A New Alkylation of Aryl Alcohols by Boron Trifluoride Etherate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
General Information
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jumbam, N.D.; Maganga, Y.; Masamba, W.; Mbunye, N.I.; Mgoqi, E.; Mtwa, S. Unprecedented alkylation of carboxylic acids by boron trifluoride etherate. Bull. Chem. Soc. Ethiopia 2018, 32, 387–392. [Google Scholar] [CrossRef]
- Sutter, M.; Lafon, R.; Raoul, Y.; Métay, E.; Lemaire, M. Heterogeneous Palladium-catalyzed synthesis of aromatic ethers by solvent-free dehydrogenative aromatization: Mechanism, scope, and limitations under aerobic and non-aerobic conditions. Eur. J. Org. Chem. 2013, 2013, 5902–5916. [Google Scholar] [CrossRef]
- Mirafzal, G.A.; Summer, J.M. Microwave irradiation reactions: Synthesis of analgesic drugs. J. Chem. Educ. 2000, 77, 356–357. [Google Scholar] [CrossRef]
- Weidlich, T.; Pokorný, M.; Padělková, Z.; Růžička, A. Aryl ethyl ethers prepared by ethylation using diethyl carbonate. Green Chem. Lett. Rev. 2007, 1, 53–59. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, D.J.; Han, J.U.; Kang, M.; Kim, J.M.; Yie, J.E. Preparation and characterization of zeolite catalysts for etherification reaction. Catal. Today 2003, 87, 195–203. [Google Scholar] [CrossRef]
- Shindo, K.; Tachibana, A.; Tanaka, A.; Toba, S.; Yuki, E.; Ozaki, T.; Kumano, T.; Nishiyama, M.; Misawa, N.; Kuzuyama, T. Production of novel antioxidative prenyl naphthalen-ols by combinational bioconversion with dioxygenase PhnA1A2A3A4 and prenyltransferase NphB or SCO7190. Biosci. Biotechnol. Biochem. 2011, 75, 505–510. [Google Scholar] [CrossRef]
- Malykhin, E.V.; Shteingarts, V.D. Alkoxylation of 4-chloronitrobenzene with aliphatic alcohols and glycols in the presence of NaOH. Russ. J. Appl. Chem. 2012, 85, 1232–1238. [Google Scholar] [CrossRef]
- Sun, H.; Sun, Y.; Tian, X.; Zhao, Y.; Qi, X. Nanosized ferric hydroxide catalyzed C-O cross-coupling of phenol and halides to generate phenoxy ether. Asian J. Chem. 2013, 25, 6189–6191. [Google Scholar] [CrossRef]
- Smith, R.G.; Vanterpool, A.; Kulak, H.J. Dimethyl sulfoxide as a solvent in the Williamson ether synthesis. Can. J. Chem. 1969, 47, 2015–2020. [Google Scholar] [CrossRef]
- Xionga, W.; Dinga, Q.; Chena, J.; Dinga, J.; Wua, H. Solvent-free synthesis of aryl ethers promoted by tetrabutylammonium fluoride. J. Chem. Res. 2010, 34, 395–398. [Google Scholar] [CrossRef]
- Keegstra, M.A.; Peters, T.H.; Brandsma, L. Copper (I) halide catalysed synthesis of alkyl aryl and alkyl heteroaryl ethers. Tetrahedron 1992, 48, 3633–3652. [Google Scholar] [CrossRef]
- Milton, E.J.; Fuentes, J.A.; Clarke, M.L. Palladium-catalysed synthesis of aryl-alkyl ethers using alkoxysilanes as nucleophiles. Org. Biomol. Chem. 2009, 7, 2645–2648. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Gupta, M. Zinc-catalyzed Williamson ether synthesis in the absence of base. Tetrahedron Lett. 2004, 45, 8825–8829. [Google Scholar] [CrossRef]
- Manhas, M.S.; Hoffman, W.; Lal, B.; Bose, A.K. Steroids. Part X. A convenient synthesis of alkyl aryl ethers. J. Chem. Soc. Perk. Trans. 1 1975, 5, 461–463. [Google Scholar] [CrossRef]
- Guerrero, L.R.; Rivero, I.A. 1,2-Dimethylimidazole (DMI) and microwaves in the alkylation of carboxylic acids and phenols with dimethyl and diethyl carbonates. Arkivoc 2008, 11, 295–306. [Google Scholar]
- Kreye, O.; Over, L.C.; Nitsche, T.; Lange, R.Z.; Meier, M.A.R. Organic carbonates: Sustainable and environmentally-friendly ethylation, allylation, and benzylation reagents. Tetrahedron 2015, 71, 293–300. [Google Scholar] [CrossRef]
- Heller, S.T.; Sarpong, R. On the reactivity of imidazole carbamates and ureas and their use as esterification and amidation reagents. Tetrahedron 2011, 67, 8851–8859. [Google Scholar] [CrossRef]
- Kobayashi, A.; Konishi, G.-I. Rapid synthesis of phenolic resins by microwave-assisted self-condensation of hydroxybenzyl alcohol derivatives. Polym. J. 2008, 40, 590–591. [Google Scholar] [CrossRef]
- Posner, G.H.; Shulman-Roskes, E.M.; Oh, C.H.; Carry, J.-C.; Green, J.V.; Clark, A.B.; Dai, H.; Anjeh, T.E.N. BF3·OEt2 promotes fast, mild, clean and regioselective dehydration of tertiary alcohols. Tetrahedron Lett. 1991, 32, 6489–6492. [Google Scholar] [CrossRef]
- Bouider, N.; Fhayli, W.; Ghandour, Z.; Boyer, M.; Harrouche, K.; Florence, X.; Pirotte, B.; Lebrun, P.; Faury, G.; Khelili, S. Design and synthesis of new potassium channel activators derived from the ring opening of diazoxide: Study of their vasodilatory effect, stimulation of elastin synthesis and inhibitory effect on insulin release. Bioorg. Med. Chem. 2015, 23, 1735–1746. [Google Scholar] [CrossRef]
- Mehmood, A.; Devine, W.G.; Leadbeater, N.E. Development of methodologies for copper-catalyzed C–O bond formation and direct cyanation of aryl iodides. Top. Catal. 2010, 53, 1073–1080. [Google Scholar] [CrossRef]
- Meshram, H.M.; Goud, P.R.; Reddy, B.C.; Kumar, D.A. Triton B–Mediated Efficient and Convenient Alkoxylation of Activated Aryl and Heteroaryl Halides. Synth. Commun. 2010, 40, 2122–2129. [Google Scholar] [CrossRef]
- Mathew, S.H.; Haridas, K.R. Synthesis and properties of N,N,N′-tris-(2-ethoxy-naphthalenen-1-yl)–N,N,N′ triphenylbenzene 1, 3, 5-triamine for dye sensitized solar cell. Bull. Mater. Sci. 2012, 35, 123–127. [Google Scholar] [CrossRef]
- Tang, G.; Gong, Z.; Han, W.; Sun, X. Visible light mediated aerobic photocatalytic activation of CH bond by riboflavin tetraacetate and N-hydroxysuccinimide. Tetrahedron Lett. 2018, 59, 658–662. [Google Scholar] [CrossRef]
- Foglia, T.A.; Swern, D. Reaction of N,N-dichlorourethan with ethers. A novel cleavage-chlorination reaction. Tetrahedron Lett. 1967, 8, 3963–3967. [Google Scholar] [CrossRef]
- Dubbaka, S.R.; Narreddula, V.R.; Gadde, S.; Mathew, T. Silver-mediated fluorination of potassium aryltrifluoroborates with Selectfluor®. Tetrahedron 2014, 70, 9676–9681. [Google Scholar] [CrossRef]
- Yunlong, J.; Yuan, Y.; Jin, D. Method for preparing difluoro alkyl ether benzene. U.S. Patent No. CN101003468 (A), 25 July 2007. [Google Scholar]
- Kumar, A.; Kumar, P.; Paul, S.; Jain, S.L. Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGO nanocomposite as photocatalyst. Appl. Surf. Sci. 2016, 386, 103–114. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, Q.; Zhao, A.; Jia, J.; Liu, Q.; Luo, W.; Guo, C. Copper-catalyzed aerobic conversion of the C=O bond of ketones to a C≡N bond using ammonium salts as the nitrogen source. Chem. Commun. 2015, 51, 11264–11267. [Google Scholar] [CrossRef]
- Lui, M.Y.; Yuen, A.K.L.; Masters, A.F.; Maschmeyer, T. Masked N-heterocyclic carbene-catalyzed alkylation of phenols with organic carbonates. ChemSusChem 2016, 9, 2312–2316. [Google Scholar] [CrossRef]
- Maleki, A.; Aghaei, M.; Paydar, R. Highly efficient protocol for the aromatic compounds nitration catalyzed by magnetically recyclable core/shell nanocomposite. J. Iran. Chem. Soc. 2017, 14, 485–490. [Google Scholar] [CrossRef]
- Curti, F.; Tiecco, M.; Pirovano, V.; Germani, R.; Caselli, A.; Rossi, E.; Abbiati, G. p-TSA-Based DESs as “Active Green Solvents” for Microwave Enhanced Cyclization of 2-Alkynyl-(hetero)-arylcarboxylates: An alternative access to 6-substituted 3,4-fused 2-pyranones. Eur. J. Org. Chem. 2019, 2019, 1904–1914. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–17 are available from the authors. |
Product | This Work (%) | Literature Conditions | Literature Yield (%) | Reference |
---|---|---|---|---|
Phenetole 1 | 84.8 | Phenol/EtONa/diethyl carbonate, 137 °C/42 h. | 71 | [4] |
p-Chloroethoxybenzene 2 | 95 | p-Chlorophenol/K2CO3/EtBr/Acetone, reflux, 3 h. | 89 | [20] |
p-Ethoxytoluene 11 | 88 | p-Iodotoluene/NMP, 170 °C/Cu2O (5%), CsCO3 (2 eqv), MW, 30 min. | 77 | [21] |
p-Nitroethoxybenzene 4 | 72 | p-Fluoronitrobenzene/EtOH, Triton B/50 °C, 20 h. | 93 | [22] |
β-Ethoxynaphthalene 18 | 85 | 2-naphthol/EtBr/NaOH 40%/TBAB/Toluene, 70 °C, 4 h. | 98.1 | [23] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumbam, N.D.; Maganga, Y.; Masamba, W.; Mbunye, N.I.; Mgoqi, E.; Mtwa, S. A New Alkylation of Aryl Alcohols by Boron Trifluoride Etherate. Molecules 2019, 24, 3720. https://doi.org/10.3390/molecules24203720
Jumbam ND, Maganga Y, Masamba W, Mbunye NI, Mgoqi E, Mtwa S. A New Alkylation of Aryl Alcohols by Boron Trifluoride Etherate. Molecules. 2019; 24(20):3720. https://doi.org/10.3390/molecules24203720
Chicago/Turabian StyleJumbam, Ndze Denis, Yamkela Maganga, Wayiza Masamba, Nomthandazo I. Mbunye, Esethu Mgoqi, and Sphumusa Mtwa. 2019. "A New Alkylation of Aryl Alcohols by Boron Trifluoride Etherate" Molecules 24, no. 20: 3720. https://doi.org/10.3390/molecules24203720
APA StyleJumbam, N. D., Maganga, Y., Masamba, W., Mbunye, N. I., Mgoqi, E., & Mtwa, S. (2019). A New Alkylation of Aryl Alcohols by Boron Trifluoride Etherate. Molecules, 24(20), 3720. https://doi.org/10.3390/molecules24203720