Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Phytochemical Components in Two Different Color Chrysanthemum Flower Teas
2.1.1. Flavonoids and Phenolic Acids
2.1.2. Anthocyanins
2.2. Quantitative Analysis of Phytochemical Components in Two Different Color Chrysanthemum Flower Teas
2.3. Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas
2.4. Identification of Floral Scent in Two Different Color Chrysanthemum Flower Tea Bags
3. Materials and Methods
3.1. General Procedures
3.2. Plant Materials
3.3. Preparation of Sample and Standard Solutions
3.4. Analysis of Chemical Composition Using HPLC-DAD-ESIMS
3.5. Analysis of Floral Scent Using HP-SPME-GC-MS
3.6. Evaluation of DPPH Free Radical Scavenging and ABTS Radical Cation Scavenging Activities
3.7. Statistical Aalysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bensky, D.; Clavey, S.; Stöger, E. Chinese Herbal Medicine: Materia Medica, 3rd ed.; Eastland Press: Seattle, WA, USA, 2004; pp. 58–61. ISBN 978-0939616824. [Google Scholar]
- Lai, J.-P.; Lim, Y.H.; Su, J.; Shen, H.-M.; Ong, C.N. Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants. J. Chromatogr. B 2007, 848, 215–225. [Google Scholar] [CrossRef]
- Dongxu, H.; Xiaochen, R.; Lei, W.; Yuechun, W.; Huidi, J.; Iain, C.B.; Jian, J.; Xin, M.; Qiang, X. Total flavonoids of Flos Chrysanthemi protect arterial endothelial cells against oxidative stress. J. Ethnopharmacol. 2012, 139, 68–73. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, K.-T.; Choi, H.-E.; Ha, T.J.; Nam, J.H.; Hong, S.Y.; Chang, D.C.; Kim, K.S. Anti-inflammatory effects of flavonoids in Korean Chrysanthemum species via suppression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced RAW 264.7 macrophages. Food Sci. Biotechnol. 2015, 24, 975–985. [Google Scholar] [CrossRef]
- Xie, Y.-Y.; Yuan, D.; Yang, J.-Y.; Wang, L.-H.; Wu, C.-F. Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer Colon205 cells. J. Asian Nat. Prod. Res. 2009, 11, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, Y.S. Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities. Planta Med. 2005, 71, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-F.; Feng, Z.-M.; Yang, Y.-N.; Jiang, J.-S.; Zhang, P.-C. Neuroprotective caffeoylquinic acid derivatives from the flowers of Chrysanthemum morifolium. J. Nat. Prod. 2017, 80, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Z.; Harnly, J.M. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem. 2010, 120, 319–326. [Google Scholar] [CrossRef]
- Yang, P.-F.; Yang, Y.-N.; Feng, Z.-M.; Jiang, J.-S.; Zhang, P.-C. Six new compounds from the flowers of Chrysanthemum morifolium and their biological activities. Bioorg. Chem. 2019, 82, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-Y.; Qu, J.-L.; Wang, Q.-L.; Yoshikawa, M.; Yuan, D. Comparative evaluation of cultivars of Chrysanthemum morifolium flowers by HPLC-DAD-ESI/MS analysis and antiallergic assay. J. Agric. Food Chem. 2012, 60, 12574–12583. [Google Scholar] [CrossRef] [PubMed]
- Han, A.-R.; Kim, H.Y.; So, Y.; Nam, B.; Lee, I.S.; Nam, J.W.; Jo, Y.D.; Kim, S.H.; Kim, J.-B.; Kang, S.Y.; Jin, C.H. Quantification of antioxidant phenolic compounds in a new chrysanthemum cultivar by high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Int. J. Anal. Chem. 2017, 2017, 1254721. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yan, Z.; Zhao, J.; Zhu, Y. Headspace solid-phase microextraction and gas chromatography-mass spectrometry of volatile components of Chrysanthemum morifolium Ramat. Trop. J. Pharm. Res. 2016, 15, 2241–2244. [Google Scholar] [CrossRef]
- Choi, H.-S. Headspace analyses of Chrysanthemum indicum by solid-phase microextraction. Anal. Chem. Lett. 2011, 1, 16–24. [Google Scholar] [CrossRef]
- Wu, Q.; Deng, C.; Shen, S.; Song, G.; Hu, Y.; Fu, D.; Chen, J.; Zhang, X. Solid-phase microextraction followed by gas chromatography-mass spectrometry analysis of the volatile components of Flos Chrysanthemi indici in different growing areas. Chromatographia 2004, 59, 763–767. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 28–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, M.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Peak | tR (min) | λmax (nm) | [M + H]+ (m/z) | MSn (m/z) | Identification |
---|---|---|---|---|---|
1 | 8.4 | 275, 350 | 449 | nd 3 | Luteolin-glucoside 1 |
2 | 9.9 | 220, 325 | 355 | 163 | Chlorogenic acid 2 |
3 | 23.7 | 285, 350 | 465 | nd 3 | Quercetin-glucoside 1 |
4 | 25.1 | 270, 350 | 449 | nd 3 | Luteolin-7-O-β-glucoside 2 |
5 | 25.8 | 265, 350 | 463 | nd 3 | Luteolin-glucuronide 1 |
6 | 28.6 | 225, 325 | 517 | 499/163 | Dicaffeoylquinic acid 1 |
7 | 29.4 | 265, 350 | 551 | 295 | unknown |
8 | 31.5 | 220, 325 | 517 | 499/163 | 3,5-Dicaffeoylquinic acid 2 |
9 | 32.2 | 265, 340 | 433 | nd 3 | Apigenin-7-O-β-glucoside 2 |
10 | 33.7 | 255, 350 | 535 | nd 3 | Luteolin-malonylglucoside 1 |
11 | 34.6 | 225, 325 | 517 | 499/163 | Dicaffeoylquinic acid 1 |
12 | 35.8 | 265, 350 | 477 | nd 3 | Diosmetin-glucuronide 1 |
13 | 41.6 | 265, 335 | 519 | nd 3 | Apigenin-malonylglucoside 1 |
14 | 43.3 | 250, 350 | 549 | nd 3 | Diosmetin-malonyglucoside 1 |
15 | 44.8 | 265, 330 | 593 | nd 3 | Linarin 2 |
16 | 50.8 | 265, 330 | 447 | nd 3 | Acacetin-7-O-β-glucoside 2 |
17 | 52.3 | 265, 350 | 287 | nd 3 | Luteolin 2 |
18 | 59.3 | 270, 335 | 533 | nd 3 | Acacetin-malonylglucoside 1 |
19 | 64.6 | 250, 260, 350 | 271 | nd 3 | Apigenin 2 |
Peak | tR (min) | λmax (nm) | [M]+ (m/z) | MSn (m/z) | Identification |
---|---|---|---|---|---|
20 | 11.9 | 520 | 449 | nd 1 | Cyanidin-3-O-glucoside |
21 | 14.9 | 520 | 535 | nd 1 | Cyanidin 3-O-(6″-malonylglucoside) |
22 | 16.8 | 520 | 287 | nd 1 | Cyanidin |
Comps | Calibration Curve 1 | Correlation Coefficient (r2) | Linear Range (μg/mL) | LOD 2 (μg/mL) | LOQ 3 (μg/mL) |
---|---|---|---|---|---|
2 | y = 18.675x − 17.907 | 0.9994 | 25–100 | 0.178 | 0.539 |
4 | y =14.105x − 16.180 | 0.9993 | 25–100 | 0.267 | 0.811 |
8 | y = 22.766x − 25.32 | 0.9991 | 25–100 | 0.601 | 1.822 |
9 | y = 33.317x − 9.170 | 0.9992 | 25–100 | 0.542 | 1.644 |
15 | y = 21.849x − 21.340 | 0.9994 | 25–100 | 0.716 | 2.168 |
16 | y = 14.277x + 20.120 | 0.9991 | 25–100 | 0.206 | 0.624 |
17 | y = 23.094x + 5.220 | 0.9995 | 25–100 | 0.244 | 0.738 |
19 | y = 36.953x − 46.980 | 0.9992 | 25–100 | 0.575 | 1.742 |
20 | y = 44.087x − 46.980 | 0.9963 | 10–250 | 0.374 | 1.134 |
21 | y = 32.221x − 120.13 | 0.9993 | 10–250 | 0.307 | 0.931 |
22 | y = 44.603x − 381.8 | 0.9957 | 10–250 | 0.444 | 1.345 |
Compounds | Infusion Condition | |||||||
---|---|---|---|---|---|---|---|---|
ADC 1 75 °C 2 min | ADC 75 °C 4 min | ADC 100 °C 2 min | ADC 100 °C 4 min | GG 1 75 °C 2 min | GG 75 °C 4 min | GG 100 °C 2 min | GG 100 °C 4 min | |
2 | 4.073 ± 0.540bc 4 | 4.678 ± 0.699b | 4.221 ± 0.573b | 8.034 ± 1.374a | 3.050 ± 0.786c | 3.587 ± 0.292bc | 3.094 ± 0.915c | 3.795 ± 0.551bc |
4 | 4.478 ± 0.586d | 5.617 ± 0.518d | 5.458 ± 1.003d | 11.867 ± 1.778c | 15.627 ± 3.786b | 18.206 ± 0.923ab | 16.134 ± 4.219b | 20.827 ± 5.393a |
8 | 4.900 ± 1.508d | 5.178 ± 0.558cd | 5.260 ± 0.666cd | 9.561 ± 2.078a | 7.279 ± 1.724b | 8.110 ± 0.530ab | 7.058 ± 2.113bc | 8.640 ± 2.015ab |
9 | 0.713 ± 0.137d | 0.979 ± 0.134d | 0.978 ± 0.192d | 2.106 ± 0.402c | 4.319 ± 0.980b | 5.125 ± 0.198ab | 4.585 ± 1.318b | 5.961 ± 1.243a |
15 | 0.630 ± 0.327b | 0.668 ± 0.104b | 0.732 ± 0.138b | 1.294 ± 0.219a | nd 3 c | nd 3 c | nd 3 c | nd 3 c |
16 | 1.252 ± 0.202c | 1.847 ± 0.302b | 2.176 ± 0.753b | 5.077 ± 0.815a | 1.130 ± 0.196c | 1.082 ± 0.366c | 1.263 ± 0.160c | 0.964 ± 0.323c |
17 | 1.146 ± 0.353b | 1.146 ± 0.185b | 0.885 ± 0.550b | 1.747 ± 0.466a | 0.253 ± 0.137c | 0.341 ± 0.215c | 0.535 ± 0.196c | 0.478 ± 0.288c |
19 | nd 3 b | nd 3 b | nd 3 b | nd 3 b | 0.400 ± 0.135a | 0.403 ± 0.081a | 0.360 ± 0.079a | 0.346 ± 0.038a |
20 | 0.531 ± 0.075b | 0.763 ± 0.110b | 0.673 ± 0.247b | 1.975 ± 0.216a | nd 3 c | nd 3 c | nd 3 c | nd 3 c |
21 | 0.947 ± 0.173c | 3.680 ± 0.640b | 2.623 ± 0.934bc | 8.850 ± 2.114a | nd 3 d | nd 3 d | nd 3 d | nd 3 d |
22 | 0.535 ± 0.103c | 1.151 ± 0.158b | 0.710 ± 0.251c | 2.054 ± 0.178a | nd 3 d | nd 3 d | nd 3 d | nd 3 d |
TPA2 | 8.973 ± 2.048 | 9.856 ± 1.258 | 9.480 ± 1.238 | 17.595 ± 3.453 | 10.328 ± 2.510 | 11.696 ± 0.822 | 10.152 ± 3.029 | 12.435 ± 2.566 |
TF2 | 7.919 ± 1.605 | 10.257 ± 1.245 | 10.229 ± 2.636 | 22.090 ± 3.680 | 21.728 ± 5.234 | 25.157 ± 1.783 | 22.877 ± 5.972 | 28.576 ± 7.286 |
TA2 | 1.994 ± 0.351 | 5.594 ± 0.909 | 4.006 ± 1.433 | 12.879 ± 2.508 | nd 3 | Nd 3 | nd 3 | nd 3 |
TT2 | 18.185 ± 4.004 | 25.707 ± 3.411 | 23.716 ± 5.307 | 52.564 ± 9.641 | 32.057 ± 7.744 | 36.853 ± 2.605 | 33.029 ± 9.001 | 41.011 ± 9.852 |
Sample—Infusion Condition (200 μg/mL) | ABTS (% Inhibition) | DPPH (% Inhibition) |
---|---|---|
ADC—75 °C, 2 min | 72.60 ± 0.98 | 51.10 ± 3.05 |
ADC—75 °C, 4 min | 74.92 ± 7.71 | 54.92 ± 0.92 |
ADC—100 °C, 2 min | 67.94 ± 7.63 | 62.07 ± 3.16 |
ADC—100 °C, 4 min | 67.42 ± 1.77 | 66.20 ± 5.08 |
GG—75 °C, 2 min | 69.91 ± 6.70 | 30.19 ± 1.39 |
GG—75 °C, 4 min | 61.46 ± 5.04 | 37.97 ± 2.98 |
GG—100 °C, 2 min | 76.24 ± 4.92 | 47.18 ± 1.40 |
GG—100 °C, 4 min | 71.53 ± 2.95 | 43.40 ± 4.81 |
Ascorbic acid 1 | 94.56 ± 0.12 | 58.99 ± 0.42 |
ADC 1 | GG 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
tR (min) | Identification | Formula | M.W. | % of Total | tR (min) | Identification | Formula | M.W. | % of Total |
1.50 | Lactamide | C3H7NO2 | 89 | 1.59 | 3.38 | Hexanal | C6H12O | 100 | 0.14 |
2.50 | Pentanal | C5H10O | 89 | 0.26 | 3.76 | 1,6-Dimethylhepta-1,3,5-triene | C9H14 | 122 | 0.04 |
3.29 | 1-Octene | C8H16 | 112 | 0.75 | 4.93 | β-Thujene | C10H16 | 136 | 0.14 |
3.38 | Hexanal | C6H12O | 100 | 0.64 | 5.05 | α-Pinene | C10H16 | 136 | 0.44 |
3.97 | 2,6-Dimethyl-3,5-heptadien-2-ol | C9H16O | 140 | 0.11 | 5.74 | 1-Octen-3-ol | C8H16O | 128 | 1.27 |
4.25 | 2-Methyl-acetate 1-butanol | C7H14O2 | 130 | 0.17 | 5.83 | Sulcatone | C8H14O | 126 | 0.49 |
4.63 | Santolina triene | C10H16 | 136 | 0.21 | 5.92 | β-Myrcene | C10H16 | 136 | 0.93 |
4.89 | Tricyclene | C10H16 | 136 | 0.12 | 6.00 | 1-Ethyl-3-methyl-benzene | C9H12 | 120 | 0.47 |
4.94 | β-Thujene | C10H16 | 136 | 1.07 | 6.19 | α-Phellandrene | C10H16 | 136 | 0.42 |
5.06 | α-Pinene | C10H16 | 136 | 4.29 | 6.55 | o-Cymene | C10H14 | 134 | 0.99 |
5.29 | Camphene | C10H16 | 136 | 3.11 | 6.72 | Eucalyptol | C10H18O | 154 | 3.93 |
5.66 | 4(10)-Thujene | C10H16 | 136 | 2.48 | 7.19 | γ-Terpinene | C10H16 | 136 | 0.52 |
5.73 | β-Pinene | C10H16 | 136 | 0.52 | 7.47 | β-Terpineol | C10H18O | 154 | 1.61 |
5.82 | Sulcatone | C8H14O | 126 | 0.29 | 7.81 | γ-Pyronene | C10H16 | 136 | 0.25 |
5.92 | β-Myrcene | C10H16 | 136 | 7.44 | 8.16 | γ-Terpinenol | C10H18O | 154 | 2.47 |
6.20 | α-Phellandrene | C10H16 | 136 | 6.65 | 8.52 | Pseudo-cyclocitral | C10H16O | 152 | 6.22 |
6.33 | 3,4-Dimethyl-styrene | C10H12 | 132 | 0.37 | 8.71 | Chrysanthnone | C10H14O | 150 | 5.49 |
6.40 | α-Terpinene | C10H16 | 136 | 0.20 | 9.26 | (+)-2-Bornanone | C10H16O | 152 | 12.28 |
6.56 | o-Cymene | C10H14 | 134 | 4.43 | 9.71 | cis-Verbenol | C10H16O | 152 | 0.48 |
6.72 | Eucalyptol | C10H18O | 154 | 16.25 | 9.88 | Terpinen-4-ol | C10H18O | 154 | 0.94 |
7.19 | γ-Terpinene | C10H16 | 136 | 0.29 | 10.13 | D-Verbenone | C10H14O | 150 | 0.57 |
7.37 | β-Terpineol | C10H18O | 154 | 0.39 | 10.27 | α-Terpineol | C10H18O | 154 | 1.55 |
7.80 | γ-Pyronene | C10H16 | 136 | 0.20 | 11.31 | trans-Verbenyl acetate | C12H18O2 | 194 | 16.24 |
8.08 | 2-Methyl butyl ester butanoic acid | C10H20O2 | 172 | 3.47 | 12.10 | Isopiperitenone | C10H14O | 150 | 0.44 |
8.13 | Chrysanthenone | C10H14O | 150 | 1.07 | 12.41 | Bornyl acetate | C12H20O2 | 196 | 0.33 |
8.22 | 1-Octenyl acetate | C10H18O2 | 170 | 0.30 | 13.25 | 1,6-Dimethylhepta-1,3,5-triene | C9H14 | 122 | 0.49 |
8.66 | Chrysanthenone | C10H14O | 150 | 11.34 | 13.51 | 2-Methyl-heptyl ester butanoic acid | C12H24O2 | 200 | 0.24 |
9.13 | (+)-2-Bornanone | C10H16O | 152 | 14.33 | 15.07 | β-Elemene | C15H24 | 204 | 7.02 |
9.54 | (−)-Borneol | C10H18O | 154 | 0.40 | 15.54 | 2,3,3-Trimethyl-2-(3-methyl-buta-1,3-dienyl)-cyclohexanone | C14H22O | 206 | 1.02 |
15.63 | 2-Pinen-4-one | C10H14O | 150 | 0.26 | |||||
15.73 | Caryophyllene | C15H24 | 204 | 0.36 | |||||
16.50 | cis-β-Farnesene | C15H24 | 204 | 0.78 | |||||
16.69 | Limonen-6-ol, pivalate | C15H24O2 | 236 | 0.14 | |||||
16.81 | 4-(2,2-Dimethyl-6-methylenecyclohexylidene)-3-methylbutan-2-one | C14H22O | 206 | 0.28 | |||||
17.02 | 4,11-Selinadiene | C15H24 | 204 | 0.13 | |||||
17.18 | α-Curcumene | C15H22 | 202 | 1.37 | |||||
17.33 | β-Selinene | C15H24 | 204 | 1.04 | |||||
17.53 | α-Selinene | C15H24 | 204 | 0.61 | |||||
17.76 | β-Bisabolene | C15H24 | 204 | 0.27 | |||||
18.12 | β-Sesquiphellandrene | C15H24 | 204 | 0.31 | |||||
18.83 | Isoaromadendrene epoxide | C15H24O | 220 | 0.12 | |||||
19.58 | Caryophyllene oxide | C15H24O | 220 | 0.20 | |||||
19.87 | Longifolenaldehyde | C15H24O | 220 | 0.58 | |||||
21.31 | Longipinocarvone | C15H22O | 218 | 0.20 | |||||
21.62 | Ledene oxide-(II) | C15H24O | 220 | 0.32 | |||||
21.97 | trans-Longipinocarveol | C15H24O | 220 | 0.18 | |||||
23.71 | Aromadendrene oxide-(2) | C15H24O | 220 | 0.17 | |||||
23.84 | Isoaromadendrene epoxide | C15H24O | 220 | 0.14 | |||||
25.44 | cis-Z-α-Bisabolene epoxide | C15H24O | 220 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.-R.; Nam, B.; Kim, B.-R.; Lee, K.-C.; Song, B.-S.; Kim, S.H.; Kim, J.-B.; Jin, C.H. Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas. Molecules 2019, 24, 329. https://doi.org/10.3390/molecules24020329
Han A-R, Nam B, Kim B-R, Lee K-C, Song B-S, Kim SH, Kim J-B, Jin CH. Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas. Molecules. 2019; 24(2):329. https://doi.org/10.3390/molecules24020329
Chicago/Turabian StyleHan, Ah-Reum, Bomi Nam, Bo-Ram Kim, Ki-Chang Lee, Beom-Seok Song, Sang Hoon Kim, Jin-Baek Kim, and Chang Hyun Jin. 2019. "Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas" Molecules 24, no. 2: 329. https://doi.org/10.3390/molecules24020329
APA StyleHan, A. -R., Nam, B., Kim, B. -R., Lee, K. -C., Song, B. -S., Kim, S. H., Kim, J. -B., & Jin, C. H. (2019). Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas. Molecules, 24(2), 329. https://doi.org/10.3390/molecules24020329