CNL–Clitocybe nebularis Lectin—The Fungal GalNAcβ1-4GlcNAc-Binding Lectin
Abstract
:1. Introduction
2. CNL Structure
3. CNL Function
3.1. CNL Function in Fruiting Body Defense
3.2. The CNL Target Glycan
4. Mechanisms of CNL Functions
4.1. Mechanism of Carbohydrate Binding
4.2. Mechanisms of Entomotoxicity, Nematotoxicity, and Leukemic T-Cell Toxicity
4.3. Mechanism of Dendritic Cell Activation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pohleven, J.; Brzin, J.; Vrabec, L.; Leonardi, A.; Čokl, A.; Štrukelj, B.; Kos, J.; Sabotič, J. Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. Appl. Microbiol. Biotechnol. 2011, 91, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Pohleven, J.; Kos, J.; Sabotič, J. Medicinal properties of the genus Clitocybe and of lectins from clouded funnel cap, Clitocybe nebularis (Batsch) P. Kumm. (Tricholomataceae): A review. Int. J. Med. Mushrooms 2016, 18, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Pohleven, J.; Obermajer, N.; Sabotič, J.; Anžlovar, S.; Sepčić, K.; Kos, J.; Kralj, B.; Štrukelj, B.; Brzin, J. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim. Et Biophys. Acta (Bba)—Gen. Subj. 2009, 1790, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Pohleven, J.; Renko, M.; Magister, S.; Smith, D.F.; Kunzler, M.; Strukelj, B.; Turk, D.; Kos, J.; Sabotic, J. Bivalent carbohydrate binding is required for biological activity of Clitocybe nebularis lectin (CNL), the N,N′-diacetyllactosediamine (GalNAcbeta1-4GlcNAc, LacdiNAc)-specific lectin from basidiomycete C. nebularis. J. Biol. Chem. 2012, 287, 10602–10612. [Google Scholar] [CrossRef] [PubMed]
- Bleuler-Martínez, S.; Butschi, A.; Garbani, M.; Wälti, M.A.; Wohlschlager, T.; Potthoff, E.; Sabotič, J.; Pohleven, J.; Lüthy, P.; Hengartner, M.O.; et al. A lectin-mediated resistance of higher fungi against predators and parasites. Mol. Ecol. 2011, 20, 3056–3070. [Google Scholar] [CrossRef]
- Sabotič, J.; Ohm, R.A.; Künzler, M. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl. Microbiol. Biotechnol. 2016, 100, 91–111. [Google Scholar] [CrossRef]
- Murzin, A.G.; Lesk, A.M.; Chothia, C. beta-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1 beta and 1 alpha and fibroblast growth factors. J. Mol. Biol. 1992, 223, 531–543. [Google Scholar] [CrossRef]
- Renko, M.; Sabotič, J.; Turk, D. β-Trefoil inhibitors—From the work of Kunitz onward. Biol. Chem. 2012, 393, 1043. [Google Scholar] [CrossRef]
- Žurga, S.; Pohleven, J.; Renko, M.; Bleuler-Martínez, S.; Sosnowski, P.; Turk, D.; Künzler, M.; Kos, J.; Sabotič, J. A novel beta-trefoil lectin from the parasol mushroom (Macrolepiota procera) is nematotoxic. Febs J. 2014, 281, 3489–3506. [Google Scholar] [CrossRef]
- Schubert, M.; Bleuler-Martinez, S.; Butschi, A.; Wälti, M.A.; Egloff, P.; Stutz, K.; Yan, S.; Wilson, I.B.H.; Hengartner, M.O.; Aebi, M.; et al. Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System. PLoS Pathog. 2012, 8, e1002706. [Google Scholar] [CrossRef]
- Hamshou, M.; Van Damme, E.J.; Caccia, S.; Cappelle, K.; Vandenborre, G.; Ghesquiere, B.; Gevaert, K.; Smagghe, G. High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. J. Insect Physiol. 2013, 59, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Sulzenbacher, G.; Roig-Zamboni, V.; Peumans, W.J.; Rougé, P.; Van Damme, E.J.M.; Bourne, Y. Crystal Structure of the GalNAc/Gal-Specific Agglutinin from the Phytopathogenic Ascomycete Sclerotinia sclerotiorum Reveals Novel Adaptation of a β-Trefoil Domain. J. Mol. Biol. 2010, 400, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Bovi, M.; Cenci, L.; Perduca, M.; Capaldi, S.; Carrizo, M.E.; Civiero, L.; Chiarelli, L.R.; Galliano, M.; Monaco, H.L. BEL β-trefoil: A novel lectin with antineoplastic properties in king bolete (Boletus edulis) mushrooms. Glycobiology 2013, 23, 578–592. [Google Scholar] [CrossRef]
- Bleuler-Martinez, S.; Stutz, K.; Sieber, R.; Collot, M.; Mallet, J.M.; Hengartner, M.; Schubert, M.; Varrot, A.; Kunzler, M. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology 2017, 27, 486–500. [Google Scholar] [CrossRef] [PubMed]
- Skamnaki, V.T.; Peumans, W.J.; Kantsadi, A.L.; Cubeta, M.A.; Plas, K.; Pakala, S.; Zographos, S.E.; Smagghe, G.; Nierman, W.C.; Van Damme, E.J.; et al. Structural analysis of the Rhizoctonia solani agglutinin reveals a domain-swapping dimeric assembly. Febs J. 2013, 280, 1750–1763. [Google Scholar] [CrossRef]
- Avanzo, P.; Sabotič, J.; Anžlovar, S.; Popovič, T.; Leonardi, A.; Pain, R.H.; Kos, J.; Brzin, J. Trypsin-specific inhibitors from the basidiomycete Clitocybe nebularis with regulatory and defensive functions. Microbiology 2009, 155, 3971–3981. [Google Scholar] [CrossRef]
- Žurga, S.; Pohleven, J.; Kos, J.; Sabotič, J. beta-Trefoil structure enables interactions between lectins and protease inhibitors that regulate their biological functions. J. Biochem. 2015, 158, 83–90. [Google Scholar] [CrossRef]
- Avanzo Caglič, P.; Renko, M.; Turk, D.; Kos, J.; Sabotič, J. Fungal beta-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the beta-trefoil fold. Biochim. Et Biophys. Acta 2014, 1844, 1749–1756. [Google Scholar] [CrossRef]
- Sabotič, J.; Bleuler-Martínez, S.; Renko, M.; Avanzo Caglič, P.; Kallert, S.; Štrukelj, B.; Turk, D.; Aebi, M.; Kos, J.; Künzler, M. Structural Basis of Trypsin Inhibition and Entomotoxicity of Cospin, Serine Protease Inhibitor Involved in Defense of Coprinopsis cinerea Fruiting Bodies. J. Biol. Chem. 2012, 287, 3898–3907. [Google Scholar] [CrossRef]
- Sasaki, N.; Yoshida, H.; Fuwa, T.J.; Kinoshita-Toyoda, A.; Toyoda, H.; Hirabayashi, Y.; Ishida, H.; Ueda, R.; Nishihara, S. Drosophila beta 1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids. Biochem. Biophys. Res. Commun. 2007, 354, 522–527. [Google Scholar] [CrossRef]
- Van den Eijnden, D.H.; Neeleman, A.P.; Van der Knaap, W.P.; Bakker, H.; Agterberg, M.; Van Die, I. Novel glycosylation routes for glycoproteins: The lacdiNAc pathway. Biochem. Soc. Trans. 1995, 23, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Matsuda, A.; Shirai, T.; Furukawa, K. Expression of LacdiNAc groups on N-glycans among human tumors is complex. Biomed. Res. Int. 2014, 2014, 981627. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Takada, Y.; Furukawa, K. LacdiNAcylation of N-glycans in MDA-MB-231 human breast cancer cells results in changes in morphological appearance and adhesive properties of the cells. Histochem. Cell Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Tateno, H.; Kaji, H.; Chiba, Y.; Kubota, T.; Hirabayashi, J.; Narimatsu, H. Engineering of recombinant Wisteria floribunda agglutinin specifically binding to GalNAcbeta1,4GlcNAc (LacdiNAc). Glycobiology 2017. [Google Scholar] [CrossRef]
- Haji-Ghassemi, O.; Gilbert, M.; Spence, J.; Schur, M.J.; Parker, M.J.; Jenkins, M.L.; Burke, J.E.; van Faassen, H.; Young, N.M.; Evans, S.V. Molecular Basis for Recognition of the Cancer Glycobiomarker, LacdiNAc (GalNAc[beta1-4]GlcNAc), by Wisteria floribunda Agglutinin. J. Biol. Chem. 2016, 291, 24085–24095. [Google Scholar] [CrossRef]
- Renko, M.; Sabotič, J.; Mihelič, M.; Brzin, J.; Kos, J.; Turk, D. Versatile loops in mycocypins inhibit three protease families. J. Biol. Chem. 2010, 285, 308–316. [Google Scholar] [CrossRef]
- Sabotič, J.; Gaser, D.; Rogelj, B.; Gruden, K.; Štrukelj, B.; Brzin, J. Heterogeneity in the cysteine protease inhibitor clitocypin gene family. Biol. Chem. 2006, 387, 1559–1566. [Google Scholar] [CrossRef]
- Sabotič, J.; Popovič, T.; Puizdar, V.; Brzin, J. Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. Febs J. 2009, 276, 4334–4345. [Google Scholar] [CrossRef]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995, 8, 127–134. [Google Scholar] [CrossRef]
- Hamshou, M.; Van Damme, E.J.; Vandenborre, G.; Ghesquiere, B.; Trooskens, G.; Gevaert, K.; Smagghe, G. GalNAc/Gal-binding Rhizoctonia solani agglutinin has antiproliferative activity in Drosophila melanogaster S2 cells via MAPK and JAK/STAT signaling. PLoS ONE 2012, 7, e33680. [Google Scholar] [CrossRef]
- Walski, T.; Van Damme, E.J.; Smagghe, G. Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. J. Insect Physiol. 2014, 70, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Hamshou, M.; Smagghe, G.; Shahidi-Noghabi, S.; De Geyter, E.; Lannoo, N.; Van Damme, E.J. Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem. Mol. Biol. 2010, 40, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Stutz, K.; Kaech, A.; Aebi, M.; Kunzler, M.; Hengartner, M.O. Disruption of the C. elegans Intestinal Brush Border by the Fungal Lectin CCL2 Phenocopies Dietary Lectin Toxicity in Mammals. PLoS ONE 2015, 10, e0129381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.A.; Rouf, R.; Tiralongo, E.; May, T.W.; Tiralongo, J. Mushroom lectins: Specificity, structure and bioactivity relevant to human disease. Int. J. Mol. Sci. 2015, 16, 7802–7838. [Google Scholar] [CrossRef] [Green Version]
- Žurga, S.; Perišić Nanut, M.; Kos, J.; Sabotič, J. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget 2017. [Google Scholar] [CrossRef] [Green Version]
- Švajger, U.; Pohleven, J.; Kos, J.; Štrukelj, B.; Jeras, M. CNL, a ricin B-like lectin from mushroom Clitocybe nebularis, induces maturation and activation of dendritic cells via the toll-like receptor 4 pathway. Immunology 2011, 134, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Dalod, M.; Chelbi, R.; Malissen, B.; Lawrence, T. Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. Embo J. 2014, 33, 1104–1116. [Google Scholar] [CrossRef]
- Erjavec, J.; Kos, J.; Ravnikar, M.; Dreo, T.; Sabotič, J. Proteins of higher fungi—From forest to application. Trends Biotechnol. 2012, 30, 259–273. [Google Scholar] [CrossRef]
Sample Availability: Samples of the CNL lectin are available from the authors. |
CNL Binding Glycans 1 | Schematic Representation of Glycan Using the Symbolic Nomenclature for Glycans |
---|---|
GalNAcβ1-4GlcNAcβ1-3GalNAcβ1-4GlcNAcβ-sp 2 | |
GalNAcβ1-4GlcNAcβ-sp | |
(6S)GalNAcβ1-4GlcNAcβ-sp | |
GalNAcβ1-4GlcNAcβ-sp | |
GalNAcβ1-4GlcNAcβ1-2Manα-sp | |
GalNAcβ1-4(6S)GlcNAcβ-sp | |
GalNAcβ1-3GlcNAcβ-sp | |
GalNAcα1-3[Fucα1-2]Galβ-sp | |
GalNAcα1-3[Fucα1-2]Galβ1-4GlcNAcβ1-2Manα1-6[GalNAcα1-3[Fucα1-2]Galβ1-4GlcNAcβ1-2Manα1-3]Manβ1-4GlcNAcβ1-4GlcNAcβ-sp | |
GalNAcα1-3[Fucα1-2]Galβ1-4GlcNAcβ-sp | |
GalNAcβ-sp | |
GalNAcα1-3[Fucα1-2]Galβ1-4GlcNAcβ1-2Manα-sp | |
GalNAcα1-3[Fucα1-2]Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-sp | |
GalNAcα1-3[Fucα1-2]Galβ1-3GlcNAcβ1-2Manα1-6[GalNAcα1-3[Fucα1-2]Galβ1-3GlcNAcβ1-2Manα1-3]Manβ1-4GlcNAcβ1-4GlcNAcβ-sp | |
GalNAcα1-3[Fucα1-2]Galβ-sp | |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabotič, J.; Kos, J. CNL–Clitocybe nebularis Lectin—The Fungal GalNAcβ1-4GlcNAc-Binding Lectin. Molecules 2019, 24, 4204. https://doi.org/10.3390/molecules24234204
Sabotič J, Kos J. CNL–Clitocybe nebularis Lectin—The Fungal GalNAcβ1-4GlcNAc-Binding Lectin. Molecules. 2019; 24(23):4204. https://doi.org/10.3390/molecules24234204
Chicago/Turabian StyleSabotič, Jerica, and Janko Kos. 2019. "CNL–Clitocybe nebularis Lectin—The Fungal GalNAcβ1-4GlcNAc-Binding Lectin" Molecules 24, no. 23: 4204. https://doi.org/10.3390/molecules24234204
APA StyleSabotič, J., & Kos, J. (2019). CNL–Clitocybe nebularis Lectin—The Fungal GalNAcβ1-4GlcNAc-Binding Lectin. Molecules, 24(23), 4204. https://doi.org/10.3390/molecules24234204