Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of AAG Protein
2.2. AAG Mechanism
2.3. Proteolytic Activity
2.4. pH Stability of TKU004P
2.5. Utilization of C/N Source for TKU004P Production
2.6. Effect of TKU004P on Different Enzymes
2.7. Comparison of AAG Activity by Different Proteases
3. Materials and Methods
3.1. Materials
3.2. AAG Activity
3.3. Protease Activity Assay
3.4. Extraction of TKU004P
3.5. AAG Mechanism
3.6. Proteolytic Activity
3.7. pH Stability
3.8. Utilization of C/N Source for TKU004P Production
3.9. Effect of TKU004P on Different Enzymes
3.10. Comparison of AAG Activity by Different Proteases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ichiki, H.; Miura, T.; Ishihara, E.; Komatsu, Y.; Tanigawa, K.; Okada, M. New antidiabetic compounds, mangiferin and its glucoside. Biol. Pharm. Bull. 1998, 21, 1389–1390. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.B.; Pandit, A.B. Isolation of α-glucosidase from Saccharomyces cerevisiae: Cell disruption and adsorption. Biochem. Eng. J. 2003, 15, 37–45. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Yamamoto, K.; Okada, S. Classification of some α-glucosidases and α-xylosidases on the basis of substrate specificity. Biosci. Biotechnol. Biochem. 1994, 58, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Ito, T.; Hayashi, M.; Yamamoto, T.; Matsubara, K.; Kim, Y.M.; Jimtanart, W.; Okuyama, M.; Mori, H.; Chiba, S.; et al. Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare). Biochimie 2007, 89, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, P.L.; Brown, D.H.; Brown, B.I. Studies of lysosomal alpha-glucosidase. I. Purification and properties of the rat liver enzyme. Biochemistry 1970, 9, 1403–1415. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kishigami, T.; Abe, S. Production of extracellular alpha-glucosidase by a thermophilic Bacillus species. Appl. Environ. Microbiol. 1976, 31, 807–812. [Google Scholar]
- Malunga, L.N.; Eck, P.; Beta, T. Inhibition of intestinal α-glucosidase and glucose absorption by feruloylated arabinoxylan mono- and oligosaccharides from corn bran and wheata aleurone. J. Nutr. Metab. 2016, 2016, 1932532. [Google Scholar] [CrossRef]
- Sheliya, M.A.; Begum, R.; Pillai, K.K.; Aeri, V.; Mir, S.R.; Ali, A.; Sharma, M. In vitro α-glucosidase and α-amylase inhibition by aqueous, hydroalcoholic, and alcoholic extract of Euphorbia hirta L. Drug Dev. Ther. 2016, 7, 26–30. [Google Scholar]
- Konrad, B.; Anna, D.; Marek, S.; Marta, P.; Aleksandra, Z.; Jozefa, C. The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Int. J. Prept. Res. Ther. 2014, 20, 483–491. [Google Scholar] [CrossRef]
- Kim, S.D. α-Glucosidase inhibitor isolated from coffee. J. Microbiol. Biotechnol. 2015, 25, 174–177. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Wang, S.L.; Nguyen, A.D.; Doan, C.T.; Tran, T.N.; Huang, H.T.; Kuo, Y.H. Bioactivity-guided purification of novel herbal antioxidant and anti-NO compounds from Euonymus laxiflorus Champ. Molecules 2018, 24, 120. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Wang, S.L.; Nguyen, V.B.; Kuo, Y.H. Isolation and identification of potent antidiabetic compounds from Antrodia cinnamomea—An edible Taiwanese mushroom. Molecules 2018, 23, 2864. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Wang, S.L.; Nguyen, T.H.; Nguyen, M.T.; Doan, C.T.; Tran, T.N.; Lin, Z.H.; Nguyen, Q.V.; Kuo, Y.H.; Nguyen, A.D. Novel potent hypoglycemic compounds from Euonymus laxiflorus Champ. and their effect on reducing plasma glucose in an ICR mouse model. Molecules 2018, 23, 1928. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Wang, S.L.; Ngu, T.N.; Nguyen, T.H.; Nguyen, P.D.N.; Do, H.N.; Nguyen, M.C. New records of potent in-vitro antidiabetic properties of Dalbergia tonkinensis heartwood and the bioactivity-guided isolation of active compounds. Molecules 2018, 23, 1589. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Wang, S.L. New novel α–glucosidase inhibitors produced by microbial conversion. Process Biochem. 2018, 65, 228–232. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, T.H.; Doan, C.T.; Tran, T.N.; Nguyen, A.D.; Kuo, Y.H.; Wang, S.L. Production and bioactivity-guided isolation of antioxidants with α-glucosidase inhibitory and anti-NO properties from marine chitinous material. Molecules 2018, 23, 1124. [Google Scholar] [CrossRef]
- Nguyen, Q.V.; Wang, S.L.; Nguyen, A.D. In vitro α-glucosidase and α-amylase inhibition, and in vivo anti-hyperglycemic effects of Psidium littorale Raddi leaf extract. Res. Chem. Intermed. 2018, 44, 1745–1753. [Google Scholar] [CrossRef]
- Sulistiyani; Safithri, M.; Sari, Y.P. Inhibition of α-glucosidase activity by ethanolic extract of Melia azedarach L. leaves. IOP Conf. Ser. Earth Environ. Sci. 2016, 31, 012025. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Wang, S.L. Production of potent antidiabetic compounds from shrimp head powder via Paenibacillus conversion. Process Biochem. 2019, 76, 18–24. [Google Scholar] [CrossRef]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Conversion of squid pens to chitosanases and proteases via Paenibacillus sp. TKU042. Mar. Drugs 2018, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Su, Y.C.; Nguyen, V.B.; Nguyen, A.D. Reclamation of shrimp heads for the production of α-glucosidase inhibitors by Staphylococcus sp. TKU043. Res. Chem. Intermed. 2018, 44, 4929–4937. [Google Scholar] [CrossRef]
- Hsu, C.H.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Conversion of shrimp heads to α-glucosidase inhibitors via co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041. Res. Chem. Intermed. 2018, 44, 4597–4607. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Utilization of fishery processing byproduct squid pens for Paenibacillus sp. fermentation on producing potent α-glucosidase inhibitors. Mar. Drugs 2017, 15, 274. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Wang, S.L. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Mar. Drugs 2017, 15, 350. [Google Scholar] [CrossRef] [PubMed]
- Onose, S.; Ikeda, R.; Nakagawa, K.; Kimura, T.; Yamagishi, K.; Higuchi, O.; Miyazawa, T. Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chem. 2013, 138, 51–523. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Jung, H.; Karuppasamy, S.; Park, Y.S.; Cho, Y.S.; Lee, J.Y.; Seong, S.; Suh, J.G. Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci. Biotechnol. 2012, 21, 1669–1676. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Yamaki, K.; Yoshihashi, T.; Ohnishi, K.M.; Li, X.T.; Cheng, Y.Q.; Mori, Y.; Li, L.T. Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (meitaoza). J. Agric. Food Chem. 2010, 58, 4097–4103. [Google Scholar] [CrossRef]
- Cho, Y.S.; Park, Y.S.; Lee, J.Y.; Kang, K.D.; Hwang, K.Y.; Seong, S.I. Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1401–1407. [Google Scholar] [CrossRef]
- Ezure, Y.; Maruo, S.; Miyazaki, K.; Kawamata, M. Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric. Biol. Chem. 1985, 49, 1119–1125. [Google Scholar]
- Kameda, Y.; Asano, M.; Yoshikawa, M.; Takeuchi, M.; Yamaguchi, T.; Matsui, K.; Horii, S.; Fukase, H. Valiolamine, a new alpha-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus. J. Antibiot. 1984, 37, 1301–1307. [Google Scholar] [CrossRef]
- Schmidt, D.D.; Frommer, W.; Junge, B.; Muller, L.; Wingender, W.; Truscheit, E.; Schafer, D. α-Glucosidase inhibitors. Naturwissenschaften 1977, 64, 535–536. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.G.; Xue, Y.P.; Shen, Y.C. Production of valienamine by a newly isolated strain: Stenotrophomonas maltrophilia. Enzym. Microb. Technol. 2006, 39, 1060–1065. [Google Scholar] [CrossRef]
- Artanti, N.; Tachibana, S.; Kardono, L.B.; Sukiman, H. Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. Pak. J. Biol. Sci. 2011, 14, 1019–1029. [Google Scholar] [PubMed]
- Su, C.H.; Lai, M.N.; Ng, L.T. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase—Enzymes related to hyperglycemia. Food Funct. 2013, 4, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Kao, T.Y.; Wang, C.L.; Yen, Y.H.; Chern, M.K.; Chen, Y.H. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzym. Microb. Technol. 2006, 39, 724–731. [Google Scholar] [CrossRef]
- Matsu, T.; Oki, T.; Osajima, Y. Isolation and identification of peptidic a-glucosidase inhibitors derived from sardine muscle hydrolyzate. Z. Naturforsch. C. 1999, 54, 259–263. [Google Scholar] [CrossRef]
- González-Montoya, M.; Hernández-Ledesma, B.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. Int. J. Mol. Sci. 2018, 19, 2883. [Google Scholar] [CrossRef]
- Strongin, A.Y.; Abramov, Z.T.; Yaroslavtseva, N.G.; Baratova, L.A.; Shaginyan, K.A.; Belyanova, L.P.; Stepanov, V.M. Direct Comparison of the Subtilisin-Like Intracellular Protease of Bacillus licheniformis with the Homologous Enzymes of Bacillus subtilis. J. Bacteriol. 1979, 137, 1017–1019. [Google Scholar]
- Wells, J.A.; Ferrari, E.; Henner, D.J.; Estell, D.A.; Chen, E.Y. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 1983, 11, 7911–7925. [Google Scholar] [CrossRef]
- Mikhailova, E.O.; Balaban, N.P.; Mardannova, A.M.; Rudakova, N.L.; Ilyinskaya, O.N.; Rudenskaya, G.N.; Rizvanov, A.A.; Sharipova, M.R. Purification of a subtilisin-like serine proteinase from recombinant Bacillus subtilis during different phases of growth. Ann. Microbilol. 2009, 59, 301–307. [Google Scholar] [CrossRef]
- Miyaji, T.; Otta, Y.; Nakagawa, T.; Watanabe, T.; Niimura, Y.; Tomizuka, N. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1. Lett. Appl. Microbiol. 2006, 42, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Liu, C.P.; Liang, T.W. Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr. Polym. 2012, 90, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Wu, Y.Y.; Liang, T.W. Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New Biotechnol. 2011, 28, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.W.; Hsieh, J.L.; Wang, S.L. Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydr. Res. 2012, 362, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Res. Chem. Intermed. 2019, 45, 727–742. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compound TKU004P is available from the authors. |
Reaction Time (min) | Relative Concentration of α-Glucosidase (%) | Relative Activity of α-Glucosidase (%) |
---|---|---|
0 | 100.00 | 100.00 ± 3.87 |
30 | 49.90 | 46.06 ± 3.61 |
60 | 38.68 | 29.87 ± 3.43 |
90 | 21.95 | 21.84 ± 3.95 |
120 | 15.02 | 4.53 ± 1.42 |
150 | 10.20 | 2.86 ± 0.82 |
180 | 4.45 | 2.33 ± 0.53 |
Substrate | Relative Activity (%) | ||
---|---|---|---|
Method 1 a | Method 2 b | Method 3 c | |
Casein (C) | 100.00 ± 5.77 | ||
Albumin | 0 | ||
Gelatin | 3.89 ± 2.77 | ||
Elastin | 0 | ||
Hemoglobin | 18.40 ± 3.70 | ||
Myoglobin | 6.29 ± 0.86 | ||
Fibrinogen | 22.11 ± 2.58 | ||
Azocasein (C) | 100.00± 4.68 | ||
Azoalbumin | 86.60 ± 7.28 | ||
d-val-leu-lys p-nitroanilide | 26.48 ± 9.04 | ||
N-benzoyl-val-gly-arg p-nitroanilide | 7.17 ± 0.97 | ||
N-succinyl-ala-ala-pro-phe p-nitroanilide (C) | 100.00 ± 1.11 |
Source of Enzyme | AAG Activity (%) |
---|---|
B. licheniformis TKU004 | 98.38 ± 0.19 |
B. subtilis TKU007 | 34.63 ± 2.37 |
Lactobacillus paracasei TKU010 | 2.55 ± 6.83 |
Serratia marcescens TKU011 | 13.06 ± 3.58 |
Serratia ureilytica TKU013 | 16.83 ± 4.19 |
Pseudomonas tamsuii TKU015 | 3.55 ± 5.63 |
Serratia sp. TKU016 | 6.82 ± 8.26 |
Serratia sp. TKU020 | 21.58 ± 5.51 |
B. mycodes TKU038 | 32.75 ± 4.41 |
Paenibacillus macerans TKU029 | 4.81 ± 3.29 |
Paenibacillus mucilaginousus TKU032 | 5.72 ± 6.43 |
Paenibacillus sp. TKU042 | 13.58 ± 5.84 |
B. mycodes TKU040 | 10.26 ± 7.58 |
B. cereus TKU028 | 29.44 ± 4.72 |
Papain | 23.51 ± 5.13 |
Bromelain | 26.82 ± 4.68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, C.T.; Tran, T.N.; Nguyen, M.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules 2019, 24, 691. https://doi.org/10.3390/molecules24040691
Doan CT, Tran TN, Nguyen MT, Nguyen VB, Nguyen AD, Wang S-L. Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules. 2019; 24(4):691. https://doi.org/10.3390/molecules24040691
Chicago/Turabian StyleDoan, Chien Thang, Thi Ngoc Tran, Minh Trung Nguyen, Van Bon Nguyen, Anh Dzung Nguyen, and San-Lang Wang. 2019. "Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis" Molecules 24, no. 4: 691. https://doi.org/10.3390/molecules24040691
APA StyleDoan, C. T., Tran, T. N., Nguyen, M. T., Nguyen, V. B., Nguyen, A. D., & Wang, S. -L. (2019). Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules, 24(4), 691. https://doi.org/10.3390/molecules24040691