Cu(II)-Catalyzed Homocouplings of (Hetero)Arylboronic Acids with the Assistance of 2-O-Methyl-d-Glucopyranose
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. React IR Experiment
3.2. General Procedure for Catalytic Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Agharahimi, M.R.; Lebel, N.A. Synthesis of (−)-monoterpenylmagnolol and magnolol. J. Org. Chem. 1995, 60, 1856–1863. [Google Scholar] [CrossRef]
- Wu, G.; Guo, H.; Gao, K.; Liu, Y.; Bastow, K.F.; Morris-Natschke, S.L.; Lee, K.H.; Xie, L. Synthesis of unsymmetrical biphenyls as potent cytotoxic agents. Bioorg. Med. Chem. Lett. 2008, 18, 5272–5276. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, F. Ueber eine neue Darstellungsweise von Phenyläthersalicylsäure. Ber. Dtsch. Chem. Ges. 1904, 37, 853–857. [Google Scholar] [CrossRef]
- Miyake, Y.; Wu, M.; Rahman, M.J.; Kuwatani, Y.; Iyoda, M. Efficient construction of biaryls and macrocyclic cyclophanes via electron-transfer oxidation of lipshutz cuprates. J. Org. Chem. 2006, 71, 6110–6117. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cheng, D.; Pei, W. Iron-catalyzed homocoupling of bromide compounds. J. Org. Chem. 2006, 71, 6637–6639. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Mao, J.; Zhang, Y. Pd (OAc) 2-catalyzed room temperature homocoupling reaction of arylboronic acids under air without ligand. Catal. Commun. 2008, 9, 97–100. [Google Scholar] [CrossRef]
- Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. Manganese- or iron-catalyzed homocoupling of grignard reagents using atmospheric oxygen as an oxidant. J. Am. Chem. Soc. 2007, 129, 13788–13789. [Google Scholar] [CrossRef]
- Robinson, M.K.; Kochurina, V.S.; Hanna, J.M. Palladium-catalyzed homocoupling of arenediazonium salts: An operationally simple synthesis of symmetrical biaryls. Tetrahedron Lett. 2007, 48, 7687–7690. [Google Scholar] [CrossRef]
- Ostrowska, S.; Rogalski, S.; Lorkowski, J.; Walkowiak, J.; Pietraszuk, C. Efficient homocoupling of aryl- and alkenylboronic acids in the presence of low loadings of [{Pd (μ-OH) Cl (IPr)} 2]. Synlett 2018, 29, 1735–1740. [Google Scholar]
- Valiente, A.; Carrasco, S.; Sanz-Marco, A.; Tai, C.W. Aerobic homocoupling of arylboronic acids catalyzed by regenerable Pd (II) @MIL-88B-NH 2 (Cr). ChemCatChem 2019, 11, 3933–3940. [Google Scholar] [CrossRef]
- Demir, A.S.; Reis, O.; Emrullahoglu, M. Role of copper species in the oxidative dimerization of arylboronic acids: Synthesis of symmetrical biaryls. J. Org. Chem. 2003, 68, 10130–10134. [Google Scholar] [CrossRef] [PubMed]
- Kirai, N.; Yamamoto, Y. Homocoupling of arylboronic acids catalyzed by 1, 10-phenanthroline-ligated copper complexes in air. Eur. J. Org. Chem. 2009, 12, 1864–1867. [Google Scholar] [CrossRef]
- Tyagi, D.; Binnani, C.; Rai, R.K.; Dwivedi, A.D.; Gupta, K.; Li, P.; Zhao, Y.; Singh, S.K. Ruthenium-catalyzed oxidative homocoupling of arylboronic acids in water: Ligand tuned reactivity and mechanistic study. Inorg. Chem. 2016, 55, 6332–6343. [Google Scholar] [CrossRef] [PubMed]
- Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Cu-II–β-cyclodextrin complex as a nanocatalyst for the homo- and crosscoupling of arylboronic acids under ligand-and base-free conditions in air: Chemoselective cross-coupling of arylboronic acids in water. Eur. J. Org. Chem. 2011, 2011, 6656–6662. [Google Scholar] [CrossRef]
- Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. Fe3O4 nanoparticle-supported Cu(II)-β-cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1,2,3-triazoles from aryl boronic acids. Green Chem. 2013, 15, 2266–2274. [Google Scholar] [CrossRef]
- Modak, A.; Mondal, J.; Sasidharan, M.; Bhaumik, A. Triazine functionalized ordered mesoporous polymer: A novel solid support for Pd-mediated C-C cross-coupling reactions in water. Green Chem. 2011, 13, 1317–1331. [Google Scholar] [CrossRef]
- Cheng, J.W.; Luo, F.T. Coupling of aryl Grignard reagents by electron transfer to 2,3-dichloropropene. Tetrahedron Lett. 1988, 29, 1293–1294. [Google Scholar] [CrossRef]
- Zeng, M.; Du, Y.; Qi, C.; Zuo, S.; Li, X.; Shao, L.; Zhang, X. An efficient and recyclable heterogeneous palladiumcatalyst utilizing naturally abundant pearl shell waste. Green Chem. 2011, 13, 350–356. [Google Scholar] [CrossRef]
- Endo, Y.; Shudo, K.; Okamoto, T. Acid-catalyzed solvolysis of N-sulfonyl- and N-acyl-O-arylhydroxylamines. Phenoxenium ions. J. Am. Chem. Soc. 1982, 104, 6393–6397. [Google Scholar] [CrossRef]
- Allen, C.F.H.; Burnss, D.M. The chemistry of o-terphenyl. III. Sulfonic acids. J. Org. Chem. 1949, 14, 163–169. [Google Scholar] [CrossRef]
- Gilman, H.; Ingham, R.K. Some tetraorganosilanes. J. Am. Chem. Soc. 1955, 77, 1680–1681. [Google Scholar] [CrossRef]
- Lee, K.; Lee, P.H. Efficient homo-coupling reactions of heterocyclic aromatic bromides catalyzed by Pd (OAc) 2 using indium. Tetrahedron Lett. 2008, 49, 4302–4305. [Google Scholar] [CrossRef]
- Leowanawat, P.; Zhang, N.; Resmerita, A.M.; Rosen, B.M.; Percec, V. Ni(COD)2/PCy3 catalyzed cross-coupling of aryl and heteroaryl neopentylglycolboronates with aryl and heteroaryl mesylates and sulfamates in THF at room temperature. J. Org. Chem. 2011, 76, 9946–9955. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Entry | Catalyst (mol %) | Base | Solvent | Temp (°C) | Yield (%) b |
---|---|---|---|---|---|
1 | CuI (10) | K2CO3 | DMF | 40 | -- c |
2 | CuO (10) | K2CO3 | DMF | 40 | -- c |
3 | Powdered Cu (10) | K2CO3 | DMF | 40 | -- c |
4 | CuSO4 (10) | K2CO3 | DMF | 40 | 10 |
5 | Cu(OAc)2 (10) | K2CO3 | DMF | 40 | 85 |
6 | Cu(OAc)2 (10) | Cs2CO3 | DMF | 40 | 80 |
7 | Cu(OAc)2 (10) | Et3N | DMF | 40 | 78 |
8 | Cu(OAc)2 (10) | -- | DMF | 40 | 99 |
9 | Cu(OAc)2 (10) | -- | Dioxane | 40 | -- c |
10 | Cu(OAc)2 (10) | -- | H2O | 40 | -- c |
11 | Cu(OAc)2 (10) | -- | MeOH | 40 | 14 |
12 | Cu(OAc)2 (10) | -- | DMF | RT d | 98 |
13 e | Cu(OAc)2 (10) | -- | DMF | 40 | 58 |
14 f | Cu(OAc)2 (5) | -- | DMF | 40 | 96 |
15 | Cu(OAc)2 (15) | -- | DMF | 40 | 98 |
16 g | Cu(OAc)2 (5) | -- | DMF | RT d | 98 |
Entry | Substance | Product | Time (min) | Yield (%) b |
---|---|---|---|---|
1 | | | 60 | 98 |
2 | | | 60 | 97 |
3 | | | 60 | 94 |
4 | | | 90 | 84 |
5 | | | 90 | 90 |
6 | | | 60 | 91 |
7 | | | 90 | 89 |
8 | | | 90 | 91 |
9 | | | 90 | 93 |
10 | | | 60 | 98 |
11 | | | 60 | 98 |
12 | | | 60 | 99 |
13 | | | 90 | 94 |
14 | | | 90 | 95 |
15 | | | 90 | 93 |
16 | | | 90 | 90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Zheng, L.; Zhao, Y. Cu(II)-Catalyzed Homocouplings of (Hetero)Arylboronic Acids with the Assistance of 2-O-Methyl-d-Glucopyranose. Molecules 2019, 24, 3678. https://doi.org/10.3390/molecules24203678
Yuan C, Zheng L, Zhao Y. Cu(II)-Catalyzed Homocouplings of (Hetero)Arylboronic Acids with the Assistance of 2-O-Methyl-d-Glucopyranose. Molecules. 2019; 24(20):3678. https://doi.org/10.3390/molecules24203678
Chicago/Turabian StyleYuan, Chunling, Li Zheng, and Yingdai Zhao. 2019. "Cu(II)-Catalyzed Homocouplings of (Hetero)Arylboronic Acids with the Assistance of 2-O-Methyl-d-Glucopyranose" Molecules 24, no. 20: 3678. https://doi.org/10.3390/molecules24203678
APA StyleYuan, C., Zheng, L., & Zhao, Y. (2019). Cu(II)-Catalyzed Homocouplings of (Hetero)Arylboronic Acids with the Assistance of 2-O-Methyl-d-Glucopyranose. Molecules, 24(20), 3678. https://doi.org/10.3390/molecules24203678