Theoretical Study of the Effect of Different π Bridges Including an Azomethine Group in Triphenylamine-Based Dye for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Structure of Dyes
2.2. Frontier Molecular Orbitals
2.3. Ultraviolet-Visible Absorption Spectra
2.4. Free Energy of Electron Injection
2.5. Chemical Reactivity Parameters
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Zanjanchi, F.; Beheshtian, J. Natural pigments in dye-sensitized solar cell (DSSC): A DFT-TDDFT study. J. Iran. Chem. Soc. 2018, 16, 795–805. [Google Scholar] [CrossRef]
- Ozawa, H.; Okuyama, Y.; Arakawa, H. Dependence of the Efficiency Improvement of Black-Dye-Based Dye-Sensitized Solar Cells on Alkyl Chain Length of Quaternary Ammonium Cations in Electrolyte Solutions. Chem. Phys. Chem. 2014, 15, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, Y.; Han, J.; Cao, B.; Yin, H.; Shi, Y. Enhanced photoelectrical properties of alizarin-based natural dye via structure modulation. Sol. Energy 2019, 185, 315–323. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Xu, M.; Ma, W.; Li, R.; Wang, P. Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy Environ. Sci. 2013, 6, 2944–2949. [Google Scholar] [CrossRef]
- Manzoor, T.; Niaz, S.; Pandith, A.H. Exploring the effect of different coumarin donors on the optical and photovoltaic properties of azo-bridged push-pull systems: A theoretical approach. Int. J. Quantum Chem. 2019, 42, e25979. [Google Scholar] [CrossRef]
- Jadhav, M.M.; Vaghasiya, J.V.; Patil, D.S.; Soni, S.S.; Sekar, N. Structure-efficiency relationship of newly synthesized 4-substituted donor-π-acceptor coumarins for dye-sensitized solar cells. New J. Chem. 2018, 42, 5267–5275. [Google Scholar] [CrossRef]
- Naik, P.; Elmorsy, M.R.; Su, R.; Babu, D.D.; El-Shafei, A.; Adhikari, A.V. New carbazole based metal-free organic dyes with D-π-A-π-A architecture for DSSCs: Synthesis, theoretical and cell performance studies. Sol. Energy 2017, 153, 600–610. [Google Scholar] [CrossRef]
- Kusumawati, Y.; Massin, J.; Olivier, C.; Toupance, T.; Ivansyah, A.L.; Martoprawiro, M.A.; Prijamboedi, B.; Radiman, C.L.; Pauporté, T. Journal of Photochemistry and Photobiology A: Chemistry Combined computational and experimental study of carbazole dyes for iodide- and cobalt-based ZnO DSSCs. J. Photochem. Photobiol. A Chem. 2017, 341, 69–77. [Google Scholar] [CrossRef]
- Park, J.M.; Jung, C.Y.; Wang, Y.; Choi, H.D.; Park, S.J.; Ou, P.; Jang, W.-D.; Jaung, J.Y. Effect of additional phenothiazine donor and thiophene π-bridge on photovoltaic performance of quinoxaline cored photosensitizers. Dye Pigment. 2019, 170, 107568. [Google Scholar] [CrossRef]
- Duvva, N.; Prasanthkumar, S.; Giribabu, L. Influence of strong electron donating nature of phenothiazine on A 3 B- type porphyrin based dye sensitized solar cells. Sol. Energy 2019, 184, 620–627. [Google Scholar] [CrossRef]
- Slimi, A.; Fitri, A.; Touimi Benjelloun, A.; Elkhattabi, S.; Benzakour, M.; Mcharfi, M.; Bouachrine, M. Molecular Design of D-π-A-A Organic Dyes Based on Triphenylamine Derivatives with Various Auxiliary Acceptors for High Performance DSSCs. J. Electron. Mater 2019, 48, 4452–4462. [Google Scholar] [CrossRef]
- Estrella, L.L.; Lee, S.H.; Kim, D.H. New semi-rigid triphenylamine donor moiety for D-π-A sensitizer: Theoretical and experimental investigations for DSSCs. Dye Pigment. 2019, 165, 1–10. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, T.; Xu, Y.; Li, M.; Wei, Z.; Liu, H.; Lu, W. Theoretical screening and design of SM315-based porphyrin dyes for highly efficient dye-sensitized solar cells with near-IR light harvesting. Dye Pigment. 2018, 155, 292–299. [Google Scholar] [CrossRef]
- Carli, S.; Casarin, L.; Caramori, S.; Boaretto, R.; Busatto, E.; Argazzi, R.; Bignozzi, C.A. A viable surface passivation approach to improve efficiency in cobalt based dye sensitized solar cells. Polyhedron 2014, 82, 173–180. [Google Scholar] [CrossRef]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Otsuka, T.; Kyomen, T.; Unno, M.; Hanaya, M. An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chem. Commun. 2014, 50, 6379–6381. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Guo, W.-J.; Zhang, J.; Liu, Y.-D.; Song, X.-C.; Jiang, Y.; Weng, Q.; An, Z.-W. Novel 4,4′-bis(alkylphenyl/alkyloxyphenyl)-2,2′-bithiophene bridged cyclic thiourea functionalized triphenylamine sensitizers for efficient dye-sensitized solar cells. Sol. Energy 2019, 186, 1–8. [Google Scholar] [CrossRef]
- El Mzioui, S.; Bouzzine, S.M.; Sidir, İ.; Bouachrine, M.; Bennani, M.N.; Bourass, M.; Hamidi, M. Theoretical investigation on π-spacer effect of the D–π–A organic dyes for dye-sensitized solar cell applications: A DFT and TD-BHandH study. J. Mol. Model. 2019, 25, 92. [Google Scholar] [CrossRef]
- Majid, A.; Bibi, M.; Khan, S.U.-D.; Haider, S. First Principles Study of Dendritic Carbazole Photosensitizer Dyes Modified with Different Conjugation Structures. ChemistrySelect 2019, 4, 2787–2794. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Li, C.; Tian, Y.; Zhang, F.; Wang, Y.; Wu, W.; Liu, B. Energy-Level Control via Molecular Planarization and Its Effect on Interfacial Charge-Transfer Processes in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2019, 123, 13531–13537. [Google Scholar] [CrossRef]
- Lyu, L.; Tang, P.; Tong, G.; Han, L. Molecular engineering and synthesis of symmetric metal-free organic sensitizers with A-π-D-π-A architecture for DSSC applications: The effect of bridge unit. J. Iran. Chem. Soc. 2019. [Google Scholar] [CrossRef]
- Wazzan, N.A. A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole/benzothiadiazole/phthalimide units (A2) as organic photosensitizers with D–A2–π–A1 configuration for solar cell applications. J. Comput. Electron. 2019, 18, 375–395. [Google Scholar] [CrossRef]
- ElKhattabi, S.; Hachi, M.; Fitri, A.; Benjelloun, A.T.; Benzakour, M.; Mcharfi, M.; Bouachrine, M. Theoretical study of the effects of modifying the structures of organic dyes based on N,N-alkylamine on their efficiencies as DSSC sensitizers. J. Mol. Model. 2019, 25, 9. [Google Scholar] [CrossRef] [PubMed]
- Duvva, N.; Reddy, G.; Singh, S.P.; Chowdhury, T.H.; Bedja, I.; Islam, A.; Giribabu, L. Functional π-conjugated tetrathiafulvalene decorated with benzothiadiazole organic sensitizers for dye sensitized solar cells. New J. Chem. 2019, 43, 8919–8929. [Google Scholar] [CrossRef]
- Sun, C.; Li, Y.; Song, P.; Ma, F. An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application. Materials 2016, 9, 813. [Google Scholar] [CrossRef]
- Sadki, H.; Bourass, M.; Bennani, M.N.; Bouachrine, M. New organic materials based on D–π–A structure for application in dye-sensitized solar cells. Res. Chem. Intermed. 2018, 44, 6071–6085. [Google Scholar] [CrossRef]
- Trabelsi, S.; Kouki, N.; Seydou, M.; Maurel, F.; Tangour, B. Intramolecular Path Determination of Active Electrons on Push-Pull Oligocarbazole Dyes-Sensitized Solar Cells. ChemistryOpen 2019, 8, 580–588. [Google Scholar] [CrossRef]
- Koole, M.; Frisenda, R.; Petrus, M.L.; Perrin, M.L.; van der Zant, H.S.J.; Dingemans, T.J. Charge transport through conjugated azomethine-based single molecules for optoelectronic applications. Org. Electron. 2016, 34, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Tsang, D.; Bourgeaux, M.; Skene, W.G. Demystifying the triplet state and the quenching mechanism of self-assembled fluorenoazomethines. J. Photochem. Photobiol. A Chem. 2007, 192, 122–129. [Google Scholar] [CrossRef]
- Petrus, M.L.; Music, A.; Closs, A.C.; Bijleveld, J.C.; Sirtl, M.T.; Hu, Y.; Dingemans, T.J.; Bein, T.; Docampo, P. Design rules for the preparation of low-cost hole transporting materials for perovskite solar cells with moisture barrier properties. J. Mater. Chem. A 2017, 5, 25200–25210. [Google Scholar] [CrossRef] [Green Version]
- Grucela-Zajac, M.; Bijak, K.; Zaleckas, E.; Grigalevicius, S.; Wiacek, M.; Janeczek, H.; Schab-Balcerzak, E. Electronic and thermal properties of compounds bearing diimide, azomethine and triphenylamine units. Opt. Mater. (Amst). 2014, 37, 543–551. [Google Scholar] [CrossRef]
- Moraes, R.S.; Aderne, R.E.; Cremona, M.; Rey, N.A. Luminescent properties of a di-hydrazone derived from the antituberculosis agent isoniazid: Potentiality as an emitting layer constituent for OLED fabrication. Opt. Mater. (Amst). 2016, 52, 186–191. [Google Scholar] [CrossRef]
- Srinivas, M.; Vijayakumar, G.R.; Mahadevan, K.M.; Nagabhushana, H.; Bhojya Naik, H.S. Synthesis, photoluminescence and forensic applications of blue light emitting azomethine-zinc (II) complexes of bis(salicylidene)cyclohexyl-1,2-diamino based organic ligands. J. Sci. Adv. Mater. Devices 2017, 2, 156–164. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, J.-S.; Sohn, B.-C.; Kim, Y.K.; Ha, Y.Y. Synthesis and Application of the Aromatic Spacered Azomethine Metal Complexes for the Organic Electroluminescent Devices. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 2001, 371, 321–324. [Google Scholar] [CrossRef]
- Fujii, S.; Minami, S.; Urayama, K.; Suenaga, Y.; Naito, H.; Miyashita, O.; Imoto, H.; Naka, K. Beads-on-String-Shaped Poly(azomethine) Applicable for Solution Processing of Bilayer Devices Using a Same Solvent. ACS Macro Lett. 2018, 7, 641–645. [Google Scholar] [CrossRef]
- Jebnouni, A.; Chemli, M.; Lévêque, P.; Fall, S.; Majdoub, M.; Leclerc, N. Effects of vinylene and azomethine bridges on optical, theoretical electronic structure and electrical properties of new anthracene and carbazole based π-conjugated molecules. Org. Electron. 2018, 56, 96–110. [Google Scholar] [CrossRef]
- Gencer Imer, A.; Syan, R.H.B.; Gülcan, M.; Ocak, Y.S.; Tombak, A. The novel pyridine based symmetrical Schiff base ligand and its transition metal complexes: Synthesis, spectral definitions and application in dye sensitized solar cells (DSSCs). J. Mater Sci. Mater. Electron. 2018, 29, 898–905. [Google Scholar] [CrossRef]
- Suman, G.R.; Bubbly, S.G.; Gudennavar, S.B.; Muthu, S.; Roopashree, B.; Gayatri, V.; Nanje Gowda, N.M. Structural investigation, spectroscopic and energy level studies of Schiff base: 2-[(3′-N-salicylidenephenyl)benzimidazole] using experimental and DFT methods. J. Mol. Struct. 2017, 1139, 247–254. [Google Scholar] [CrossRef]
- Tang, J.; Hua, J.; Wu, W.; Li, J.; Jin, Z.; Long, Y.; Tian, H. New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells. Energy Environ. Sci. 2010, 3, 1736. [Google Scholar] [CrossRef]
- Chang, Y.J.; Chow, T.J. Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron 2009, 65, 4726–4734. [Google Scholar] [CrossRef]
- Ci, Z.; Yu, X.; Bao, M.; Wang, C.; Ma, T. Influence of the benzo[d]thiazole-derived π-bridges on the optical and photovoltaic performance of D–π–A dyes. Dye Pigment. 2013, 96, 619–625. [Google Scholar] [CrossRef]
- Justin Thomas, K.R.; Hsu, Y.-C.; Lin, J.T.; Lee, K.-M.; Ho, K.-C.; Lai, C.-H.; Cheng, Y.-M.; Chou, P.-T. 2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells. Chem. Mater. 2008, 20, 1830–1840. [Google Scholar] [CrossRef]
- Yen, Y.; Hsu, Y.-C.; Lin, J.T.; Chang, C.; Hsu, C.; Yin, D. Pyrrole-Based Organic Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 12557–12567. [Google Scholar] [CrossRef]
- Delgado-Montiel, T.; Baldenebro-López, J.; Soto-Rojo, R.; Glossman-Mitnik, D. Quantum chemical study of the effect of π-bridge on the optical and electronic properties of sensitizers for DSSCs incorporating dioxythiophene and thiophene units. Theor. Chem. Acc. 2016, 135, 235. [Google Scholar] [CrossRef]
- Namuangruk, S.; Jungsuttiwong, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Jansang, B.; Ehara, M. Coumarin-based donor–π–acceptor organic dyes for a dye-sensitized solar cell: Photophysical properties and electron injection mechanism. Theor. Chem. Acc. 2016, 135, 14. [Google Scholar] [CrossRef]
- Nattestad, A.; Mozer, A.J.; Fischer, M.K.R.; Cheng, Y.-B.; Mishra, A.; Bäuerle, P.; Bach, U. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 2010, 9, 31–35. [Google Scholar] [CrossRef]
- Joly, D.; Pellejà, L.; Narbey, S.; Oswald, F.; Meyer, T.; Kervella, Y.; Maldivi, P.; Clifford, J.N.; Palomares, E.; Demadrille, R. Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. Energy Environ. Sci. 2015, 8, 2010–2018. [Google Scholar] [CrossRef]
- Cong, J.; Yang, X.; Kloo, L.; Sun, L. Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ. Sci. 2012, 5, 9180. [Google Scholar] [CrossRef]
- Lu, X.; Wei, S.; Wu, C.L.; Li, S.; Guo, W. Can Polypyridyl Cu(I)-based Complexes Provide Promising Sensitizers for Dye-Sensitized Solar Cells? A Theoretical Insight into Cu(I) versus Ru(II) Sensitizers. J. Phys. Chem. C 2011, 115, 3753–3761. [Google Scholar] [CrossRef]
- Liang, M.; Chen, J. Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 2013, 42, 3453. [Google Scholar] [CrossRef] [PubMed]
- Ezhov, A.V.; Zhdanova, K.A.; Bragina, N.A.; Mironov, A.F. Approaches to Improve Efficiency of Dye-Sensitized Solar Cells. Macroheterocycles 2016, 9, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, M.; Vaghasiya, J.V.; Patil, D.; Soni, S.S.; Sekar, N. Effect of donor modification on the photo-physical and photo-voltaic properties of N -alkyl/aryl amine based chromophores. New J. Chem. 2019, 43, 8970–8981. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Nandakumar, D.K.; Yaoxin, Z.; Tan, S.C. Low toxicity environmentally friendly single component aqueous organic ionic conductors for high efficiency photoelectrochemical solar cells. J. Mater. Chem. A 2018, 6, 1009–1016. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Sonigara, K.K.; Soni, S.S.; Tan, S.C. Dual functional hetero-anthracene based single component organic ionic conductors as redox mediator cum light harvester for solid state photoelectrochemical cells. J. Mater. Chem. A 2018, 6, 4868–4877. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Sonigara, K.K.; Suresh, L.; Panahandeh-Fard, M.; Soni, S.S.; Tan, S.C. Efficient power generating devices utilizing low intensity indoor lights via non-radiative energy transfer mechanism from organic ionic redox couples. Nano Energy 2019, 60, 457–466. [Google Scholar] [CrossRef]
- Soni, S.S.; Fadadu, K.B.; Vaghasiya, J.V.; Solanki, B.G.; Sonigara, K.K.; Singh, A.; Das, D.; Iyer, P.K. Improved molecular architecture of D–π–A carbazole dyes: 9% PCE with a cobalt redox shuttle in dye sensitized solar cells. J. Mater. Chem. A 2015, 3, 21664–21671. [Google Scholar] [CrossRef]
- Zhang, L.; Cole, J.M. Anchoring Groups for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 3427–3455. [Google Scholar] [CrossRef]
- Mehmood, U.; Hussein, I.A.; Harrabi, K.; Ahmed, S. Density Functional Theory Study on the Electronic Structures of Oxadiazole Based Dyes as Photosensitizer for Dye Sensitized Solar Cells. Adv. Mater. Sci. Eng. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Sugihara, H.; Arakawa, H. Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J. Photochem. Photobiol. A Chem. 2003, 158, 131–138. [Google Scholar] [CrossRef]
- Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H. Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J. Org. Chem. 2008, 73, 3791–3797. [Google Scholar] [CrossRef] [PubMed]
- Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO 2 Film. J. Phys. Chem. B 2002, 106, 1363–1371. [Google Scholar] [CrossRef]
- Sun, M.; Cao, Z. DFT and TD-DFT studies on osmacycle dyes with tunable photoelectronic properties for solar cells. Theor. Chem. Acc. 2014, 133, 1531. [Google Scholar] [CrossRef]
- Sang-aroon, W.; Saekow, S.; Amornkitbamrung, V. Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2012, 236, 35–40. [Google Scholar] [CrossRef]
- Wang, Z.-S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H. Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO 2 Films. Langmuir 2005, 21, 4272–4276. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, Y.; Hara, K.; Sayama, K.; Arakawa, H. Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO 2 Solar Cells. Chem. Mater. 2002, 14, 2527–2535. [Google Scholar] [CrossRef]
- Pearson, R.G.; Palke, W.E. Support for a principle of maximum hardness. J. Phys. Chem. 1992, 96, 3283–3285. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA 1986, 83, 8440–8441. [Google Scholar] [CrossRef] [Green Version]
- Soto-Rojo, R.; Baldenebro-López, J.; Glossman-Mitnik, D. Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT. Phys. Chem. Chem. Phys. 2015, 17, 14122–14129. [Google Scholar] [CrossRef]
- Gázquez, J.L.; Cedillo, A.; Vela, A. Electrodonating and Electroaccepting Powers. J. Phys. Chem. A 2007, 111, 1966–1970. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Song, P.; Ma, F.; Liang, J.; Sun, M. Screening and design of high-performance indoline-based dyes for DSSCs. RSC Adv. 2017, 7, 20520–20536. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* basis set for third-row atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Burke, K.; Werschnik, J.; Gross, E.K.U. Time-dependent density functional theory: Past, present, and future. J. Chem. Phys. 2005, 123, 062206. [Google Scholar] [CrossRef] [Green Version]
- Stratmann, R.E.; Scuseria, G.E.; Frisch, M.J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V. Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 2001, 115, 4708. [Google Scholar] [CrossRef]
- Improta, R.; Barone, V.; Scalmani, G.; Frisch, M.J. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J. Chem. Phys. 2006, 125, 054103. [Google Scholar] [CrossRef] [PubMed]
- Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032. [Google Scholar] [CrossRef]
- Gorelsky, S.I.; Lever, A.B.P. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J. Organomet. Chem. 2001, 635, 187–196. [Google Scholar] [CrossRef]
- Guo, M.; Xie, K.; Lin, J.; Yong, Z.; Yip, C.T.; Zhou, L.; Wang, Y.; Huang, H. Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ. Sci. 2012, 5, 9881. [Google Scholar] [CrossRef]
- Chaitanya, K.; Ju, X.-H.; Heron, B.M. Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv. 2014, 4, 26621–26634. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian Inc.: Oxford, UK, 2010.
- Arunkumar, A.; Deepana, M.; Shanavas, S.; Acevedo, R.; Anbarasan, P.M. Computational Investigation on Series of Metal-Free Sensitizers in Tetrahydroquinoline with Different π-spacer Groups for DSSCs. ChemistrySelect 2019, 4, 4097–4104. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Song, P.; Ma, F.; Yang, Y. Electric field effect on multi-anchoring molecular architectures: Electron transfer process and opto-electronic property. J. Mol. Liq. 2018, 261, 123–136. [Google Scholar] [CrossRef]
- Sun, C.; Li, Y.; Shi, Y.; Li, Y. Effects of Structural Modification on the Photoelectrical Properties of the D-A-π-A-Type Dyes in DSSCs: A Computational Investigation. ChemistrySelect 2018, 3, 6622–6637. [Google Scholar] [CrossRef]
Sample Availability: Samples of all compounds are available from the corresponding authors. |
Dyes | Donor Part (D) | π-Bridging | Acceptor Part (A) | |
---|---|---|---|---|
D-π1 | π1-π2 | π2-π3 | π3-A | |
AT | ||||
Dihedral | 22.5 | − | − | −0.9 |
Distance | 1.45 | − | − | 1.42 |
TPAZ1 | ||||
Dihedral | −26.8 | −1.4 | − | −0.2 |
Distance | 1.39 | 1.45 | − | 1.42 |
TPAZ2 | ||||
Dihedral | −19.0 | 0.5 | − | 0.1 |
Distance | 1.45 | 1.42 | − | 1.36 |
BBT | ||||
Dihedral | −33.1 | 23.2 | − | −0.8 |
Distance | 1.47 | 1.46 | − | 1.42 |
TPAZ3 | ||||
Dihedral | −33.8 | −32.1 | −1.2 | −0.1 |
Distance | 1.47 | 1.40 | 1.45 | 1.42 |
TPAZ4 | ||||
Dihedral | −33.6 | −34.9 | −1.0 | 0.1 |
Distance | 1.47 | 1.40 | 1.45 | 1.42 |
TPAZ5 | ||||
Dihedral | −33.3 | −49.1 | 4.9 | 0.4 |
Distance | 1.47 | 1.39 | 1.45 | 1.42 |
BTT | ||||
Dihedral | −23.5 | 7.7 | − | −0.3 |
Distance | 1.45 | 1.45 | − | 1.42 |
TPAZ6 | ||||
Dihedral | −22.7 | −0.7 | −30.3 | −0.3 |
Distance | 1.46 | 1.43 | 1.37 | 1.42 |
TPAZ7 | ||||
Dihedral | −19.5 | 1.9 | 0.6 | 0.1 |
Distance | 1.45 | 1.36 | 1.43 | 1.42 |
Molecule | λmax (nm) | E (eV) | f | Transitions H = HOMO, L = LUMO (%) |
---|---|---|---|---|
AT | 446 | 2.78 | 0.928 | H → L (90%) |
315 | 3.94 | 0.260 | H-1 → L (84%) | |
282 | 4.40 | 0.169 | H → L+1 (72%) | |
265 | 4.67 | 0.198 | H → L+3 (89%) | |
TPAZ1 | 513 | 2.42 | 0.713 | H → L (90%) |
342 | 3.63 | 0.624 | H-1 → L (66%) | |
306 | 4.05 | 0.192 | H → L+1 (66%) | |
268 | 4.63 | 0.234 | H → L+4 (55%) H → L+5 (35%) | |
TPAZ2 | 483 | 2.57 | 1.027 | H → L (89%) |
338 | 3.67 | 0.492 | H-1 → L (82%) | |
297 | 4.17 | 0.138 | H → L+1 (54%) H-9 → L (25%) | |
263 | 4.71 | 0.140 | H → L+4 (67%) | |
BBT | 486 | 2.55 | 0.520 | H → L (92%) |
361 | 3.43 | 0.869 | H-1 → L (71%) | |
315 | 3.94 | 0.333 | H → L+1 (71%) | |
233 | 5.32 | 0.208 | H-1 → L+1 (72%) | |
TPAZ3 | 564 | 2.20 | 0.340 | H →L (95%) |
395 | 3.14 | 0.878 | H-1 → L (65%) | |
331 | 3.75 | 0.228 | H → L+1 (69%) | |
322 | 3.85 | 0.423 | H-8 → L (42%) H-6 → L (23%) | |
269 | 4.61 | 0.237 | H → L+7 (88%) | |
TPAZ4 | 563 | 2.20 | 0.323 | H → L (94%) |
403 | 3.08 | 0.719 | H-1 → L (67%) | |
329 | 3.77 | 0.288 | H → L+1 (68%) | |
325 | 3.81 | 0.518 | H-8 → L (42%) H-7 → L (27%) | |
269 | 4.61 | 0.205 | H → L+7 (72%) | |
TPAZ5 | 576 | 2.15 | 0.206 | H → L (96%) |
388 | 3.20 | 0.536 | H → L+1 (56%) | |
372 | 3.33 | 0.313 | H → L+1 (32%) H-1 → L (21%) | |
331 | 3.75 | 0.392 | H → L+2 (49%) H → L+3 (27%) | |
326 | 3.80 | 0.411 | H-6 → L (42%) H-7 → L (32%) | |
267 | 4.64 | 0.233 | H → L+9 (92%) | |
BTT | 474 | 2.62 | 1.148 | H → L (80%) |
360 | 3.44 | 0.303 | H-1 → L (77%) | |
316 | 3.92 | 0.311 | H → L+1 (77%) | |
269 | 4.61 | 0.212 | H → L+4 (88%) | |
TPAZ6 | 469 | 2.64 | 1.225 | H → L (74%) |
366 | 3.39 | 0.545 | H-1 → L (68%) | |
338 | 3.67 | 0.261 | H → L+1 (74%) | |
268 | 4.63 | 0.213 | H → L+4 (83%) | |
TPAZ7 | 522 | 2.38 | 1.036 | H → L (84%) |
390 | 3.18 | 0.501 | H-1 → L (76%) | |
337 | 3.68 | 0.230 | H → L+1 (74%) | |
269 | 4.61 | 0.185 | H → L+5 (72%) |
Molecule | Eoxdye (eV) | ∆E(eV) | Eoxdye* (eV) | ∆Ginj (eV) | LHE |
---|---|---|---|---|---|
AT | 5.50 | 2.78 | 2.72 | −1.28 | 0.88 |
TPAZ1 | 5.40 | 2.42 | 2.98 | −1.02 | 0.81 |
TPAZ2 | 5.56 | 2.57 | 2.99 | −1.01 | 0.91 |
BBT | 5.39 | 2.55 | 2.84 | −1.16 | 0.70 |
TPAZ3 | 5.31 | 2.20 | 3.11 | −0.89 | 0.54 |
TPAZ4 | 5.28 | 2.20 | 3.08 | −0.92 | 0.53 |
TPAZ5 | 5.47 | 2.15 | 3.32 | −0.68 | 0.38 |
BTT | 5.39 | 2.62 | 2.77 | −1.23 | 0.93 |
TPAZ6 | 5.47 | 2.64 | 2.83 | −1.17 | 0.94 |
TPAZ7 | 5.31 | 2.38 | 2.93 | −1.07 | 0.908 |
Molecule | η | ω | ω− | ω+ |
---|---|---|---|---|
AT | 5.35 | 1.39 | 5.05 | 1.19 |
TPAZ1 | 4.81 | 1.68 | 5.67 | 1.65 |
TPAZ2 | 4.98 | 1.67 | 5.68 | 1.61 |
BBT | 5.09 | 1.46 | 5.18 | 1.31 |
TPAZ3 | 4.65 | 1.73 | 5.75 | 1.74 |
TPAZ4 | 4.60 | 1.73 | 5.74 | 1.75 |
TPAZ5 | 4.68 | 1.87 | 6.12 | 1.94 |
BTT | 4.89 | 1.55 | 5.35 | 1.46 |
TPAZ6 | 4.82 | 1.65 | 5.59 | 1.60 |
TPAZ7 | 4.46 | 1.80 | 5.87 | 1.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Montiel, T.; Soto-Rojo, R.; Baldenebro-López, J.; Glossman-Mitnik, D. Theoretical Study of the Effect of Different π Bridges Including an Azomethine Group in Triphenylamine-Based Dye for Dye-Sensitized Solar Cells. Molecules 2019, 24, 3897. https://doi.org/10.3390/molecules24213897
Delgado-Montiel T, Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D. Theoretical Study of the Effect of Different π Bridges Including an Azomethine Group in Triphenylamine-Based Dye for Dye-Sensitized Solar Cells. Molecules. 2019; 24(21):3897. https://doi.org/10.3390/molecules24213897
Chicago/Turabian StyleDelgado-Montiel, Tomás, Rody Soto-Rojo, Jesús Baldenebro-López, and Daniel Glossman-Mitnik. 2019. "Theoretical Study of the Effect of Different π Bridges Including an Azomethine Group in Triphenylamine-Based Dye for Dye-Sensitized Solar Cells" Molecules 24, no. 21: 3897. https://doi.org/10.3390/molecules24213897
APA StyleDelgado-Montiel, T., Soto-Rojo, R., Baldenebro-López, J., & Glossman-Mitnik, D. (2019). Theoretical Study of the Effect of Different π Bridges Including an Azomethine Group in Triphenylamine-Based Dye for Dye-Sensitized Solar Cells. Molecules, 24(21), 3897. https://doi.org/10.3390/molecules24213897