Extended Perfusion Parameter Estimation from Hyperspectral Imaging Data for Bedside Diagnostic in Medicine
Abstract
:1. Introduction
2. Results
2.1. D-Physiological Perfusion Imaging
2.1.1. Example: Occlusion Test
2.1.2. Example: Flap Transplant for Wound Coverage
2.1.3. Burn Wounds
2.2. Comparison with Perfusion Parameters Based on a One-Layer Model
2.3. Wound Healing Disorders
3. Discussion
- -
- The tissue model should describe the physiological structure in a manner which is sufficiently detailed to enable information retrieval, especially concerning the perfusion situation with high clinical value (adequacy);
- -
- The modeling should be able to reproduce real measured remission spectra from skin and wounds over the complete spectrum in detail; the variety of spectra is described in the confidence range, and should sufficiently cover a variety of clinical problems (consistency);
- -
- The solution of the inverse problem should be practicable for imaging measurements with the described measuring geometry in clinical routine environment; the processing should be fast for imaging measurements (practicability).
4. Methods and Materials
4.1. Hyperspectral Measuring System
4.2. Hyperspectral Imaging Data Analysis and Processing
- -
- Regular tests of the camera calibration and comparison of spectra from reference objects with corresponding reference spectra.
- -
- Quality tests of the spectra concerning wavelength-dependent noise to ensure that relevant spectral details for parameter estimation are presented in sufficient quality;
- -
- Tests concerning disturbing influences on the spectra, such as reflection, external light, and strong inclination of parts of the measuring area.
4.2.1. Model-Based Analysis
- -
- Layer 1 (stratum corneum, epidermis): melanin, vHb, and xHbO2; vHb denotes the relative volume fraction of total hemoglobin, xHbO2 the oxygen saturation of hemoglobin; layer 1 contains also blood and xHbO2, because this layer cannot be sufficiently separated from the next;
- -
- Layer 2 (upper dermis: papillary or capillary system): vHb, xHbO2, and collagen structure;
- -
- Layer 3 (reticular dermis): vHb, xHbO2, and collagen structure;
- -
- Layer 4 (deep dermis, subcutis): vHb, xHbO2, vH2O, vFat, collagen structure, and connective tissue; vH2O and vFat denote the volume fractions for water and fat;
- -
- Layer 5 (subcutis): vHb, xHbO2, vH2O, vFat, and connective tissue.
4.2.2. Transformation of the HSI-Remission Spectra
- The volume captured by Λ2 is defined as layer 1. From the remission R1(Λ2), the parameters ) are determined.
- In Λ1, layer 2 is also captured; the combined remission R12(Λ1) can be presented in the form , with as the visibility function. R1(Λ1) results from , with .
- 3.
- In the further segments, i.e., Λ3 etc., the further layers (3, etc.) are successively captured. The processing is analogue to 2. ().
4.2.3. Reconstruction of the Spectrum
- With Λ2 and the parameters of layer 1, R1(Λ2) is calculated.
- With Λ1, the parameters of layer 2, D2(Λ1), R2(Λ1), and A1(Λ1), R12(Λ1) is calculated.
- 3.
- With Λ3 and the parameters of layer 3, R3(Λ3) is calculated from D2(Λ3) and D3(Λ3), as well as R12(Λ3) and A12(Λ3). With HES12, R123(Λ3) is calculated.
4.2.4. Parameters and Confidence Range of Modeling
5. Conclusions
6. Further Validations and Developments
Author Contributions
Funding
Conflicts of Interest
References
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.W.; Ghassemi, P.; Ramella-Roman, J.C.; Prindeze, N.J.; Moffatt, L.T.; Alkhalil, A.; Shupp, J.W. Noninvasive imaging technologies for cutaneous wound assessment: A review. Wound Repair Regen. 2015, 23, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Best, S.L.; Thapa, A.; Jackson, N.; Olweny, E.; Holzer, M.; Park, S.; Wehner, E.; Zuzak, K.; Cadeddu, J.A. Renal oxygenation measurement during partial nephrectomy using hyperspectral imaging may predict acute postoperative renal function. J. Endourol. 2013, 27, 1037–1040. [Google Scholar] [CrossRef] [PubMed]
- Kiyotoki, S.; Nishikawa, J.; Okamoto, T.; Hamabe, K.; Saito, M.; Goto, A.; Fujita, Y.; Hamamoto, Y.; Takeuchi, Y.; Satori, S.; et al. New method for detection of gastric cancer by hyperspectral imaging: A pilot study. J. Biomed. Opt. 2013, 18, 26010. [Google Scholar] [CrossRef] [PubMed]
- Gerstner, A.O.H.; Martin, R.; Westermann, S.; Mahlein, A.K.; Schmidt, K.; Thies, B.; Laffers, W. Hyperspectral imaging in head and nek oncology. Laryngo Rhino Otol. 2014, 92, 453–457. [Google Scholar]
- Chen, Y.; Shen, Z.; Shao, Z.; Yu, P.; Wu, J. Free Flap Monitoring Using Near-Infrared Spectroscopy: A Systemic Review. Ann. Plast. Surg. 2016, 76, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Calin, A.A.; Parasca, S.V.; Savastru, R.; Manea, D. Characterization of burns using hyperspectral imaging technique—A preliminary study. Burns 2015, 41, 118–124. [Google Scholar] [CrossRef]
- Denstedt, M.; Pukstad, B.S.; Paluchowski, L.A.; Hernandez-Palacios, J.E.; Randeberg, L.L. Hyperspectral imaging as a diagnostic tool for chronic skin ulcers. In Proceedings of the Photonic Therapeutics and Diagnostics IX: SPIE BiOS, San Francisco, CA, USA, 8 March 2013. [Google Scholar]
- Barberio, M.; Maktabi, M.; Gockel, I.; Rayes, N.; Jansen-Winkeln, B.; Köhler, H.; Rabe, S.M.; Seidemann, L.; Takoh, J.P.; Diana, M.; et al. Hyperspectral based discrimination of thyroid and parathyroid during surgery. Curr. Dir. Biomed. Eng. 2018, 4, 399–402. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Holfert, N.; Köhler, H.; Moulla, Y.; Takoh, J.P.; Rabe, S.M.; Mehdorn, M.; Barberio, M.; Chalopin, C.; Neumuth, T.; et al. Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI). Int. J. Colorectal Dis. 2019, 34, 731–739. [Google Scholar] [CrossRef]
- Köhler, H.; Jansen-Winkeln, B.; Maktabi, M.; Barberio, M.; Takoh, J.; Holfert, N.; Moulla, Y.; Niebisch, S.; Diana, M.; Neumuth, T.; et al. Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surg. Endosc. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Sowa, M.G.; Kuo, W.C.; Ko, A.C.; Armstrong, D.G. Review of near infrared methods for wound assessment. J. Biomed. Opt. 2016, 21, 091304. [Google Scholar] [CrossRef] [PubMed]
- Wild, T.; Becker, M.; Winter, J.; Schuschenk, N.; Daeschlein, G.; Siemers, F. Hyperspectral imaging of tissue perfusion and oxygenation in wounds: Assessing the impact of a micro capillary dressing. J. Wound Care 2018, 27, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Kulcke, A.; Holmer, A.; Wahl, P.; Siemers, F.; Wild, T.; Daeschlein, G. Compact hyperspectral camera for measurement of perfusion parameters in medicine. Biomed. Eng. Biomed. Tech. 2018, 63, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Holmer, A.; Marotz, J.; Wahl, P.; Dau, M.; Kämmerer, P.W. Hyperspectral imaging in perfusion and wound diagnostics—Methods and algorithms for the determination of tissue parameters. Biomed. Tech. 2018, 63, 547–556. [Google Scholar] [CrossRef]
- Holmer, A.; Tetschke, F.; Marotz, J.; Malberg, H.; Markgraf, W.; Thiele, C.; Kulcke, A. Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol. Meas. 2016, 37, 2064–2078. [Google Scholar] [CrossRef]
- Daeschlein, G.; Langner, I.; Wild, T.; von Podewils, S.; Sicher, C.; Kiefer, T.; Juenger, M. Hyperspectral imaging as a novel diagnostic tool in microcirculation of wounds. Clin. Hemorheol. Microcirc. 2017, 67, 467–474. [Google Scholar] [CrossRef]
- Kienle, A.; Patterson, M.S.; Dögnitz, N.; Bays, R.; Wagnieres, G.; van den Bergh, H. Noninvasive determination of the optical properties of two-layered turbid media. Appl. Opt. 1998, 37, 779–791. [Google Scholar] [CrossRef]
- Liemert, A.; Kienle, A. Light diffusion in N-layered turbid media: Steady-state Domain. J. Biomed. Opt. 2010, 15, 025003. [Google Scholar] [CrossRef]
- Naglic, P.; Vidovic, L.; Milanic, M.; Randeberg, L.L.; Majaron, B. Suitability of diffusion approximation for inverse analysis of diffuse reflectance spectra from human skin in vivo. OSA Contin. 2019, 2, 905–922. [Google Scholar] [CrossRef]
- Bjorgan, A.M.; Milanic, M.; Randeberg, L. Estimation of skin optical parameters for real-time hyperspectral imaging applications. J. Biomed. Opt. 2014, 19, 066003. [Google Scholar] [CrossRef]
- Zherebtsov, E.; Dremin, V.; Popova, A.; Doronin, A.; Kurakina, D.; Kirillin, M.; Meglinski, I.; Bykov, A. Hyperspectral imaging of human skin aided by artificial neural networks. Biomed. Opt. Express 2019, 10, 3545–3558. [Google Scholar] [CrossRef] [PubMed]
- Mekkes, J.R.; Westerhof, W. Image processing in the study of wound healing. Clin. Dermatol. 1995, 13, 401–407. [Google Scholar] [CrossRef]
- Stremitzer, S.; Wild, T.; Hoelzenbein, T. How precise is the evaluation of chronic wounds by health care professionals? Int. Wound J. 2007, 4, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Wild, T.; Prinz, M.; Fortner, N.; Krois, W.; Sahora, K.; Stremitzer, S.; Hoelzenbein, T. Digital measurement and analysis of wounds based on colour segmentation. Eur. Surg. 2008, 40, 325–329. [Google Scholar] [CrossRef]
- Jelinek, H.F.; Prinz, M.; Wild, T. A digital assessment and documentation tool evaluated for daily podiatric wound practice. Wounds 2013, 25, 1–6. [Google Scholar]
- Marotz, J.; Siafliakis, A.; Holmer, A.; Kulcke, A.; Siemers, F. First results of a new hyperspectral camera system for chemical based wound analysis. Wound Med. 2015, 10, 17–22. [Google Scholar] [CrossRef]
- Herrmann, B.H.; Hornberger, C. Monte-Carlo Simulation of Light Tissue Interaction in Medical Hyperspectral Imaging Applications. Curr. Dir. Biomed. Eng. 2018, 4, 275–278. [Google Scholar] [CrossRef]
- Stratonnikov, A.A.; Loschenov, V.B. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 2001, 6, 457–467. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marotz, J.; Kulcke, A.; Siemers, F.; Cruz, D.; Aljowder, A.; Promny, D.; Daeschlein, G.; Wild, T. Extended Perfusion Parameter Estimation from Hyperspectral Imaging Data for Bedside Diagnostic in Medicine. Molecules 2019, 24, 4164. https://doi.org/10.3390/molecules24224164
Marotz J, Kulcke A, Siemers F, Cruz D, Aljowder A, Promny D, Daeschlein G, Wild T. Extended Perfusion Parameter Estimation from Hyperspectral Imaging Data for Bedside Diagnostic in Medicine. Molecules. 2019; 24(22):4164. https://doi.org/10.3390/molecules24224164
Chicago/Turabian StyleMarotz, Jörg, Axel Kulcke, Frank Siemers, Diogo Cruz, Ahmed Aljowder, Dominik Promny, Georg Daeschlein, and Thomas Wild. 2019. "Extended Perfusion Parameter Estimation from Hyperspectral Imaging Data for Bedside Diagnostic in Medicine" Molecules 24, no. 22: 4164. https://doi.org/10.3390/molecules24224164
APA StyleMarotz, J., Kulcke, A., Siemers, F., Cruz, D., Aljowder, A., Promny, D., Daeschlein, G., & Wild, T. (2019). Extended Perfusion Parameter Estimation from Hyperspectral Imaging Data for Bedside Diagnostic in Medicine. Molecules, 24(22), 4164. https://doi.org/10.3390/molecules24224164