, M.; De la Torre, R. Minor Bioactive Olive Oil Components and Health: Key Data for Their Role in Providing Health Benefits in Humans. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; AOCS Press: Urbana, IL, USA, 2015; pp. 31–52. [Google Scholar]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Dynamic headspace/GC–MS to control the aroma fingerprint of extra-virgin olive oil from the same and different olive varieties. Food Control 2012, 25, 684–695. [Google Scholar] [CrossRef]
- Vidal, A.; Alcalá, S.; Ocaña, M.; De Torres, A.; Espínola, F.; Moya, M. Modeling of volatile and phenolic compounds and optimization of the process conditions for obtaining balanced extra virgin olive oils. Grasas Y Aceites 2018, 69, 250. [Google Scholar] [CrossRef] [Green Version]
- Vidal, A.M.; Alcalá, S.; De Torres, A.; Moya, M.; Espínola, F. Industrial production of a balanced virgin olive oil. LWT Food Sci. Technol. 2018, 97, 588–596. [Google Scholar] [CrossRef]
- Lukić, I.; Krapac, M.; Horvat, I.; Godena, S.; Kosić, U.; Brkić Bubola, K. Three-factor approach for balancing the concentrations of phenols and volatiles in virgin olive oil from a late-ripening olive cultivar. LWT Food Sci. Technol. 2018, 87, 194–202. [Google Scholar] [CrossRef]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Pérez, A.G.; Sanz, C. Synthesis of aroma compounds of virgin olive oil: Significance of the cleavage of polyunsaturated fatty acid hydroperoxides during the oil extraction process. Food Res. Int. 2013, 54, 1972–1978. [Google Scholar] [CrossRef] [Green Version]
- Kalua, C.M.; Allen, M.S.; Bedgood Jr, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Cevik, S.; Ozkan, G.; Kiralan, M. Optimization of Malaxation Process using Major Aroma Compounds in Virgin Olive Oil. Brazilian Archives of Biology and Technology 2016, 59, e16160356. [Google Scholar] [CrossRef]
- Genovese, A.; Yang, N.; Linforth, R.; Sacchi, R.; Fisk, I. The role of phenolic compounds on olive oil aroma release. Food Res. Int. 2018, 112, 319–327. [Google Scholar] [CrossRef]
- Cevik, S.; Aydin, S.; Sermet, O.S.; Ozkan, G.; Karacabey, E. Optimization of Olive Oil Extraction Process by Response Surface Methodology. Akad. Gida 2017, 15, 337–343. [Google Scholar]
- Fregapane, G.; Salvador, M.D. Production of superior quality extra virgin olive oil modulating the content and profile of its minor components. Food Res. Int. 2013, 54, 1907–1914. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar]
- García, J.; Morales-Sillero, A.; Pérez-Rubio, A.G.; Diaz-Espejo, A.; Montero, A.; Fernández, J.E. Virgin olive oil quality of hedgerow ‘Arbequina’ olive trees under deficit irrigation: Oil quality from deficit irrigated olive hedgerow. J. Sci. Food Agric. 2016, 97, 1018–1026. [Google Scholar] [CrossRef]
- Fregapane, G.; Gómez-Rico, A.; Salvador, M.D. Chapter 6: Influence of Irrigation Management and Ripening on Virgin Olive Oil Quality and Composition; San Diego, Ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 51–58. [Google Scholar]
- Cherfaoui, M.; Cecchi, T.; Keciri, S.; Boudriche, L. Volatile compounds of Algerian extra-virgin olive oils: Effects of cultivar and ripening stage. Int. J. Food Prop. 2018, 21, 36–49. [Google Scholar] [CrossRef]
- Salas, J.J.; Williams, M.; Harwood, J.L.; Sánchez, J. Lipoxygenase activity in olive (Olea europaea) fruit. J. Am. Oil Chem. Soc. 1999, 76, 1163–1168. [Google Scholar] [CrossRef]
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Ridolfi, M.; Terenziani, S.F.; Patumi, M.F.; Fontanazza, G. Characterization of the lipoxygenases in some olive cultivars and determination of their role in volatile compounds formation. J. Agric. Food Chem. 2002, 50, 835–839. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Influence of malaxation temperature and time on the quality of virgin olive oils. Food Chem. 2001, 72, 19–28. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Mugnozza, G.S.; Gargouri, M. Mechanical strategies to increase nutritional and sensory quality of virgin olive oil by modulating the endogenous enzyme activities. Compr. Rev. Food Sci. Food Saf. 2014, 13, 135–154. [Google Scholar] [CrossRef]
- Criado, M.; Romero, M.; Casanovas, M.; Motilva, M. Pigment profile and colour of monovarietal virgin olive oils from Arbequina cultivar obtained during two consecutive crop seasons. Food Chem. 2008, 110, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Benito, M.; Lasa, J.M.; Gracia, P.; Oria, R.; Abenoza, M.; Varona, L.; Sánchez-Gimeno, A.C. Olive oil quality and ripening in super-high-density Arbequina orchard. J. Sci. Food Agric. 2013, 93, 2207–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzerini, C.; Cifelli, M.; Domenici, V. Pigments in extra virgin olive oils produced in different mediterranean countries in 2014: Near UV-vis spectroscopy versus HPLC-DAD. LWT Food Sci. Technol. 2017, 84, 586–594. [Google Scholar] [CrossRef]
- Vergara-Domínguez, H.; Ríos, J.J.; Gandul-Rojas, B.; Roca, M. Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation. Food Chem. 2016, 212, 604–611. [Google Scholar] [CrossRef]
- Ben Brahim, S.; Marrakchi, F.; Gargouri, B.; Bouaziz, M. Optimization of malaxing conditions using CaCO3 as a coadjuvant: A method to increase yield and quality of extra virgin olive oil cv. Chemlali. LWT Food Sci. Technol. 2015, 63, 243–252. [Google Scholar] [CrossRef]
- Espínola, F.; Moya, M.; Fernández, D.G.; Castro, E. Improved extraction of virgin olive oil using calcium carbonate as coadjuvant extractant. J. Food Eng. 2009, 92, 112–118. [Google Scholar] [CrossRef]
- Espínola, F.; Moya, M.; Fernández, D.G.; Castro, E. Modelling of virgin olive oil extraction using response surface methodology. Int. J. Food Sci. Technol. 2011, 46, 2576–2583. [Google Scholar] [CrossRef]
- Minguez-Mosquera, I.M.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sanchez-Gómez, A.H.; Garrido-Fernandez, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; de Torres, A.; Moya, M.; Espínola, F. Use of talc in oil mills: Influence on the quality and content of minor compounds in olive oils. LWT Food Sci. Technol. 2018, 98, 31–38. [Google Scholar] [CrossRef]
- Box, G.E.; Hunter, J.S.; Hunter, W.G. Estadística Para Investigadores: Diseño, Innovación y Descubrimiento, 2nd ed.; Ed. Reverté: Barcelona, Spain, 2008; pp. 475–487. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Variety | Irrigation | Maturity Index (MI) | Moisture (%) | Oil (%) | Solids (%) |
---|---|---|---|---|---|
Arbequina | Rainfed | 0.20 | 53.72 ± 1.13 a | 15.89 ± 0.49 a | 30.39 ± 0.68 a |
1.31 | 55.88 ± 0.38 b | 17.78 ± 0.10 b | 26.34 ± 0.39 b | ||
2.56 | 54.96 ± 0.78 b | 20.05 ± 0.59 c | 24.99 ± 0.81 c | ||
Irrigated | 0.16 | 60.93 ± 0.70 c | 12.36 ± 0.25 d | 26.71 ± 0.63 b,d | |
1.11 | 61.78 ± 0.43 c,d | 15.13 ± 0.19 e | 23.08 ± 0.47 e | ||
2.52 | 61.96 ± 0.28 d,e | 16.19 ± 0.28 a | 21.85 ± 0.23 f | ||
Koroneiki | Rainfed | 0.16 | 53.11 ± 0.85 a,f | 16.06 ± 0.18 a | 30.82 ± 0.81 a |
1.68 | 53.45 ± 0.56 a,f | 21.73 ± 0.15 f | 24.82 ± 0.59 c | ||
2.05 | 52.60 ± 0.59 f | 20.41 ± 0.19 c | 26.99 ± 0.62 b,d | ||
Irrigated | 0.07 | 59.91 ± 0.78 g | 11.65 ± 0.29 g | 28.44 ± 0.83 g | |
0.67 | 59.03 ± 0.40 g | 16.25 ± 0.17 a | 24.71 ± 0.53 c | ||
2.30 | 53.29 ± 0.56 a,f | 19.38 ± 0.34 h | 27.33 ± 0.87 d | ||
Arbosana | Rainfed | 0.15 | 55.38 ± 0.87 b | 17.23 ± 0.38 i | 27.39 ± 0.65 d |
0.95 | 59.89 ± 0.64 g | 15.92 ± 0.38 a | 24.19 ± 0.54 c,h | ||
2.11 | 54.99 ± 0.41 b | 21.64 ± 0.17 f | 23.38 ± 0.54 e,h | ||
Irrigated | 0.07 | 63.19 ± 0.32 h | 12.67 ± 0.10 d | 24.14 ± 0.38 c,h | |
0.58 | 62.8 ± 0.54 e,h | 14.53 ± 0.3 j | 22.67 ± 0.58 e,f | ||
Fisher’s LSD | 0.94 | 0.42 | 0.88 |
Lipoxygenase (LOX) Pathway Volatile Compounds (mg/kg) | Pigments (mg/kg) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Run | (E)-2-Hexenal | Hexanal | (Z)-3-Hexenol | Hexanol | (E)-2-Hexenol | (Z)-2-Pentenol | 1-Penten-3-ol | 1-Penten-3-ona | (Z)-3-Hexenyl acetate | TOTAL | Chlorophylls | Carotenoids |
1 | 23.27 | 1.24 | 0.73 | 0.34 | 0.34 | 0.52 | 0.35 | 0.55 | 0.52 | 27.87 | 5.07 | 4.38 |
2 | 28.48 | 2.10 | 0.77 | 0.49 | 0.32 | 0.56 | 0.43 | 0.62 | 0.43 | 34.19 | 4.60 | 4.61 |
3 | 23.89 | 1.82 | 0.58 | 0.41 | 0.38 | 0.64 | 0.45 | 0.62 | 0.60 | 29.39 | 5.88 | 4.80 |
4 | 19.82 | 1.75 | 1.10 | 0.78 | 0.63 | 0.58 | 0.37 | 0.52 | 0.47 | 26.03 | 5.02 | 4.09 |
5 | 15.81 | 0.97 | 1.09 | 0.51 | 0.67 | 0.53 | 0.33 | 0.47 | 0.33 | 20.70 | 7.22 | 4.58 |
6 | 26.49 | 1.84 | 0.74 | 0.61 | 0.21 | 0.53 | 0.38 | 0.69 | 0.44 | 31.93 | 2.83 | 3.36 |
7 | 29.16 | 2.05 | 1.19 | 0.30 | 0.40 | 0.54 | 0.38 | 0.64 | 0.29 | 34.96 | 3.36 | 3.55 |
8 | 14.58 | 0.94 | 0.77 | 0.62 | 0.53 | 0.53 | 0.33 | 0.45 | 0.47 | 19.22 | 4.02 | 5.01 |
9 | 19.36 | 0.80 | 0.55 | 0.33 | 0.37 | 0.52 | 0.35 | 0.50 | 0.32 | 23.10 | 8.28 | 5.53 |
10 | 21.14 | 0.83 | 0.78 | 0.46 | 0.36 | 0.55 | 0.39 | 0.57 | 0.48 | 25.55 | 5.39 | 4.45 |
11 | 25.23 | 0.96 | 1.09 | 0.49 | 0.41 | 0.51 | 0.33 | 0.58 | 0.31 | 29.92 | 3.76 | 3.44 |
12 | 24.77 | 0.96 | 0.52 | 0.46 | 0.21 | 0.56 | 0.40 | 0.66 | 0.46 | 29.01 | 5.50 | 4.86 |
13 | 24.88 | 1.28 | 0.71 | 0.43 | 0.34 | 0.53 | 0.36 | 0.55 | 0.50 | 29.58 | 4.20 | 4.00 |
14 | 26.23 | 1.93 | 0.65 | 0.56 | 0.21 | 0.61 | 0.49 | 0.73 | 0.57 | 31.98 | 4.18 | 4.26 |
15 | 23.86 | 0.91 | 0.72 | 0.35 | 0.35 | 0.52 | 0.35 | 0.54 | 0.50 | 28.11 | 4.94 | 4.08 |
16 | 24.13 | 1.27 | 0.71 | 0.32 | 0.37 | 0.55 | 0.37 | 0.58 | 0.45 | 28.76 | 5.90 | 4.59 |
17 | 23.35 | 1.14 | 0.66 | 0.43 | 0.36 | 0.54 | 0.35 | 0.56 | 0.51 | 27.90 | 6.36 | 4.86 |
Response | Model * | p-Value | R2 | Std. Dev. | Maximum Value (mg/kg) | Diameter (mm) | Temperature (°C) | Time (min) |
---|---|---|---|---|---|---|---|---|
LOX pathway volatile compounds | ||||||||
(E)-2-Hexenal (mg/kg) | −8.407 + 6.601 D + 0.8259 T + 0.3760 T − 0.1622 D T − 0.03773 D t − 7.124E−03 T t | <0.0001 | 0.967 | 0.91 | 29.38 | 6.46 | 20.01 | 41.34 |
Hexanal (mg/kg) | +2.48071 -0.054697 T +8.33412E-003 t | <0.0001 | 0.841 | 0.20 | 2.11 | In range | 20.26 | 88.51 |
(Z)-3-Hexenol (mg/kg) | +3.080 − 0.9373 D −0.03426 T + 0.1099 D2 + 5.392E−04 T2 | <0.0001 | 0.982 | 0.03 | 1.16 | 6.50 | 20.00 | In range |
Hexanol (mg/kg) | +3.843 − 0.4551 D − 0.07405 T − 0.04065 t + 0.01079 D T + 2.845E−03 D t + 2.366E−04 T t + 1.589E−04 T2 | 0.0101 | 0.813 | 0.07 | 0.81 | 6.41 | 37.65 | 89.94 |
(E)-2-Hexenol (mg/kg) | +1.5301 − 0.5926 D − 8.738E−03 T + 1.022E−03 t + 2.729E−03 D T + 5.891E−05 T t + 0.0571 D2 | <0.0001 | 0.987 | 0.02 | 0.71 | 6.49 | 37.62 | 86.61 |
(Z)-2-Pentenol (mg/kg) | +0.5495 | - | -- | 0.03 | 0.55 | In range | In range | In range |
1-Penten-3-ol (mg/kg) | +1.978 − 0.4505 D − 0.01744 T + 8.377E−04 t + 2.275E−03 D T + 0.03150 D2 | <0.0001 | 0.988 | 0.01 | 0.52 | 4.50 | 20.00 | 90.00 |
1-Penten-3-one (mg/kg) | +1.125 − 0.03819 D − 8.740E−03 T − 1.235E−03 t | <0.0001 | 0.895 | 0.03 | 0.73 | 4.61 | 20.34 | 31.62 |
(Z)-3-Hexenyl acetate (mg/kg) | +0.45091 | - | -- | 0.09 | 0.45 | In range | In range | In range |
TOTAL (mg/kg) | +1.171 + 5.934 D + 0.6129 T + 0.3793 t − 0.1344 D T − 0.03562 D t − 7.165E−03 T t | <0.0001 | 0.978 | 0.81 | 34.94 | 6.50 | 20.00 | 90.00 |
Pigments | ||||||||
Chlorophylls (mg/kg) | +1.825 − 0.5600 D + 0.1709 T + 0.02394 t | 0.0002 | 0.803 | 0.70 | 8.30 | 4.50 | 40.00 | 90.00 |
Carotenoids (mg/kg) | +4.960 − 0.4732 D + 0.04738 T + 0.01001 t | 0.0001 | 0.792 | 0.29 | 5.54 | 4.50 | 39.91 | 81.92 |
LOX Pathway Volatile Compounds (mg/kg) | Pigments (mg/kg) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Irrigation | MaturityIndex (MI) | (E)-2-Hexenal | Hexanal | (Z)-3-Hexenol | Hexanol | (E)-2-Hexenol | (Z)-2-Pentenol | 1-Penten-3-ol | 1-Penten-3-one | (Z)-3-Hexenyl acetate | TOTAL | Chlorophylls | Carote noids |
Arbequina | Rainfed | 0.20 | 9.66 ± 0.85 | 4.24 ± 0.58 | 0.87 ± 0.04 | 0.33 ± 0.04 | 1.18 ± 0.06 | 0.79 ± 0.05 | 0.76 ± 0.04 | 0.71 ± 0.04 | 0.73 ± 0.09 | 17.29 ± 1.66 | 32.24 ± 2.06 | 13.61 ± 0.66 |
1.31 | 13.93 ± 0.47 | 1.56 ± 0.10 | 0.87 ± 0.03 | 0.52 ± 0.16 | 0.63 ± 0.04 | 0.64 ± 0.01 | 0.54 ± 0.02 | 0.71 ± 0.03 | 0.51 ± 0.06 | 18.48 ± 0.58 | 11.23 ± 0.54 | 6.91 ± 0.29 | ||
2.56 | 13.23 ± 0.36 | 1.53 ± 0.08 | 0.65 ± 0.05 | 0.49 ± 0.14 | 0.64 ± 0.01 | 0.52 ± 0.03 | 0.47 ± 0.03 | 0.70 ± 0.03 | 0.48 ± 0.07 | 17.90 ± 0.68 | 13.65 ± 1.15 | 5.52 ± 0.30 | ||
Irrigated | 0.16 | 18.53 ± 1.09 | 6.87 ± 0.10 | 1.48 ± 0.08 | 0.31 ± 0.07 | 0.59 ± 0.04 | 0.62 ± 0.08 | 0.52 ± 0.11 | 0.53 ± 0.07 | 0.53 ± 0.08 | 27.83 ± 0.98 | 18.42 ± 0.63 | 9.14 ± 0.38 | |
1.11 | 29.39 ± 0.91 | 2.10 ± 0.20 | 1.16 ± 0.03 | 0.80 ± 0.07 | 0.67 ± 0.02 | 0.55 ± 0.03 | 0.52 ± 0.01 | 0.74 ± 0.03 | 0.45 ± 0.09 | 34.94 ± 0.81 | 8.30 ± 0.70 | 5.56 ± 0.29 | ||
2.52 | 26.52 ± 0.76 | 2.05 ± 0.05 | 0.87 ± 0.02 | 0.36 ± 0.03 | 0.67 ± 0.03 | 0.51 ± 0.01 | 0.39 ± 0.01 | 0.58 ± 0.02 | 0.74 ± 0.09 | 31.80 ± 1.20 | 18.27 ± 0.63 | 9.06 ± 0.39 | ||
Koroneiki | Rainfed | 0.16 | 2.85 ± 0.09 | 2.55 ± 0.40 | 0.89 ± 0.03 | 0.27 ± 0.06 | 0.63 ± 0.02 | 0.78 ± 0.04 | 0.64 ± 0.05 | 0.64 ± 0.04 | 1.15 ± 0.08 | 10.03 ± 0.52 | 60.13 ± 4.06 | 23.50 ± 1.34 |
1.68 | 1.84 ± 0.09 | 0.47 ± 0.04 | 0.57 ± 0.03 | 0.79 ± 0.05 | 0.57 ± 0.03 | 0.85 ± 0.02 | 0.59 ± 0.08 | 0.90 ± 0.05 | 0.59 ± 0.01 | 6.77 ± 0.16 | 50.06 ± 0.91 | 15.95 ± 0.76 | ||
2.05 | 2.17 ± 0.11 | 0.54 ± 0.01 | 0.67 ± 0.03 | 0.54 ± 0.18 | 0.48 ± 0.07 | 0.93 ± 0.02 | 0.90 ± 0.01 | 0.97 ± 0.03 | 0.68 ± 0.02 | 7.53 ± 0.32 | 49.20 ± 1.61 | 18.27 ± 1.62 | ||
Irrigated | 0.07 | 4.22 ± 0.46 | 3.96 ± 0.61 | 1.01 ± 0.07 | 0.47 ± 0.02 | 0.82 ± 0.03 | 0.53 ± 0.10 | 0.47 ± 0.17 | 0.40 ± 0.07 | 0.61 ± 0.13 | 10.66 ± 1.35 | 42.83 ± 3.59 | 18.03 ± 1.11 | |
0.67 | 4.37 ± 0.24 | 0.62 ± 0.17 | 1.17 ± 0.03 | 0.43 ± 0.07 | 0.79 ± 0.03 | 0.62 ± 0.04 | 0.66 ± 0.03 | 0.70 ± 0.03 | 0.49 ± 0.04 | 9.71 ± 0.40 | 46.15 ± 1.58 | 14.38 ± 1.03 | ||
2.30 | 5.44 ± 0.24 | 0.79 ± 0.04 | 0.83 ± 0.04 | 0.46 ± 0.08 | 0.68 ± 0.01 | 0.74 ± 0.05 | 0.72 ± 0.04 | 0.90 ± 0.04 | 0.91 ± 0.11 | 10.24 ± 0.64 | 54.38 ± 1.94 | 18.15 ± 0.61 | ||
Arbosana | Rainfed | 0.15 | 11.77 ± 0.29 | 0.99 ± 0.09 | 0.68 ± 0.02 | 0.47 ± 0.05 | 0.33 ± 0.11 | 0.63 ± 0.01 | 0.53 ± 0.02 | 0.72 ± 0.02 | 1.00 ± 0.07 | 16.40 ± 0.33 | 12.08 ± 0.82 | 6.96 ± 0.29 |
0.95 | 10.29 ± 0.34 | 0.56 ± 0.08 | 0.63 ± 0.02 | 0.47 ± 0.10 | 0.53 ± 0.02 | 0.55 ± 0.01 | 0.49 ± 0.03 | 0.76 ± 0.05 | 0.41 ± 0.07 | 14.49 ± 0.60 | 10.97 ± 0.83 | 6.65 ± 0.34 | ||
2.11 | 11.21 ± 0.29 | 0.92 ± 0.04 | 0.69 ± 0.08 | 0.44 ± 0.09 | 0.48 ± 0.12 | 0.56 ± 0.06 | 0.41 ± 0.03 | 0.87 ± 0.05 | 1.84 ± 0.24 | 17.11 ± 0.31 | 10.43 ± 0.55 | 6.60 ± 0.32 | ||
Irrigated | 0.07 | 17.45 ± 0.62 | 2.19 ± 0.06 | 1.14 ± 0.05 | 0.50 ± 0.14 | 0.62 ± 0.01 | 0.57 ± 0.03 | 0.48 ± 0.02 | 0.64 ± 0.02 | 0.48 ± 0.08 | 22.62 ± 0.72 | 12.45 ± 0.85 | 7.10 ± 0.35 | |
0.58 | 16.86 ± 0.54 | 0.80 ± 0.25 | 1.17 ± 0.05 | 0.44 ± 0.12 | 0.62 ± 0.02 | 0.57 ± 0.01 | 0.43 ± 0.03 | 0.65 ± 0.02 | 0.49 ± 0.06 | 22.73 ± 0.43 | 11.04 ± 0.81 | 6.63 ± 0.28 |
Total LOX Pathway Volatile Compounds | Chlorophylls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Irrigation | Maturity Index (MI) | Maximum Value * (mg/kg) | Diameter (mm) | Temperature (°C) | Time (min) | Maximum Value * (mg/kg) | Diameter (mm) | Temperature (°C) | Time (min) |
Arbequina | Rainfed | 0.20 | 17.29 ± 1.66 | In range | 20.00 | In range | 32.24 ± 2.06 | 4.50 | 40.00 | 90.00 |
1.31 | 18.48 ± 0.58 | In range | 25.91 | 50.47 | 11.23 ± 0.54 | 4.50 | 40.00 | 90.00 | ||
2.56 | 17.90 ± 0.68 | 4.50 | 25.24 | 90.00 | 13.65 ± 1.15 | 4.50 | 40.00 | 90.00 | ||
Irrigated | 0.16 | 27.83 ± 0.98 | In range | 20.00 | 90.00 | 18.42 ± 0.63 | 4.50 | 40.00 | 90.00 | |
1.11 | 34.94 ± 0.81 | 6.50 | 20.00 | 90.00 | 8.30 ± 0.70 | 4.50 | 40.00 | 90.00 | ||
2.52 | 31.80 ± 1.20 | In range | 20.00 | 90.00 | 18.27 ± 0.63 | 4.50 | 40.00 | 90.00 | ||
Koroneiki | Rainfed | 0.16 | 10.03 ± 0.52 | 6.50 | 20.00 | 90.00 | 60.13 ± 4.06 | 4.50 | 40.00 | 90.00 |
1.68 | 6.77 ± 0.16 | 6.50 | 20.00 | 90.00 | 50.06 ± 0.91 | 4.50 | 40.00 | 90.00 | ||
2.05 | 7.53 ± 0.32 | 6.50 | 20.00 | In range | 49.20 ± 1.61 | 4.50 | 40.00 | 88.56 | ||
Irrigated | 0.07 | 10.66 ± 1.35 | In range | 20.00 | In range | 42.83 ± 3.59 | 4.50 | 40.00 | 90.00 | |
0.67 | 9.71 ± 0.40 | In range | 20.00 | 30.00 | 46.15 ± 1.58 | In range | 40.00 | 90.00 | ||
2.30 | 10.24 ± 0.64 | In range | 21.53 | In range | 54.38 ± 1.94 | 4.50 | 40.00 | 90.00 | ||
Arbosana | Rainfed | 0.15 | 16.40 ± 0.33 | In range | 22.36 | 49.77 | 12.08 ± 0.82 | 4.50 | 40.00 | 90.00 |
0.95 | 14.49 ± 0.60 | 4.50 | 20.00 | 55.97 | 10.97 ± 0.83 | 4.50 | 40.00 | 89.99 | ||
2.11 | 17.11 ± 0.31 | 4.50 | 26.41 | 90.00 | 10.43 ± 0.55 | 4.50 | 40.00 | 90.00 | ||
Irrigated | 0.07 | 22.62 ± 0.72 | 4.50 | 20.00 | 90.00 | 12.45 ± 0.85 | 4.50 | 40.00 | 90.00 | |
0.58 | 22.73 ± 0.43 | 4.50 | 20.00 | 90.00 | 11.04 ± 0.81 | 4.50 | 40.00 | 90.00 |
Run | Diameter (mm) | Temperature (°C) | Time (min) |
---|---|---|---|
1 | 5.5 (0) | 30 (0) | 60 (0) |
2 | 5.5 (0) | 20 (−1) | 90 (+1) |
3 | 4.5 (-1) | 30 (0) | 90 (+1) |
4 | 6.5 (+1) | 30 (0) | 90 (+1) |
5 | 6.5 (+1) | 40 (+1) | 60 (0) |
6 | 5.5 (0) | 20 (−1) | 30 (−1) |
7 | 6.5 (+1) | 20 (−1) | 60 (0) |
8 | 5.5 (0) | 40 (+1) | 90 (+1) |
9 | 4.5 (−1) | 40 (+1) | 60 (0) |
10 | 5.5 (0) | 40 (+1) | 30 (−1) |
11 | 6.5 (+1) | 30 (0) | 30 (−1) |
12 | 4.5 (−1) | 30 (0) | 30 (−1) |
13 | 5.5 (0) | 30 (0) | 60 (0) |
14 | 4.5 (−1) | 20 (−1) | 60 (0) |
15 | 5.5 (0) | 30 (0) | 60 (0) |
16 | 5.5 (0) | 30 (0) | 60 (0) |
17 | 5.5 (0) | 30 (0) | 60 (0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, A.M.; Alcalá, S.; De Torres, A.; Moya, M.; Espínola, J.M.; Espínola, F. Fresh and Aromatic Virgin Olive Oil Obtained from Arbequina, Koroneiki, and Arbosana Cultivars. Molecules 2019, 24, 3587. https://doi.org/10.3390/molecules24193587
Vidal AM, Alcalá S, De Torres A, Moya M, Espínola JM, Espínola F. Fresh and Aromatic Virgin Olive Oil Obtained from Arbequina, Koroneiki, and Arbosana Cultivars. Molecules. 2019; 24(19):3587. https://doi.org/10.3390/molecules24193587
Chicago/Turabian StyleVidal, Alfonso M., Sonia Alcalá, Antonia De Torres, Manuel Moya, Juan M. Espínola, and Francisco Espínola. 2019. "Fresh and Aromatic Virgin Olive Oil Obtained from Arbequina, Koroneiki, and Arbosana Cultivars" Molecules 24, no. 19: 3587. https://doi.org/10.3390/molecules24193587
APA StyleVidal, A. M., Alcalá, S., De Torres, A., Moya, M., Espínola, J. M., & Espínola, F. (2019). Fresh and Aromatic Virgin Olive Oil Obtained from Arbequina, Koroneiki, and Arbosana Cultivars. Molecules, 24(19), 3587. https://doi.org/10.3390/molecules24193587