Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of ‘Green’ Ultrasound-Assisted Extraction
Abstract
:1. Introduction
2. Results
2.1. Response Surface Analysis of Berberine and RSA
2.2. Optimization of Extraction Parameters and Model Validation
2.3. Antioxidant Activity of the Extracts
2.4. Tyrosinase-, Lipoxygenase-, and Coagulation-Inhibiting Activity
2.5. α-Glucosidase- and α-Amylase-Inhibiting Activity
3. Discussion
3.1. Response Surface Analysis and Optimization of Extraction Parameters
3.2. Antioxidant Activity of the Extracts
3.3. Tyrosinase-, Lipoxygenase-, and Coagulation-Inhibiting Activity
3.4. α-Glucosidase- and α-Amylase-Inhibiting Activity
4. Materials and Methods
4.1. Plant Materials and Chemicals
4.2. Preparation of Extracts
4.3. Experimental Design
4.4. Berberine Quantification
4.5. Free Radical Scavenging Activity
4.6. Fe2+ Chelating Activity
4.7. Antioxidant Activity in β-Carotene-Linoleic Acid Assay
4.8. Tyrosinase Inhibitory Activity
4.9. Lipoxygenase Inhibitory Activity
4.10. Anti-Inflammatory Activity
4.11. α-Glucosidase Inhibition Assay
4.12. α-Amylase Inhibition Assay
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd ed.; Lavoisier: Cachan, France, 1999. [Google Scholar]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crisan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Kosalec, I.; Gregurek, B.; Kremer, D.; Zovko, M.; Sanković, K.; Karlović, K. Croatian barberry (Berberis croatica Horvat): A new source of berberine--analysis and antimicrobial activity. World, J. Microbiol. Biotechnol. 2009, 25, 145–150. [Google Scholar] [CrossRef]
- Da Silva, A.R.; de Andrade Neto, J.B.; da Silva, C.R.; de Sousa Campos, R.; Costa Silva, R.A.; Freitas, D.D.; do Nascimento, F.B.S.A.; de Andrade, L.N.D.; Sampaio, L.S.; Grangeiro, T.B.; et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob. Agents Chemother. 2016, 60, 3551–3557. [Google Scholar] [CrossRef] [PubMed]
- Berberine: Uses, Side Effects, Interactions, Dosage, and Warning. Available online: https://www.webmd.com/vitamins/ai/ingredientmono-1126/berberine (accessed on 31 July 2019).
- Han, T.S.; Lean, M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorentino, T.V.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 2013, 19, 5695–5703. [Google Scholar] [CrossRef] [PubMed]
- Bljajić, K.; Petlevski, R.; Vujić, L.; Čačić, A.; Šoštarić, N.; Jablan, J.; Saraiva de Carvalho, I.; Zovko Končić, M. Chemical composition, antioxidant and α-glucosidase-inhibiting activities of the aqueous and hydroethanolic extracts of Vaccinium myrtillus leaves. Molecules 2017, 22, 703. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Tartagni, E. Antidiabetic properties of berberine: From cellular pharmacology to clinical effects. Hosp. Pract. 1995 2012, 40, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.-M.; Jiang, X.; Ouyang, X.-X.; Zhang, Y.-O.; Xie, W.-D. Berberine enhances antidiabetic effects and attenuates untoward effects of canagliflozin in streptozotocin-induced diabetic mice. Chin. J. Nat. Med. 2016, 14, 518–526. [Google Scholar] [CrossRef]
- Azzanizawaty Yahya, N.; Attan, N.; Wahab, R. An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds. Food Bioprod. Process. 2018, 112, 69–85. [Google Scholar] [CrossRef]
- Li, Z.; Geng, Y.-N.; Jiang, J.-D.; Kong, W.-J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid. Based Complement. Alternat. Med. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Jang, Y.-A.; Lee, J.-T. Anti-wrinkle effect of berberine by inhibition of MMP-2 and MMP-9 activity in fibroblasts. J. Appl. Biol. Chem. 2018, 61, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Izadiyan, P.; Hemmateenejad, B. Multi-response optimization of factors affecting ultrasonic assisted extraction from Iranian basil using central composite design. Food Chem. 2016, 190, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett. 2007, 5, 67–71. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Apostolakis, A.; Grigorakis, S.; Makris, D.P. Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Sep. Purif. Technol. 2014, 128, 89–95. [Google Scholar] [CrossRef]
- Aalim, H.; Belwal, T.; Jiang, L.; Huang, H.; Meng, X.; Luo, Z. Extraction optimization, antidiabetic and antiglycation potentials of aqueous glycerol extract from rice (Oryza sativa L.) bran. LWT 2019, 103, 147–154. [Google Scholar] [CrossRef]
- Babamoradi, N.; Yousefi, S.; Ziarati, P. Optimization of ultrasound-assisted extraction of functional polysaccharides from common mullein (Verbascum thapsus L.) flowers. J. Food Process Eng. 2018, 41, e12851. [Google Scholar] [CrossRef]
- Cui, H.-X.; Hu, Y.-N.; Li, J.-W.; Yuan, K.; Guo, Y. Preparation and evaluation of antidiabetic agents of berberine organic acid salts for enhancing the bioavailability. Molecules 2019, 24, 103. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.C.; Mandal, V.; Das, A.K. Chapter 6 - Classification of Extraction Methods. In Essentials of Botanical Extraction; Mandal, S.C., Mandal, V., Das, A.K., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 83–136. [Google Scholar]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Wu, J.; Yu, D.; Sun, H.; Zhang, Y.; Zhang, W.; Meng, F.; Du, X. Optimizing the extraction of anti-tumor alkaloids from the stem of Berberis amurensis by response surface methodology. Ind. Crops Prod. 2015, 69, 68–75. [Google Scholar] [CrossRef]
- Teng, H.; Choi, Y.H. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from Rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem. 2014, 142, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Tiwari, B.K.; Gangopadhyay, N.; O’Donnell, C.P.; Brunton, N.P.; Rai, D.K. Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason. Sonochem. 2014, 21, 1470–1476. [Google Scholar] [CrossRef]
- Marszalek, M.; Wolszczak, M. Radiolysis of berberine or palmatine in aqueous solution. Radiat. Phys. Chem. 2011, 80, 94–99. [Google Scholar] [CrossRef]
- Suslick, K.S.; Price, G.J. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 1999, 29, 295–326. [Google Scholar] [CrossRef]
- Aware, C.B.; Patil, R.R.; Vyavahare, G.D.; Gurme, S.T.; Jadhav, J.P. Ultrasound-assisted aqueous extraction of phenolic, flavonoid compounds and antioxidant activity of Mucuna macrocarpa beans: Response surface methodology optimization. J. Am. Coll. Nutr. 2019, 38, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, G.; Muniyandi, K.; Manoharan, A.L.; Thamburaj, S.; Sathyanarayanan, S.; Thangaraj, P. Optimization of phenolic compounds extracting conditions from Ficus racemosa L. fruit using response surface method. J. Food Meas. Charact. 2019, 13, 312–320. [Google Scholar] [CrossRef]
- Fumić, B.; Jug, M.; Končić, M.Z. Multi-response optimization of ultrasound-assisted extraction of bioactive components from Medicago sativa L. Croat. Chem. Acta 2017, 90, 481–491. [Google Scholar] [CrossRef]
- Sharmila, G.; Nikitha, V.S.; Ilaiyarasi, S.; Dhivya, K.; Rajasekar, V.; Kumar, N.; Muthukumaran, K.; Muthukumaran, C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2016, 84, 13–21. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Shirwaikar, A.; Rajendran, K.; Punitha, I.S.R. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol. Pharm. Bull. 2006, 29, 1906–1910. [Google Scholar] [CrossRef] [PubMed]
- Mlakar, A.; Batna, A.; Dudda, A.; Spiteller, G. Iron (II) ions induced oxidation of ascorbic acid and glucose. Free Radic. Res. 1996, 25, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. Off. Publ. Eur. Soc. Laser Dermatol. 2019, 21, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, K.; Swaminathan, K.; Chatterjee, S.; Dey, A. Apoptosis in HepG2 cells exposed to high glucose. Toxicol. In Vitro 2010, 24, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, H.; Alizadeh, S. Evaluation of phenolic compound, antioxidant activities and antioxidant enzymes of barberry genotypes in Iran. Sci. Hortic. 2016, 200, 125–130. [Google Scholar] [CrossRef]
- Zovko Končić, M.; Kremer, D.; Karlović, K.; Kosalec, I. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol. 2010, 48, 2176–2180. [Google Scholar] [CrossRef] [PubMed]
- Hadaruga, D.I.; Hadaruga, N.G.; Bandur, G.N.; Rivis, A.; Costescu, C.; Ordodp, V.L.; Ardelean, A. Berberis vulgaris extract/β-cyclodextrin nanoparticles synthesis and characterization. Rev. Chim. 2010, 61, 669–675. [Google Scholar]
- El khalki, L.; Tilaoui, M.; Jaafari, A.; Ait Mouse, H.; Zyad, A. studies on the dual cytotoxicity and antioxidant properties of Berberis vulgaris extracts and its main constituent berberine. Adv. Pharmacol. Sci. 2018, 2018. [Google Scholar] [CrossRef]
- Mezouar, D.; Lahfa, F.B.; Djaziri, R.; Boucherit-Otmani, Z. Évaluation de l’activité antioxydante de Berberis vulgaris L. Phytothérapie 2014, 12, 297–301. [Google Scholar] [CrossRef]
- Tomosaka, H.; Chin, Y.-W.; Salim, A.A.; Keller, W.J.; Chai, H.; Kinghorn, A.D. Antioxidant and cytoprotective compounds from Berberis vulgaris (barberry). Phytother. Res. 2008, 22, 979–981. [Google Scholar] [CrossRef]
- Han, L.; Suo, Y.; Yang, Y.; Meng, J.; Hu, N. Optimization, characterization, and biological activity of polysaccharides from Berberis dasystachya Maxim. Int. J. Biol. Macromol. 2016, 85, 655–666. [Google Scholar] [CrossRef]
- Yonghwa, L.E.E.; Lichao, L.I.U.; Yongsub, Y.I. Inhibitory effect of berberine from Coptidis rhizoma on melanin synthesis of murine malignant melanoma. Pharmazie 2018, 73, 300–303. [Google Scholar]
- Chang, T.-S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, P.P.; Beatriz, M. Coffee silverskin: A review on potential cosmetic applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Aruna, V.; Amruthavalli, G.V.; Gayathri, R. Use of cosmetic products for treating certain diseases—Know the science. J. Cosmet. Dermatol. 2019, 18, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012, 2, S178–S180. [Google Scholar] [CrossRef]
- Biswas, R.; Mukherjee, P.K.; Chaudhary, S.K. Tyrosinase inhibition kinetic studies of standardized extract of Berberis aristata. Nat. Prod. Res. 2016, 30, 1451–1454. [Google Scholar] [CrossRef]
- Müller, K.; Ziereis, K. The Antipsoriatic Mahonia aquifolium and its active constituents; I. Pro- and antioxidant properties and inhibition of 5-lipoxygenase. Planta Med. 1994, 60, 421–424. [Google Scholar] [CrossRef]
- Abd El-Wahab, A.E.; Ghareeb, D.A.; Sarhan, E.E.M.; Abu-Serie, M.M.; El Demellawy, M.A. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: Antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement. Altern. Med. 2013, 13. [Google Scholar] [CrossRef]
- Boudjelthia, K.; Hammadi, K.; Kouidri, M.; Djebli, N. Evaluation of antidiabetic activity of two plants Berberis vulgaris and Zygophyllum geslini. J. Phys. Chem. Biophys. 2017, 7, 236. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Li, J.; Lai, M.; Wen, X. The Effects of berberine on the gut microbiota in Apc min/+ mice fed with a high fat diet. Molecules 2018, 23, 2298. [Google Scholar] [CrossRef]
- Kleinschmidt, G. Case Study: Validation of an HPLC-method for identity, assay, and related impurities. In Method Validation in Pharmaceutical Analysis: A Guide to Best Practice; Ermer, J., Miller McB, J.H., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp. 195–212. [Google Scholar]
- Rajić, Z.; Končić, M.; Miloloža, K.; Perković, I.; Butula, I.; Bucar, F.; Zorc, B. Primaquine-NSAID twin drugs: Synthesis, radical scavenging, antioxidant and Fe2+ chelating activity. Acta Pharm. 2010, 60, 325–337. [Google Scholar] [CrossRef]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargère, D.; Laprévote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorganic Chem. 2018, 80, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Kwon, Y.-I.; Shetty, K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 2007, 8, 46–54. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Independent Variables | Code | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Temperature °C | X1 | 20 | 50 | 80 |
Glycerol concentration (%, w/w) | X2 | 10 | 50 | 90 |
Ultrasonication power (USP) (W) | X3 | 144 | 432 | 720 |
Run | Standard | X1 (°C) | X2 (%, w/w) | X3 (W) | Berberine | RSA IC50 |
---|---|---|---|---|---|---|
μg/mL | μL/mL | |||||
1 | 1 | 20 | 10 | 432 | 57.11 | 108.73 |
2 | 15 | 50 | 50 | 432 | 75.06 | 103.47 |
3 | 9 | 50 | 10 | 144 | 84.58 | 134.14 |
4 | 16 | 50 | 50 | 432 | 69.00 | 90.84 |
5 | 14 | 50 | 50 | 432 | 83.33 | 83.79 |
6 | 4 | 80 | 90 | 432 | 89.79 | 74.37 |
7 | 10 | 50 | 90 | 144 | 68.53 | 128.59 |
8 | 12 | 50 | 90 | 720 | 59.98 | 113.51 |
9 | 5 | 20 | 50 | 144 | 69.27 | 98.35 |
10 | 17 | 50 | 50 | 432 | 84.28 | 83.63 |
11 | 2 | 80 | 10 | 432 | 111.03 | 72.98 |
12 | 13 | 50 | 50 | 432 | 72.56 | 86.46 |
13 | 3 | 20 | 90 | 432 | 32.46 | 262.95 |
14 | 8 | 80 | 50 | 720 | 120.8 | 55.35 |
15 | 7 | 20 | 50 | 720 | 95.58 | 87.74 |
16 | 11 | 50 | 10 | 720 | 69.62 | 72.59 |
17 | 6 | 80 | 50 | 144 | 146.65 | 78.86 |
Response | Unit | The Equation Coefficients: a × X12 + b × X22 + c × X32 + d × X1 × X2 + e × X1 × X3 + f × X2 × X3 + g × X1 + h × X2 + i × X3 + j | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | i | j | ||
Berberine | (μg/mL) | 16.57 * | −20.82 * | 14.65 * | 0.85 | −13.04 * | 1.60 | 26.73 * | −8.95 * | −2.88 | 76.85 |
RSA IC50−1.78 | (mL/mL) | 0.089 * | −0.12 * | 0.039 | 0.045 | 0.081 * | −0.074 * | 0.16 * | −0.061 * | 0.11 * | 0.36 |
Berberine r2 = 0.9720; radj2 = 0.9359; rpr2 = 0.7850 | RSA (IC50) r2 = 0.9740; radj2 = 0.9406; rpr2 = 0.9034 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Source | SS | df | MS | F-Value | p-Value | SS | df | MS | F-Value | p-Value |
Model | 10834.44 | 9 | 1203.83 | 26.957 | 0.0001 | 4.35 × 10−7 | 9 | 4.84 × 10−8 | 29.17 | <0.0001 |
Lack of fit | 132.178 | 3 | 44.06 | 0.977 | 0.4870 | 1.74 × 10−9 | 3 | 5.79 × 1010 | 0.23 | 0.8683 |
Pure error | 180.436 | 4 | 45.11 | 9.87 × 10−9 | 4 | 2.47 × 10−9 |
Extract Name | Optimized Response | Aim of the Optimization | X1 °C | X2 % | X3 W | Predicted | Observed | RD (%) |
---|---|---|---|---|---|---|---|---|
B-opt | Berberine (μg/mL) | maximized | 80 | 50 | 144 | 150.7 | 145.5 | −3.45 |
RSA-opt | RSA IC50 (μL/mL) | minimized | 80 | 30 | 720 | 55.33 | 58.88 | 6.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dulić, M.; Ciganović, P.; Vujić, L.; Zovko Končić, M. Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of ‘Green’ Ultrasound-Assisted Extraction. Molecules 2019, 24, 3613. https://doi.org/10.3390/molecules24193613
Dulić M, Ciganović P, Vujić L, Zovko Končić M. Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of ‘Green’ Ultrasound-Assisted Extraction. Molecules. 2019; 24(19):3613. https://doi.org/10.3390/molecules24193613
Chicago/Turabian StyleDulić, Marina, Petar Ciganović, Lovorka Vujić, and Marijana Zovko Končić. 2019. "Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of ‘Green’ Ultrasound-Assisted Extraction" Molecules 24, no. 19: 3613. https://doi.org/10.3390/molecules24193613
APA StyleDulić, M., Ciganović, P., Vujić, L., & Zovko Končić, M. (2019). Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of ‘Green’ Ultrasound-Assisted Extraction. Molecules, 24(19), 3613. https://doi.org/10.3390/molecules24193613