Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency
Abstract
:1. Introduction
2. Results and Discussion
2.1. Six Disease Related SNVs and Their Spatial Positions Are Identified
2.2. Identified SNVs May Have an Indirect Effect on Protein Structure and Function
2.3. Identified SNVs Are Located within or around the Highly Conserved Motifs
2.4. Zn Parametrization Helps the Ion to Maintain Its Position over MD Simulations
2.5. Global Level Analyses Hint at the Functional/Structural Effect of Certain Variants
2.5.1. Proteins with Variations Occupy Different Conformational Spaces to the WT
RMSD Analysis
PCA Analysis
Rg Analysis
2.6. Residue Level Analysis Reveals Further Differences between WT and Variant Protein Systems
2.7. Short Range Effects of Each Variation Are Deciphered Using Weighted Contact Map Analysis
2.8. Dynamic Residue Networks Show Changes in Residue Accessibility and Communication within CA-II
2.8.1. Average Shortest Path (L)
2.8.2. Betweenness Centrality (BC)
2.9. Variant Presence Shows Remote Effects on Proton Shuttle Residue
3. Materials and Methods
3.1. Data Retrieval
3.2. Motif Analysis
3.3. Homology Modeling
3.3.1. Wild-Type
3.3.2. Variants
3.3.3. Bicarbonate Bound Structure
3.4. Zn Parametrization
3.5. Molecular Dynamics
3.6. Molecular Dynamics Trajectory Analysis
3.7. Statistical Analysis
3.8. Proton Shuttle Analysis
3.9. Dynamic Residue Network Analysis
3.9.1. Weighted Contact Map Analysis
3.9.2. Average Shortest Path (L)
3.9.3. Average Betweenness Centrality (BC)
3.10. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Betweenness centrality |
BCT | Bicarbonate |
BLAST | Basic local alignment search tool |
CA | Carbonic anhydrase |
DRN | Dynamic residue network |
L | Average shortest path |
LJ | Lennard–Jones |
MCPB | Metal Centre Parameter Builder |
MD | Molecular dynamics |
PCA | Principal component analysis |
QM | Quantum mechanical |
RMSD | Root mean square deviation |
RMSF | Root mean square fluctuation |
Rg | Radius of gyration |
SNV | Single nucleotide variation |
WT | Wild type |
References
- Lindskog, S. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 1997, 74, 1–20. [Google Scholar] [CrossRef]
- Silverman, D.N.; Lindskog, S. The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Accounts Chem. Res. 1988, 21, 30–36. [Google Scholar] [CrossRef]
- Tripp, B.C.; Smith, K.; Ferry, J.G. Carbonic anhydrase: New insights for an ancient enzyme. J. Biol. Chem. 2001, 276, 48615–48618. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, A.; Alterio, V.; Monti, S.M.; De Simone, G.; D’Ambrosio, K. Thermostable carbonic anhydrases in biotechnological applications. Int. J. Mol. Sci. 2015, 16, 15456–15480. [Google Scholar] [CrossRef] [PubMed]
- Somalinga, V.; Buhrman, G.; Arun, A.; Rose, R.B.; Grunden, A.M. A High-Resolution Crystal Structure of a Psychrohalophilic α–Carbonic Anhydrase from Photobacterium profundum Reveals a Unique Dimer Interface. PLoS ONE 2016, 11, e0168022. [Google Scholar] [CrossRef]
- Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 473, 2023–2032. [Google Scholar] [CrossRef]
- Soto, A.R.; Zheng, H.; Shoemaker, D.; Rodriguez, J.; Read, B.A.; Wahlund, T.M. Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Appl. Environ. Microbiol. 2006, 72, 5500–5511. [Google Scholar] [CrossRef]
- Lane, T.W.; Saito, M.A.; George, G.N.; Pickering, I.J.; Prince, R.C.; Morel, F.M. Biochemistry: A cadmium enzyme from a marine diatom. Nature 2005, 435, 42. [Google Scholar] [CrossRef]
- Hewett-Emmett, D.; Tashian, R.E. Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol. Phylogenetics Evol. 1996, 5, 50–77. [Google Scholar] [CrossRef]
- McKenna, R.; Frost, S.C. Overview of the carbonic anhydrase family. In Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Springer: Berlin, Germany, 2014; pp. 3–5. [Google Scholar]
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef] [PubMed]
- Seifter, J.L.; Chang, H.Y. Disorders of acid-base balance: new perspectives. Kidney Dis. 2016, 2, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Orešković, D.; Klarica, M. The formation of cerebrospinal fluid: Nearly a hundred years of interpretations and misinterpretations. Brain Res. Rev. 2010, 64, 241–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, H.C.; Teitelbaum, S.L.; Ghiselli, R.; Gluck, S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989, 245, 855–857. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.M.; Tymoczko, J. Chapter 9, Making a Fast Reaction Faster: Carbonic Anhydrase. In Biochemistry, 5th ed.; WH Freeman and Company: New York, NY, USA, 2002. [Google Scholar]
- Silverman, D.N.; McKenna, R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Accounts Chem. Res. 2007, 40, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Silverman, D.N.; Forsman, C.; Jonsson, B.H.; Lindskog, S. Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 1989, 28, 7913–7918. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.K.; Christianson, D.W. Unexpected pH-dependent conformation of His-64, the proton shuttle of carbonic anhydrase II. J. Am. Chem. Soc. 1991, 113, 9455–9458. [Google Scholar] [CrossRef]
- Boone, C.D.; Gill, S.; Tu, C.; Silverman, D.N.; McKenna, R. Structural, catalytic and stabilizing consequences of aromatic cluster variants in human carbonic anhydrase II. Arch. Biochem. Biophys. 2013, 539, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Shimahara, H.; Yoshida, T.; Shibata, Y.; Shimizu, M.; Kyogoku, Y.; Sakiyama, F.; Nakazawa, T.; Tate, S.I.; Ohki, S.Y.; Kato, T.; et al. Tautomerism of histidine 64 associated with proton transfer in catalysis of carbonic anhydrase. J. Biol. Chem. 2007, 282, 9646–9656. [Google Scholar] [CrossRef]
- Merz, K.M., Jr. Carbon dioxide binding to human carbonic anhydrase II. J. Am. Chem. Soc. 1991, 113, 406–411. [Google Scholar] [CrossRef]
- Liang, J.Y.; Lipscomb, W.N. Binding of substrate CO2 to the active site of human carbonic anhydrase II: A molecular dynamics study. Proc. Natl. Acad. Sci. USA 1990, 87, 3675–3679. [Google Scholar] [CrossRef]
- Domsic, J.F.; Avvaru, B.S.; Kim, C.U.; Gruner, S.M.; Agbandje-McKenna, M.; Silverman, D.N.; McKenna, R. Entrapment of carbon dioxide in the active site of carbonic anhydrase II. J. Biol. Chem. 2008, 283, 30766–30771. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.S.; Nair, S.K.; Christianson, D.W. Engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry 1991, 30, 11064–11072. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.E.; Jones, T.A.; Liljas, A. Refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins Struct. Funct. Bioinform. 1988, 4, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.A.; Fierke, C.A. Selection of carbonic anhydrase variants displayed on phage aromatic residues in zinc binding site enhance metal affinity and equilibration kinetics. J. Biol. Chem. 1997, 272, 20364–20372. [Google Scholar] [CrossRef] [PubMed]
- Fisher, Z.; Hernandez Prada, J.A.; Tu, C.; Duda, D.; Yoshioka, C.; An, H.; Govindasamy, L.; Silverman, D.N.; McKenna, R. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. Biochemistry 2005, 44, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 1971, 246, 2561–2573. [Google Scholar] [PubMed]
- Ho, C.; Sturtevant, J.M. The kinetics of the hydration of carbon dioxide at 25. J. Biol. Chem. 1963, 238, 3499–3501. [Google Scholar]
- Steiner, H.; Jonsson, B.H.; Lindskog, S. The Catalytic Mechanism of Carbonic Anhydrase: Hydrogen-Isotope Effects on the Kinetic Parameters of the Human C Isoenzyme. Eur. J. Biochem. 1975, 59, 253–259. [Google Scholar] [CrossRef]
- Jakubowski, M.; Szahidewicz-Krupska, E.; Doroszko, A. The Human Carbonic Anhydrase II in Platelets: An Underestimated Field of Its Activity. BioMed Res. Int. 2018, 2018, 4548353. [Google Scholar] [CrossRef]
- Almstedt, K.; Lundqvist, M.; Carlsson, J.; Karlsson, M.; Persson, B.; Jonsson, B.H.; Carlsson, U.; Hammarström, P. Unfolding a folding disease: folding, misfolding and aggregation of the marble brain syndrome-associated mutant H107Y of human carbonic anhydrase II. J. Mol. Biol. 2004, 342, 619–633. [Google Scholar] [CrossRef]
- Roth, D.E.; Venta, P.J.; Tashian, R.E.; Sly, W.S. Molecular basis of human carbonic anhydrase II deficiency. Proc. Natl. Acad. Sci. USA 1992, 89, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Shah, G.N.; Bonapace, G.; Hu, P.Y.; Strisciuglio, P.; Sly, W.S. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): Novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum. Mutat. 2004, 24, 272. [Google Scholar] [CrossRef] [PubMed]
- Scozzafava, A.; Supuran, C.T. Glaucoma and the applications of carbonic anhydrase inhibitors. In Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Springer: Berlin, Germany, 2014; pp. 349–359. [Google Scholar]
- Swenson, E.R. Carbonic anhydrase inhibitors and high altitude illnesses. In Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Springer: Berlin, Germany, 2014; pp. 361–386. [Google Scholar]
- Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev. 2003, 23, 146–189. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7, 168. [Google Scholar] [CrossRef] [PubMed]
- Puscas, I.; Coltau, M.; Baican, M.; Pasca, R.; Domuta, G. The inhibitory effect of diuretics on carbonic anhydrases. Res. Commun. Mol. Pathol. Pharmacol. 1999, 105, 213–236. [Google Scholar] [PubMed]
- Shinohara, C.; Yamashita, K.; Matsuo, T.; Kitamura, S.; Kawano, F. Effects of carbonic anhydrase inhibitor acetazolamide (AZ) on osteoclasts and bone structure. J. Hard Tissue Biol. 2007, 16, 115–123. [Google Scholar] [CrossRef]
- Brown, D.K.; Amamuddy, O.S.; Tastan Bishop, Ö. Structure-based analysis of single nucleotide variants in the renin-angiotensinogen complex. Glob. Heart 2017, 12, 121–132. [Google Scholar] [CrossRef]
- Brown, D.K.; Penkler, D.L.; Sheik Amamuddy, O.; Ross, C.; Atilgan, A.R.; Atilgan, C.; Tastan Bishop, Ö. MD-TASK: A software suite for analyzing molecular dynamics trajectories. Bioinformatics 2017, 33, 2768–2771. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2017, 46, D754–D761. [Google Scholar] [CrossRef]
- Brown, D.K.; Tastan Bishop, Ö. HUMA: A platform for the analysis of genetic variation in humans. Hum. Mutat. 2018, 39, 40–51. [Google Scholar] [CrossRef]
- Capriotti, E.; Calabrese, R.; Casadio, R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006, 22, 2729–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [PubMed]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.; Edwards, K.J.; Day, I.N.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2. 0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct. Funct. Bioinform. 2006, 62, 1125–1132. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. BioRxiv 2019, 531210. [Google Scholar] [CrossRef]
- Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 2002, 320, 597–608. [Google Scholar] [CrossRef]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins Struct. Funct. Bioinform. 2004, 55, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.; Knox, C.; Tastan Bishop, Ö. Interacting motif networks located in hotspots associated with RNA release are conserved in Enterovirus capsids. FEBS Lett. 2017, 591, 1687–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, N.E.; Van Roey, K.; Weatheritt, R.J.; Toedt, G.; Uyar, B.; Altenberg, B.; Budd, A.; Diella, F.; Dinkel, H.; Gibson, T.J. Attributes of short linear motifs. Mol. Biosyst. 2012, 8, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Case, D.; Cerutti, D.; Cheatham, T.; Darden, T.; Duke, R.; Giese, T.; Gohlke, H.; Goetz, A.; Greene, D.; Homeyer, N.; et al. Amber 2017; University of California: San Francisco, USA, 2017; pp. 1–950. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revision E.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Harding, M.M. Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006, 62, 678–682. [Google Scholar] [CrossRef]
- Bernadat, G.; Supuran, C.T.; Iorga, B.I. Carbonic anhydrase binding site parameterization in OPLS-AA force field. Bioorgan. Med. Chem. 2013, 21, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Merz, K.M. MCPB.py: A python based metal center parameter builder. J. Chem. Inf. Model. 2016, 56, 599–604. [Google Scholar] [CrossRef]
- Peters, M.B.; Yang, Y.; Wang, B.; Füsti-Molnár, L.; Weaver, M.N.; Merz, K.M., Jr. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J. Chem. Theory Comput. 2010, 6, 2935–2947. [Google Scholar] [CrossRef]
- Penkler, D.L.; Bishop, Ö.T. Modulation of human Hsp90α conformational dynamics by allosteric ligand interaction at the c-terminal domain. Sci. Rep. 2019, 9, 1600. [Google Scholar] [CrossRef]
- Penkler, D.; Atilgan, C.; Tastan Bishop, Ö. Allosteric Modulation of Human Hsp90α Conformational Dynamics. J. Chem. Inf. Model. 2018, 58, 383–404. [Google Scholar] [CrossRef]
- Elder, I.; Tu, C.; Ming, L.J.; McKenna, R.; Silverman, D.N. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II. Arch. Biochem. Biophys. 2005, 437, 106–114. [Google Scholar] [CrossRef]
- Bhatt, D.; Tu, C.; Fisher, S.Z.; Hernandez Prada, J.A.; McKenna, R.; Silverman, D.N. Proton transfer in a Thr200His mutant of human carbonic anhydrase II. Proteins Struct. Funct. Bioinform. 2005, 61, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.; Fisher, S.Z.; Tu, C.; McKenna, R.; Silverman, D.N. Location of binding sites in small molecule rescue of human carbonic anhydrase II. Biophys. J. 2007, 92, 562–570. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Tu, C.; Duda, D.; Montanez-Clemente, I.; Math, K.; Laipis, P.J.; McKenna, R.; Silverman, D.N. Chemical rescue in catalysis by human carbonic anhydrases II and III. Biochemistry 2002, 41, 3235–3242. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Verkhivker, G.M.; Hu, G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications. Briefings Bioinform. 2019. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.N.; Thacker, S.; Seyfi, M.; Cheng, F.; Eng, C. Conformational Dynamics and Allosteric Regulation Landscapes of Germline PTEN Mutations Associated with Autism Compared to Those Associated with Cancer. Am. J. Hum. Genet. 2019, 104, 861–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Di Paola, L.; Liang, Z.; Giuliani, A. Comparative study of elastic network model and protein contact network for protein complexes: The hemoglobin case. BioMed Res. Int. 2017, 2017, 2483264. [Google Scholar] [CrossRef]
- Tu, C.; Couton, J.; Van Heeke, G.; Richards, N.; Silverman, D. Kinetic analysis of a mutant (His107–> Tyr) responsible for human carbonic anhydrase II deficiency syndrome. J. Biol. Chem. 1993, 268, 4775–4779. [Google Scholar]
- Almstedt, K.; Mårtensson, L.G.; Carlsson, U.; Hammarström, P. Thermodynamic interrogation of a folding disease. Mutant mapping of position 107 in human carbonic anhydrase II linked to marble brain disease. Biochemistry 2008, 47, 1288–1298. [Google Scholar] [CrossRef]
- Venta, P.; Welty, R.; Johnson, T.; Sly, W.; Tashian, R. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His—-Tyr): Complete structure of the normal human CA II gene. Am. J. Hum. Genet. 1991, 49, 1082. [Google Scholar]
- Hurst, T.K.; Wang, D.; Thompson, R.B.; Fierke, C.A. Carbonic anhydrase II-based metal ion sensing: Advances and new perspectives. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2010, 1804, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Amitai, G.; Shemesh, A.; Sitbon, E.; Shklar, M.; Netanely, D.; Venger, I.; Pietrokovski, S. Network analysis of protein structures identifies functional residues. J. Mol. Biol. 2004, 344, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.Z.; Tu, C.; Bhatt, D.; Govindasamy, L.; Agbandje-McKenna, M.; McKenna, R.; Silverman, D.N. Speeding up proton transfer in a fast enzyme: Kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II. Biochemistry 2007, 46, 3803–3813. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Avvaru, B.S.; Tu, C.; McKenna, R.; Silverman, D.N. Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II. Biochemistry 2008, 47, 12028–12036. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, M.; Di Fiore, A.; Langella, E.; D’Ambrosio, K.; Supuran, C.; Monti, S.; De Simone, G. The crystal structure of a hCA VII variant provides insights into the molecular determinants responsible for its catalytic behavior. Int. J. Mol. Sci. 2018, 19, 1571. [Google Scholar] [CrossRef]
- Mikulski, R.L.; Silverman, D.N. Proton transfer in catalysis and the role of proton shuttles in carbonic anhydrase. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2010, 1804, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Jackman, J.E.; Merz, K.M.; Fierke, C.A. Disruption of the active site solvent network in carbonic anhydrase II decreases the efficiency of proton transfer. Biochemistry 1996, 35, 16421–16428. [Google Scholar] [CrossRef]
- Maupin, C.M.; McKenna, R.; Silverman, D.N.; Voth, G.A. Elucidation of the proton transport mechanism in human carbonic anhydrase II. J. Am. Chem. Soc. 2009, 131, 7598–7608. [Google Scholar] [CrossRef]
- Cui, Q.; Karplus, M. Is a “proton wire” concerted or stepwise? A model study of proton transfer in carbonic anhydrase. J. Phys. Chem. B 2003, 107, 1071–1078. [Google Scholar] [CrossRef]
- Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919. [Google Scholar] [CrossRef]
- Nyamai, D.W.; Tastan Bishop, Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar. J. 2019, 18, 34. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90. [Google Scholar] [CrossRef]
- Inkscape. Inkscape: A Vector Drawing Tool. 2004. Available online: http://www.inkscape.org (accessed on 2 June 2019).
- Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z.; et al. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016, 45, D271–D281. [Google Scholar] [PubMed]
- Behnke, C.A.; Le Trong, I.; Godden, J.W.; Merritt, E.A.; Teller, D.C.; Bajorath, J.; Stenkamp, R.E. Atomic resolution studies of carbonic anhydrase II. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 616–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, L.E.; Henriksson, D.; Nyman, P.O. Primary structure of human carbonic anhydrase C. J. Biol. Chem. 1976, 251, 5457–5463. [Google Scholar]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Higgins, D.G. Clustal Omega, accurate alignment of very large numbers of sequences. In Multiple Sequence Alignment Methods; Springer: Berlin, Germany, 2014; pp. 105–116. [Google Scholar]
- Brown, D.K.; Tastan Bishop, Ö. Role of structural bioinformatics in drug discovery by computational SNP analysis: Analyzing variation at the protein level. Glob. Heart 2017, 12, 151–161. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2017, 46, D1062–D1067. [Google Scholar] [CrossRef]
- OMIM. Online Mendelian Inheritance in Man. 2018. Available online: https://www.omim.org/entry/611492 (accessed on 23 August 2018).
- Schrodinger, L. The PyMOL Molecular Graphics System, Version 1.8; Schrodinger LLC: New York, NY, USA, 2015. [Google Scholar]
- Gordon, J.; B Myers, J.; Folta, T.; Shoja, V.; S Heath, L.; Onufriev, A. H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005, 33, W368–W371. [Google Scholar] [CrossRef]
- Demir, Y.; Demir, N.; Nadaroglu, H.; Bakan, E. Purification and Characterization of Carbonic Anhydrase from Bovine Erythrocyte Plasma Membrane. Prep. Biochem. Biotechnol. 2000, 30, 49–59. [Google Scholar] [CrossRef]
- Demir, N.; Demir, Y.; Coşkun, F. Purification and characterization of carbonic anhydrase from human erythrocyte plasma membrane. Turk. J. Med Sci. 2001, 31, 477–482. [Google Scholar]
- Schrödinger. Schrödinger Release 2018-3: Maestro; Schrödinger LLC: New York, NY, USA, 2018. [Google Scholar]
- Olsson, M.H.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical pka predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Schafmeister, C.; Ross, W.; Romanovski, V. LEaP; University of California: San Francisco, CA, USA, 1995. [Google Scholar]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99sb. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softwarex 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Da Silva, A.W.S.; Vranken, W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. (CSUR) 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Shao, J.; Tanner, S.W.; Thompson, N.; Cheatham, T.E. Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J. Chem. Theory Comput. 2007, 3, 2312–2334. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Yu, Q.; Liu, X.; Zhou, X.; Song, A. Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 2015, 42, 2785–2797. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Parekh, N. NAPS: Network analysis of protein structures. Nucleic Acids Res. 2016, 44, W375–W382. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, A.; Swart, P.; Chult, D.S. Exploring Network Structure, Dynamics, and Function Using NetworkX; Technical report; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2008. [Google Scholar]
- Roe, D.R.; Bergonzo, C.; Cheatham, T.E., III. Evaluation of enhanced sampling provided by accelerated molecular dynamics with Hamiltonian replica exchange methods. J. Phys. Chem. B 2014, 118, 3543–3552. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
rs ID | Variation | z-DOPE Score | MAF | VAPOR Analysis | |||
---|---|---|---|---|---|---|---|
I-Mutant | MUpro | ||||||
G | Stability | G | Stability | ||||
rs118203931 | K18E | −2.204 | <0.01 | −1.30 | Decrease | −0.499 | Decrease |
K18Q | −2.203 | <0.01 | −1.24 | Decrease | −0.655 | Decrease | |
rs118203933 | H107Y | −2.204 | <0.01 | 0.26 | Increase | −0.867 | Decrease |
rs118203932 | P236H | −2.159 | <0.01 | −1.46 | Decrease | −0.586 | Decrease |
P236R | −2.186 | <0.01 | −0.60 | Decrease | −0.311 | Decrease | |
rs2228063 | N252D | −2.197 | 0.007 | 0.06 | Increase | −0.474 | Decrease |
Motif | Residue Range | Residues | E-Value | Residue Count | Contribution to Functions |
---|---|---|---|---|---|
1 | 190–209 | YWTYPGSLTTPPLLECVTWI | 2.2 × 10 | 20 | Catalytic mechanism and Primary CO binding pocket formation |
2 | 104–123 | GSEHTVDKKKYAAELHLVHW | 4.4 × 10 | 20 | Active site and/or Zn stability |
3 | 240–259 | MVDNWRPAQPLKNRQIKASF | 1.2 × 10 | 20 | Tertiary CO binding pocket formation and enzyme stability |
4 | 79–98 | LKGGPLDGTYRLIQFHFHWG | 3.0 × 10 | 20 | Enzyme stability and/or Zn coordination |
5 | 25–44 | GERQSPVDIDTHTAKYDPSL | 6.5 × 10 | 20 | Enzyme stability |
6 | 127–146 | YGDFGKAVQQPDGLAVLGIF | 3.8 × 10 | 20 | Primary CO binding pocket formation |
7 | 166–185 | IKTKGKSADFTNFDPRGLLP | 6.0 × 10 | 20 | Participated in secondary aromatic cluster |
8 | 210–229 | VLKEPISVSSEQVLKFRKLN | 6.4 × 10 | 20 | Enzyme stability and secondary CO binding pocket formation |
9 | 53–72 | QATSLRILNNGHAFNVEFDD | 1.9 × 10 | 20 | Enzyme stability and/or catalytic mechanism |
10 | 5–20 | WGYGKHNGPEHWHKDF | 7.7 × 10 | 16 | Enzyme stability |
11 | 148–163 | KVGSAKPGLQKVVDVL | 2.3 × 10 | 16 | Enzyme stability |
Variant | Imidazole-Zn Distance (Å) | ||||||||
---|---|---|---|---|---|---|---|---|---|
apo | BCT | CO | |||||||
In | Out | Faux in | In | Out | Faux in | In | Out | Faux in | |
K18E | 8.65 | * | 7.30 | 8.08 | 11.09 | * | 6.96 | 11.20 | * |
K18Q | 8.11 | 11.01 | * | 8.22 | * | * | 8.96 | 10.42 | * |
H107Y | 8.50 | 10.63 | * | 8.24 | 10.86 | * | 7.98 | 10.67 | * |
P236H | 8.57 | 11.26 | * | 8.70 | 12.02 | * | 7.12 | 11.71 | * |
P236R | 8.26 | 11.02 | 7.36 | 7.99 | 10.84 | * | 7.50 | 10.43 | * |
N252D | 8.11 | 11.33 | * | 8.65 | 10.93 | * | 8.63 | 11.20 | * |
WT | 8.24 | 11.21 | * | 8.57 | 11.07 | * | 8.45 | 11.31 | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanyanga, T.A.; Nizami, B.; Tastan Bishop, Ö. Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency. Molecules 2019, 24, 3987. https://doi.org/10.3390/molecules24213987
Sanyanga TA, Nizami B, Tastan Bishop Ö. Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency. Molecules. 2019; 24(21):3987. https://doi.org/10.3390/molecules24213987
Chicago/Turabian StyleSanyanga, Taremekedzwa Allan, Bilal Nizami, and Özlem Tastan Bishop. 2019. "Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency" Molecules 24, no. 21: 3987. https://doi.org/10.3390/molecules24213987
APA StyleSanyanga, T. A., Nizami, B., & Tastan Bishop, Ö. (2019). Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency. Molecules, 24(21), 3987. https://doi.org/10.3390/molecules24213987