Simultaneous Quantification of L-Arginine and Monosaccharides during Fermentation: An Advanced Chromatography Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Optimization
2.1.1. HPAEC-IPAD
2.1.2. RP-UHPLC-CAD
2.2. Method Validation
2.2.1. Suitability of HPAEC-IPAD
2.2.2. Suitability of RP-UHPLC-CAD
2.2.3. Specificity of HPAEC-IPAD
2.2.4. Specificity of RP-UHPLC-CAD
2.2.5. Reportable Range and Calibration Type for HPAEC-IPAD
2.2.6. Evaluation Parameter, Calibration, and Range for RP-UHPLC-CAD
2.2.7. Accuracy of HPAEC-IPAD
2.2.8. Accuracy of RP-UHPLC-CAD
2.2.9. Precision of HPAEC-IPAD
2.2.10. Precision of RP-UHPLC-CAD
2.2.11. Limit of Detection and Limit of Quantification for HPAEC-IPAD
2.2.12. Limit of Detection and Limit of Quantification for RP-UHPLC-CAD
2.2.13. Binary Mixtures and Recovery Using HPAEC-IPAD
2.2.14. Binary Mixtures Separation Using RP-UHPLC-CAD
2.3. Application to Fermentation Samples
2.4. Comparison between HPAEC-IPAD and RP-UHPLC-CAD Systems
3. Materials and Methods
3.1. Reagents, Solvents, Materials
3.2. Sample Preparation
3.2.1. Stock Solutions and Calibration Standards
3.2.2. Model Fermentation Samples
3.2.3. Fermentation Samples
3.3. Instruments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qingmao, L. Method for Preparing Pig Feed Additive. 2016. CN201610007395. Available online: https://patents.google.com/patent/CN105533209A/en (accessed on 21 January 2019).
- Terjesen, B.F.; Refstie, S.; Rørvik, K. Bioactive Amino Acids as Growth Stimulating Nutraceutica in Salmon. 2009. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2009035333 (accessed on 21 January 2019).
- Jie, Y.; Le, S.; Feng, Q.; Sheng, L.; Xiaoqing, P. Feedstuff for Increasing Weight of Weaned Young Rabbits and Production Method of Same. 2015. Available online: https://patents.google.com/patent/CN103340307A/en (accessed on 21 January 2019).
- Chetty, S. The Do’s and Don’ts of Arginine Supplementation. S. Afr. J. Clin. Nutr. 2010, 23, S25–S28. [Google Scholar] [CrossRef]
- Appleton, J. Arginine: Clinical Potential of a Semi-Essential Amino Acid. Altern. Med. Rev. 2002, 7, 512–522. [Google Scholar] [PubMed]
- Flynn, N.E.; Meininger, C.J.; Haynes, T.E.; Wu, G. The Metabolic Basis of Arginine Nutrition and Pharmacotherapy. Biomed. Pharmacother. 2002, 56, 427–438. [Google Scholar] [CrossRef]
- Barbul, A.; Lazarou, S.A.; Efron, D.T.; Wasserkrug, H.L.; Efron, G. Arginine Enhances Wound Healing and Lymphocyte Immune Responses in Humans. Surgery 1990, 108, 331–337. [Google Scholar] [PubMed]
- Lehtonen, P. Determination of Amines and Amino Acids in Wine—A Review. Am. J. Enol. Vitic. 1996, 47, 127–133. [Google Scholar]
- Ough, C.S.; Stevens, D.; Almy, J. Preliminary Comments on Effects of Grape Vineyard Nitrogen Fertilization on the Subsequent Ethyl Carbamate Formation in Wines. Am. J. Enol. Vitic. 1989, 40, 219–220. [Google Scholar]
- Zimmerli, B.; Schlatter, J. Ethyl Carbamate: Analytical Methodology, Occurrence, Formation, Biological Activity and Risk Assessment. Mutat. Res. 1991, 259, 325–350. [Google Scholar] [CrossRef]
- Man, Z.; Xu, M.; Rao, Z.; Guo, J.; Yang, T.; Zhang, X.; Xu, Z. Systems Pathway Engineering of Corynebacterium Crenatum for Improved L-Arginine Production. Sci. Rep. 2016, 6, 28629. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, H.U.; Kim, T.Y.; Park, J.S.; Kim, S.; Lee, S.Y. Metabolic Engineering of Corynebacterium Glutamicum for L-Arginine Production. Nat. Commun. 2014, 5, 4618. [Google Scholar] [CrossRef] [PubMed]
- Ginesy, M.; Belotserkovsky, J.; Enman, J.; Isaksson, L.; Rova, U. Metabolic Engineering of Escherichia coli for Enhanced Arginine Biosynthesis. Microb. Cell Fact. 2015, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Belikova, N. A Method for the Qualitative and Quantitative Determinationof the Amino Acid Composition of Pharmaceutical Products. 2016. Available online: https://www.pickeringlabs.com/wp-content/uploads/2015/01/SGS-LSS-Determination-of-Amino-Acid-Composition-of-Pharmaceutical-Product.pdf (accessed on 21 January 2019).
- Markowski, P.; Baranowska, I.; Baranowski, J. Simultaneous Determination of L-Arginine and 12 Molecules Participating in its Metabolic Cycle by Gradient RP-HPLC Method: Application to Human Urine Samples. Anal. Chim. Acta 2007, 605, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Alkaitis, M.S.; Nardone, G.; Chertow, J.H.; Ackerman, H.C. Resolution and Quantification of Arginine, Monomethylarginine, Asymmetric Dimethylarginine, and Symmetric Dimethylarginine in Plasma using HPLC with Internal Calibration. Biomed. Chromatogr. 2016, 30, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Jajic, I.; Krstović, S.; Glamocic, D.; Jakšić, S.; Abramović, B. Validation of an HPLC Method for the Determination of Amino Acids in Feed. J. Serb. Chem. Soc. 2013, 78, 839–850. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, D.; Zhu, B.; Wu, G.; Duan, C. Rapid HPLC Analysis of Amino Acids and Biogenic Amines in Wines during Fermentation and Evaluation of Matrix Effect. Food Chem. 2014, 163, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Mira Orduña, R. Quantitative Determination of L-Arginine by Enzymatic End-Point Analysis. J. Agric. Food Chem. 2001, 49, 549–552. [Google Scholar] [CrossRef]
- Knauer GmbH. Determination of 17 AQC Derivatized Amino Acids in Baby Food Samples. 2014. Available online: https://www.knauer.net/Application/application_notes/vbs0011n_uhplc-pda-fld_determination_aqc_amino_acids_bluespher.pdf (accessed on 21 January 2019).
- Schuster, R. Determination of Amino Acids in Biological, Pharmaceutical, Plant and Food Samples by Automated Precolumn Derivatization and High-Performance Liquid Chromatography. J. Chromatogr. 1988, 431, 271–284. [Google Scholar] [CrossRef]
- Micklus, M.J.; Stein, I.M. The Colorimetric Determination of Mono- and Disubstituted Guanidines. Anal. Biochem. 1973, 54, 545–553. Available online: http://www.sciencedirect.com/science/article/pii/0003269773903862 (accessed on 21 January 2019). [CrossRef]
- Sakaguchi, S. Über Eine Neue Farbenreaktion Von Protein Und Arginin. J. Biochem. 1925, 5, 25–31. [Google Scholar]
- Weil, L.; Russell, M.A. A Manometric Micromethod for Arginase Determination. Enzymatic Study of Blood Arginase in Rats. J. Biol. Chem. 1934, 106, 505–513. [Google Scholar]
- Faby, R. A Method for the Enzymatic Determination of Arginine. Die Gartenbauwissenschaft 1986, 51, 47–48. [Google Scholar]
- Mira de Orduña, R. Arginine Degradation by Malolactic Wine Lactic Acid Bacteria and its Oenological and Toxicological Implications. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2001. [Google Scholar]
- White, J.A.; Hart, R.T. Derivatization methods for liquid chromato-graphic separation of amino acid. In Food Analysis by HPLC; Marcel Dekker, Inc.: New York, NY, USA, 1992; pp. 53–74. [Google Scholar]
- Cohen, S.A. Analysis of Amino Acids by Liquid Chromatography after Pre-Column Derivatization with 4-Nitrophenylisothiocyanate. J. Chromatogr. A 1990, 512, 283–290. [Google Scholar] [CrossRef]
- Knecht, R.; Chang, J.Y. Liquid Chromatographic Determination of Amino Acids After Gas-Phase Hydrolysis and Derivatization with (Dimethylamino)Azobenzenesulfonyl Chloride. Anal. Chem. 1986, 58, 2375–2379. [Google Scholar] [CrossRef] [PubMed]
- Mengerink, Y.; Kutlan, D.; Toth, F.; Csampai, A.; Molnar-Perl, I. Advances in the Evaluation of the Stability and Characteristics of the Amino Acid and Amine Derivatives obtained with the O-Phthaldialdehyde/3-Mercaptopropionic Acid and O-Phthaldialdehyde/N-Acetyl-L-Cysteine Reagents. High-Performance Liquid Chromatography-Mass Spectrometry Study. J. Chromatogr. A 2002, 949, 99–124. [Google Scholar] [PubMed]
- Le, A.; Ng, A.; Kwan, T.; Cusmano-Ozog, K.; Cowan, T.M. A Rapid, Sensitive Method for Quantitative Analysis of Underivatized Amino Acids by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 944, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Helmus, R.; Cerli, C.; Jansen, B.; Wang, X.; Kalbitz, K. Robust Analysis of Underivatized Free Amino Acids in Soil by Hydrophilic Interaction Liquid Chromatography Coupled with Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1449, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Socia, A.; Foley, J.P. Direct Determination of Amino Acids by Hydrophilic Interaction Liquid Chromatography with Charged Aerosol Detection. J. Chromatogr. A 2016, 1446, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Crafts, C.; Bailey, B.; Acworth, I.; UHPLC Analysis of Underivatized Amino Acids. The Application Notebook. 2011. Available online: http://www.chromatographyonline.com/uhplc-analysis-underivatized-amino-acids (accessed on 21 January 2019).
- Crafts, C.; Plante, M.; Bailey, B.; Acworth, I. Sensitive Analysis of Underivatized Amino Acids Using UHPLC with Charged Aerosol Detection. 2012. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/posters/PN-70038-Analysis-Underivatized-Amino-Acids-UHPLC-CAD-PN70038-EN.pdf (accessed on 21 January 2019).
- Grembecka, M.; Lebiedzińska, A.; Szefer, P. Simultaneous Separation and Determination of Erythritol, Xylitol, Sorbitol, Mannitol, Maltitol, Fructose, Glucose, Sucrose and Maltose in Food Products by High Performance Liquid Chromatography Coupled to Charged Aerosol Detector. Microchem. J. 2014, 117, 77–82. [Google Scholar] [CrossRef]
- Łuczaj, Ł.; Maciej, B.; Kinga, S. Sugar Content in the Sap of Birches, Hornbeams and Maples in Southeastern Poland. Cent. Eur. J. Biol. 2014, 9, 410–416. [Google Scholar] [CrossRef]
- Yan, J.; Shi, S.; Wang, H.; Liu, R.; Li, N.; Chen, Y.; Wang, S. Neutral Monosaccharide Composition Analysis of Plant-Derived Oligo- and Polysaccharides by High Performance Liquid Chromatography. Carbohydr. Polym. 2016, 136, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Hanko, V.P.; Rohrer, J.S. Determination of Amino Acids in Cell Culture and Fermentation Broth Media using Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. Anal. Biochem. 2004, 324, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Dionex Corporation. Product Manual for: AAA-Direct Dionex Amino Acid Analyzer. 2009. Available online: http://origin-www.thermoscientific.jp/content/dam/tfs/ATG/CMD/CMD%20Documents/Product%20Manuals%20&%20Specifications/Man-031481-AAA-Direct-Man031481-EN.pdf (accessed on 21 January 2019).
- Hanko, V.P.; Heckenberg, A.; Rohrer, J.S. Determination of Amino Acids in Cell Culture and Fermentation Broth Media using Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. J. Biomol. Tech. 2004, 15, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Béjar, M.I.; Balderas-Hernandez, V.; Gutiérrez-Alejandre, A.; Martinez, A.; Bolívar, F.; Gosset, G. Metabolic Engineering of Escherichia coli to Optimize Melanin Synthesis from Glucose. Microb. Cell Fact. 2013, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Donahue, J.L.; Battle, S.E.; Ray, W.K.; Larson, T.J. Biochemical and Genetic Characterization of PspE and GlpE, Two Single-Domain Sulfurtransferases of Escherichia coli. Open Microbiol. J. 2008, 2, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Missiakas, D.; Georgopoulos, C.; Raina, S. Identification and Characterization of the Escherichia coli Gene dsbB, Whose Product is Involved in the Formation of Disulfide Bonds in Vivo. Proc. Natl. Acad. Sci. USA 1993, 90, 7084–7088. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. The Limitations of LB Medium. 2009. Available online: https://schaechter.asmblog.org/schaechter/2009/11/the-limitations-of-lb-medium.html (accessed on 21 January 2019).
- Sezonov, G.; Joseleau-Petit, D.; D’Ari, R. Escherichia coli Physiology in Luria-Bertani Broth. J. Bacteriol. 2007, 189, 8746–8749. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P. Charged Aerosol Detection: Application to Ultra-pure Water. Present at the 36th International Symposium on High-Performance Liquid Phase Separations and Related Techniques, Budapest, Hungary, 19–23 June 2011, Poster number P2-S-813-WE.
- Reason, A.J. Validation of Amino Acid Analysis Methods. In Protein Sequencing Protocols; Humana Press: Totowa, NJ, USA, 2003; pp. 181–194. [Google Scholar]
- ICH Expert Working Group. Validation of Analytical Procedures: Text and Methodology. 1995. Available online: https://www.ema.europa.eu/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 21 January 2019).
- De Spiegeleer, P.; Sermon, J.; Lietaert, A.; Aertsen, A.; Michiels, C.W. Source of Tryptone in Growth Medium Affects Oxidative Stress Resistance in Escherichia coli. J. Appl. Microbiol. 2004, 97, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Smith, E. Fraction and Characterisation of a Commercial Yeast Extract to Facilitate Acceleration of Yogurt Fermentation. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2013. [Google Scholar]
- Cardinal, E.V.; Hedrick, L.R. Microbiological Assay of Corn Steep Liquor for Amino Acid Content. J. Biol. Chem. 1948, 172, 609–612. [Google Scholar] [PubMed]
- Chiani, M.; Akbarzadeh, A.; Farhangi, A.; Mehrabi, M.R. Production of Desferrioxamine B (Desferal) using Corn Steep Liquor in Streptomyces Pilosus. Pak. J. Biol. Sci. 2010, 13, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Hull, S.R.; Yang, B.Y.; Venzke, D.; Kulhavy, K.; Montgomery, R. Composition of Corn Steep Water during Steeping. J. Agric. Food Chem. 1996, 44, 1857–1863. [Google Scholar] [CrossRef]
- Dionex Corporation. Determination of Amino Acids in Cell Cultures and Fermentation Broths, Application Note. 2003. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/AN-150-LC-Amino-Acids-Cell-Cultures-Fementation-Broth-LPN1538-EN.pdf (accessed on 21 January 2019).
- Ginésy, M.; Rusanova-Naydenova, D.; Rova, U. Tuning of the Carbon-to-Nitrogen Ratio for the Production of L-Arginine by Escherichia coli. Fermentation 2017, 3, 60. [Google Scholar] [CrossRef]
Time (min) | Water (%) | 250 mM Sodium Hydroxide (%) | 1 M Sodium Acetate (%) | Curve™ * |
---|---|---|---|---|
0.0 | 76 | 24 | 0 | 5 |
2.0 | 76 | 24 | 0 | 5 |
8.0 | 64 | 36 | 0 | 5 |
11.0 | 0 | 30 | 70 | 8 |
14.0 | 0 | 30 | 70 | 5 |
14.1 | 0 | 100 | 0 | 5 |
15.0 | 0 | 100 | 0 | 5 |
16.0 | 76 | 24 | 0 | 2 |
23.0 | 76 | 24 | 0 | - |
Time (min) | Flow (mL/min) | 0.4% HFBA (%) | Acetonitrile (%) | Curve™ * |
---|---|---|---|---|
−5.0 | 0.25 | 100 | 0 | 5 |
0.0 | 0.25 | 100 | 0 | 5 |
0.0 a | 0.25 | 100 | 0 | 5 |
3.0 | 0.35 | 100 | 0 | 5 |
4.5 | 0.45 | 100 | 0 | 5 |
10.0 | 0.45 | 75 | 25 | 5 |
12.0 | 0.45 | 75 | 25 | 5 |
13.0 | 0.45 | 55 | 45 | 7 |
14.0 | 0.45 | 55 | 45 | 5 |
16.0 | 0.25 | 100 | 0 | 4 |
17.0 | 0.25 | 100 | 0 | - |
Injection | Glucose (7.0 mg/L) | Xylose (7.0 mg/L) | Arginine (15.0 µmol/L) | |||
---|---|---|---|---|---|---|
ret. time (min) | area (pA × min) | ret. time (min) | area (pA × min) | ret. time (min) | area (pA × min) | |
#1 | 7.27 | 72.088 | 7.59 | 81.275 | 2.25 | 16.668 |
#2 | 7.24 | 72.990 | 7.56 | 82.239 | 2.25 | 16.076 |
#3 | 7.33 | 71.734 | 7.57 | 82.841 | 2.26 | 15.956 |
#4 | 7.28 | 72.170 | 7.58 | 82.554 | 2.26 | 16.030 |
#5 | 7.29 | 72.458 | 7.56 | 82.605 | 2.26 | 16.009 |
#6 | 7.37 | 72.186 | 7.58 | 83.084 | 2.25 | 15.997 |
Mean ± std | 7.28 ± 0.05 | 72.271 ± 0.422 | 7.57 ± 0.01 | 82.433 ± 0.634 | 2.25 ± 0.01 | 16.122 ± 0.270 |
% RSD | 0.63 | 0.58 | 0.16 | 0.77 | 0.24 | 1.67 |
Injection | Glucose (0.100 g/L) | Xylose (0.100 g/L) | Arginine (0.75 mmol/L) | |||
---|---|---|---|---|---|---|
Ret. Time (min) | Area (pA × min) | Ret. Time (min) | Area (pA × min) | Ret. Time (min) | Area (pA × min) | |
#1 | 2.18 | 2.153 | 2.21 | 2.225 | 11.01 | 5.789 |
#2 | 2.18 | 2.124 | 2.23 | 2.216 | 11.01 | 5.757 |
#3 | 2.18 | 2.083 | 2.22 | 2.258 | 11.01 | 5.707 |
#4 | 2.18 | 2.104 | 2.22 | 2.223 | 11.01 | 5.748 |
#5 | 2.18 | 2.141 | 2.22 | 2.232 | 11.01 | 5.678 |
#6 | 2.18 | 2.091 | 2.22 | 2.214 | 11.01 | 5.863 |
Mean ± std | 2.18 ± na | 2.116 ± 0.026 | 2.22 ± 0.01 | 2.228 ± 0.015 | 11.01 ± na | 5.757 ± 0.065 |
% RSD | 0.08 | 1.21 | 0.26 | 0.66 | 0.02 | 1.13 |
Glucose | Xylose | Arginine | ||||
---|---|---|---|---|---|---|
Medium | Conc. (mg/L) | Ret. Time (min) Mean ± std | Conc. (mg/L) | Ret. Time (min) Mean ± std | Conc. (µmol/L) | Ret. Time (min) Mean ± std |
H2O | 2.0 | 7.28 ± 0.01 | 2.0 | 7.61 ± 0.02 | 10.0 | 2.26 ± na |
8.0 | 7.29 ± 0.02 | 8.0 | 7.62 ± 0.02 | 15.0 | 2.26 ± 0.01 | |
12.0 | 7.27 ± 0.02 | 12.0 | 7.61 ± 0.02 | 30.0 | 2.25 ± 0.01 | |
20.0 | 7.21 ± 0.02 | 20.0 | 7.56 ± 0.01 | 45.0 | 2.26 ± 0.01 | |
Mean ± std | 7.27 ± 0.04 | Mean ± std | 7.60 ± 0.02 | Mean ± std | 2.26 ± 0.01 | |
%RSD | 0.49 | %RSD | 0.28 | %RSD | 0.12 | |
M9’ | 2.5 | 7.25 ± 0.01 | 2.5 | 7.67 ± 0.08 | 5.0 | 2.260 ± na |
7.0 | 7.28 ± 0.05 | 7.0 | 7.57 ± 0.01 | 15.0 | 2.25 ± 0.01 | |
12.0 | 7.24 ± 0.01 | 12.0 | 7.52 ± 0.02 | 15.0 a | 2.26 ± 0.01 | |
30 | 2.24 ± 0.01 | |||||
Mean ± std | 7.25 ± 0.02 | Mean ± std | 7.59 ± 0.08 | Mean ± std | 2.25 ± 0.01 | |
%RSD | 0.31 | %RSD | 1.03 | %RSD | 0.32 | |
LB | 2.5 | 7.22 ± 0.01 | 2.5 | 7.63 ± 0.07 | 5.0 | 2.26 ± 0.01 |
7.0 | 7.26 ± 0.04 | 7.0 | 7.56 ± 0.01 | 15.0 | 2.25 ± na | |
12.0 | 7.21 ± 0.05 | 12.0 | 7.63 ± 0.07 | 15.0 a | 2.25 ± 0.01 | |
30 | 2.24 ± 0.01 | |||||
Mean ± std | 7.23 ± 0.03 | Mean ± std | 7.61 ± 0.04 | Mean ± std | 2.25 ± 0.01 | |
%RSD | 0.37 | %RSD | 0.52 | %RSD | 0.25 | |
CSL | 2.5 | 7.23 ± 0.02 | 2.5 | 7.64 ± 0.08 | 5.0 | 2.25 ± na |
7.0 | 7.29 ± 0.03 | 7.0 | 7.57 ± 0.02 | 15.0 | 2.25 ± 0.01 | |
12.0 | 7.27 ± 0.04 | 12.0 | 7.55 ± 0.01 | 15.0 a | 2.25 ± 0.01 | |
30.0 | 2.25 ± na | |||||
Mean ± std | 7.27 ± 0.03 | Mean ± std | 7.58 ± 0.05 | Mean ± std | 2.25 ± 0.01 | |
%RSD | 0.44 | %RSD | 0.61 | %RSD | 0.12 | |
Overall b | Mean ± std | 7.26 ± 0.03 | Mean ± std | 7.59 ± 0.04 | Mean ± std | 2.25 ± 0.01 |
%RSD | 0.43 | %RSD | 0.55 | %RSD | 0.25 |
Glucose | Xylose | Arginine | ||||
---|---|---|---|---|---|---|
Medium | Conc. (g/L) | Ret. Time (min) Mean ± std | Conc.(g/L) | Ret. Time (min) Mean ± std | Conc. (mmol/L) | Ret. Time (min) Mean ± std |
H2O | 0.0125 | 2.17 ± na | 0.0125 | 2.22 ± na | 0.025 | 11.05 ± 0.01 |
0.10 | 2.18 ± na | 0.10 | 2.22 ± 0.01 | 0.10 | 11.05 ± na | |
1.00 | 2.18 ± na | 1.00 | 2.22 ± 0.01 | 0.75 | 11.02 ± na | |
2.00 | 2.18 ± na | 2.00 | 2.22 ± na | 7.50 | 10.87 ± 0.01 | |
Mean ± std | 2.18 ± na | Mean ± std | 2.22 ± na | Mean ± std | 11.00 ± 0.09 | |
%RSD | 0.07 | %RSD | 0.14 | %RSD | 0.77 | |
M9’ | 0.01 | 2.17 ± 0.02 | 0.01 | 2.21 ± 0.01 | 0.125 | 11.04 ± 0.02 |
0.10 | 2.18 ± na | 0.10 | 2.22 ± 0.01 | 0.75 | 11.01 ± na | |
1.00 | 2.18 ± 0.01 | 1.00 | 2.22 ± 0.01 | 0.750 a | 11.00 ± na | |
7.50 | 10.86 ± 0.01 | |||||
Mean ± std | 2.18 ± 0.01 | Mean ± std | 2.22 ± 0.01 | Mean ± std | 10.98 ± 0.06 | |
%RSD | 0.31 | %RSD | 0.19 | %RSD | 0.73 | |
LB | 0.01 | 2.17 ± na | 0.01 | 2.22 ± na | 0.125 | 11.03 ± na |
0.10 | 2.18 ± na | 0.10 | 2.22 ± na | 0.75 | 11.01 ± 0.01 | |
1.00 | 2.18 ± na | 1.00 | 2.22 ± 0.01 | 0.750 a | 11.02 ± 0.02 | |
7.50 | 10.85 ± 0.01 | |||||
Mean ± std | 2.18 ± na | Mean ± std | 2.22 ± na | Mean ± std | 10.97 ± 0.08 | |
%RSD | 0.11 | %RSD | 0.16 | %RSD | 0.77 | |
CSL | 0.01 | 2.18 ± na | 0.01 | 2.21 ± na | 0.125 | 11.03 ± 0.01 |
0.10 | 2.19 ± na | 0.10 | 2.22 ± 0.01 | 0.75 | 11.01 ± na | |
1.00 | 2.18 ± na | 1.00 | 2.22 ± na | 0.750 a | 11.01 ± na | |
7.50 | 10.85 ± 0.02 | |||||
Mean ± std | 2.18 ± na | Mean ± std | 2.22 ± na | Mean ± std | 10.98 ± 0.09 | |
%RSD | 0.17 | %RSD | 0.15 | %RSD | 0.76 | |
Overall b | Mean ± std | 2.18 ± na | Mean ± std | 2.22 ± na | Mean ± std | 10.98 ± 0.01 |
%RSD | 0.11 | %RSD | 0.09 | %RSD | 0.09 |
Evaluation Parameter | Calibration Type | Range | Intercept | Slope | Curvature a ™ | R2 | LOQ | LOD | |
---|---|---|---|---|---|---|---|---|---|
Arginine | Area | Quadratic with Offset | 1.5–30 µmol/L | 0.085 | 1.225 | −0.0092 | 0.9973 | 0.3 µmol/L | 0.1 µmol/L |
Glucose | Area | Linear | 2–20 mg/L | 1.586 | 10.193 | 0 | 0.9991 | 1 mg/L | 30 µg/L |
Xylose | Area | Linear | 1–20 mg/L | −0.085 | 11.514 | 0 | 0.9997 | 0.25 mg/L | 8 µg/L |
Evaluation Type | Calibration Type | Range | Intercept | Curvature a | Slope | R2 | LOQ | LOD | |
---|---|---|---|---|---|---|---|---|---|
Arginine | Area | Quadratic with Offset | 25 µmol/L–7.5 mmol/L | −0.066 | 0.137 | 0.0028 | 0.9998 | 10 µmol/L | 2 µmol/L |
Glucose | Area | Quadratic with Offset | 1.5 mg/L–1 g/L | −0.002 | 0.037 | 0.0113 | 0.9993 | 1 mg/L | 0.3 mg/L |
Xylose | Area | Quadratic with Offset | 1.5 mg/L–1 g/L | −0.004 | 0.044 | 0.0069 | 0.9994 | 1 mg/L | 0.4 mg/L |
Arginine | |||
---|---|---|---|
M9’ | LB | CSL | |
5.0 µmol/L | |||
Inj #1 | 4.85 | 7.16 | 12.77 |
Inj #2 | 4.92 | 6.81 | 12.39 |
Inj #3 | 4.97 | 7.04 | 12.26 |
Mean ± std | 4.91 ± 0.06 | 7.00 ± 0.17 | 12.47 ± 0.26 |
% RSD | 1.16 | 2.49 | 2.11 |
% Recovery | 98.28 | 102.67 b | 249.48 |
15.0 µmol/L | |||
Inj #1 | 15.28 | 16.64 | 22.83 |
Inj #2 | 15.30 | 16.36 | 22.28 |
Inj #3 | 14.56 | 17.09 | 22.84 |
Mean ± std | 15.05 ± 0.42 | 16.70 ± 0.37 | 22.65 ± 0.32 |
% RSD | 2.80 | 2.21 | 1.41 |
% Recovery | 100.33 | 99.28 b | 150.99 |
15.00 a µmol/L | |||
Inj #1 | 15.01 | 16.52 | 22.63 |
Inj #2 | 15.69 | 15.61 | 22.32 |
Inj #3 | 15.01 | 16.43 | 22.68 |
Mean ± std | 15.24 ± 0.39 | 16.19 ± 0.50 | 22.55 ± 0.20 |
% RSD | 2.56 | 3.10 | 0.87 |
% Recovery | 101.58 | 96.23 b | 150.30 |
30.0 µmol/L | |||
Inj #1 | 29.50 | 32.08 | 38.91 |
Inj #2 | 28.79 | 31.84 | 37.33 |
Inj #3 | 28.52 | 30.98 | 37.08 |
Mean ± std | 28.94 ± 0.51 | 31.63 ± 0.58 | 37.78 ± 0.99 |
% RSD | 1.76 | 1.83 | 2.63 |
% Recovery | 96.46 | 99.41 b | 125.92 |
Glucose | Xylose | |||||
---|---|---|---|---|---|---|
M9’ | LB | CSL | M9’ | LB | CSL | |
2.5 mg/L | ||||||
Inj #1 | 2.51 | 2.52 | 2.44 | 2.65 | 2.52 | 2.59 |
Inj #2 | 2.59 | 2.60 | 2.65 | 2.60 | 2.49 | 2.54 |
Inj #3 | 2.48 | 2.57 | 2.45 | 2.58 | 2.59 | 2.58 |
Mean ± std | 2.52 ± 0.06 | 2.56 ± 0.04 | 2.51 ± 0.12 | 2.61 ± 0.04 | 2.53 ± 0.05 | 2.57 ± 0.03 |
%RSD | 2.30 | 1.64 | 4.83 | 1.43 | 2.14 | 1.17 |
%Recovery | 100.98 | 102.57 | 100.55 | 104.35 | 101.26 | 102.80 |
7 mg/L | ||||||
Inj #1 | 6.99 | 7.05 | 7.01 | 7.06 | 7.36 | 6.93 |
Inj #2 | 6.93 | 7.13 | 7.04 | 7.15 | 7.08 | 6.94 |
Inj #3 | 6.91 | 6.95 | 6.99 | 7.17 | 7.34 | 6.87 |
Mean ± std | 6.94 ± 0.04 | 7.05 ± 0.09 | 7.01 ± 0.03 | 7.13 ± 0.06 | 7.26 ± 0.16 | 6.91 ± 0.04 |
%RSD | 0.57 | 1.28 | 0.36 | 0.81 | 2.19 | 0.58 |
%Recovery | 99.18 | 101.13 | 100.19 | 101.84 | 103.71 | 98.76 |
12 mg/L | ||||||
Inj #1 | 12.01 | 12.19 | 12.02 | 12.00 | 12.44 | 12.31 |
Inj #2 | 11.98 | 11.71 | 11.88 | 12.31 | 12.02 | 12.32 |
Inj #3 | 11.98 | 11.74 | 12.04 | 12.15 | 12.50 | 12.25 |
Mean ± std | 11.99 ± 0.01 | 11.88 ± 0.27 | 11.98 ± 0.09 | 12.15 ± 0.16 | 12.32 ± 0.26 | 12.29 ± 0.04 |
%RSD | 0.12 | 2.26 | 0.75 | 1.28 | 2.10 | 0.33 |
%Recovery | 99.92 | 98.98 | 99.83 | 101.29 | 102.65 | 102.45 |
Arginine (mmol/L) | |||
---|---|---|---|
M9’ | LB | CSL | |
Expected: 0.125 | |||
Inj #1 | 0.124 | 0.148 | 0.128 |
Inj #2 | 0.129 | 0.149 | 0.132 |
Inj #3 | 0.131 | 0.149 | 0.132 |
Mean ± std | 0.128 ± 0.004 | 0.149 ± 0.001 | 0.131 ± 0.002 |
%RSD | 3.07 | 0.60 | 1.48 |
%Recovery | 102.40 | 103.79 b | 104.51 |
Expected: 0.750 | |||
Inj #1 | 0.808 | 0.828 | 0.792 |
Inj #2 | 0.815 | 0.821 | 0.790 |
Inj #3 | 0.803 | 0.846 | 0.780 |
Mean ± std | 0.809 ± 0.006 | 0.832 ± 0.013 | 0.788 ± 0.006 |
%RSD | 0.73 | 1.52 | 0.78 |
%Recovery | 107.80 | 108.26 b | 104.99 |
Expected: 0.750 a | |||
Inj #1 | 0.803 | 0.813 | 0.818 |
Inj #2 | 0.781 | 0.791 | 0.808 |
Inj #3 | 0.806 | 0.817 | 0.810 |
Mean ± std | 0.797 ± 0.013 | 0.807 ± 0.014 | 0.812 ± 0.006 |
%RSD | 1.66 | 1.73 | 0.69 |
%Recovery | 106.22 | 105.03 b | 108.27 |
Expected: 7.50 | |||
Inj #1 | 7.668 | 7.601 | 7.648 |
Inj #2 | 7.803 | 7.636 | 7.577 |
Inj #3 | 7.795 | 7.592 | 7.962 |
Mean ± std | 7.755 ± 0.076 | 7.610 ± 0.023 | 7.729 ± 0.205 |
%RSD | 0.97 | 0.31 | 2.65 |
%Recovery | 103.40 | 101.21 b | 103.05 |
Glucose (g/L) | Xylose (g/L) | |||||
---|---|---|---|---|---|---|
M9’ | LB | CSL | M9’ | LB | CSL | |
Expected | 0.01 | 0.05 | 0.05 | 0.01 | 0.01 | 0.05 |
Inj #1 | 0.01 | 0.05 | 0.05 | 0.01 | 0.01 | 0.05 |
Inj #2 | 0.01 | 0.05 | 0.05 | 0.01 | 0.01 | 0.05 |
Inj #3 | 0.01 | 0.05 | 0.05 | 0.010 | 0.01 | 0.05 |
Mean ± std | 0.01 ± na | 0.05 ± na | 0.052 ± na | 0.01 ± na | 0.01 ± na | 0.054 ± na |
%RSD | 3.25 | 0.33 | 0.63 | 3.49 | 1.71 | 0.70 |
%Recovery | 101.33 | 98.60 | 104.13 | 105.33 | 99.67 | 108.07 |
Expected | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Inj #1 | 0.11 | 0.11 | 0.11 | 0.10 | 0.11 | 0.11 |
Inj #2 | 0.11 | 0.11 | 0.11 | 0.10 | 0.10 | 0.11 |
Inj #3 | 0.11 | 0.11 | 0.11 | 0.10 | 0.11 | 0.11 |
Mean ± std | 0.11 ± na | 0.11 ± na | 0.11 ± na | 0.10 ± na | 0.11 ± na | 0.11 ± na |
%RSD | 0.58 | 0.31 | 1.12 | 0.24 | 1.08 | 0.72 |
%Recovery | 106.37 | 108.17 | 107.40 | 103.57 | 105.57 | 109.47 |
Expected | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Inj #1 | 1.12 | 1.01 | 1.04 | 0.95 | 0.98 | 1.01 |
Inj #2 | 1.04 | 1.05 | 1.10 | 0.98 | 0.98 | 1.00 |
Inj #3 | 1.03 | 1.05 | 1.07 | 1.01 | 1.01 | 0.98 |
Mean ± std | 1.06 ± 0.04 | 1.04 ± 0.02 | 1.07 ± 0.03 | 0.98 ± 0.03 | 0.99 ± 0.02 | 0.999 ± 0.01 |
%RSD | 3.68 | 1.72 | 2.51 | 2.52 | 1.52 | 1.17 |
%Recovery | 106.35 | 103.69 | 106.94 | 97.91 | 99.11 | 99.89 |
Day 1 | Day 2 | Day 3 | Mean ± std | %RSD | |
---|---|---|---|---|---|
Arginine (15.0 µmol/L) | 20.21 ± 0.35 | 19.53 ± 0.10 | 19.66 ± 0.33 | 19.80 ± 0.36 | 1.84 |
Glucose (7.0 mg/L) | 6.93 ± 0.01 | 7.01 ± 0.03 | 7.07 ± 0.13 | 7.00 ± 0.07 | 1.05 |
Xylose (7.0 mg/L) | 6.68 ± 0.11 | 6.91 ± 0.04 | 6.55 ± 0.12 | 6.72 ± 0.18 | 2.73 |
Day 1 | Day 2 | Day 3 | Mean ± std | %RSD | |
---|---|---|---|---|---|
Arginine (0.75 mmol/L) | 0.787 ± 0.006 | 0.810 ± 0.013 | 0.793 ± 0.001 | 0.797 ± 0.012 | 1.48 |
Glucose (0.100 g/L) | 0.105 ± 0.001 | 0.106 ± 0.001 | 0.102 ± 0.002 | 0.104 ± 0.002 | 1.61 |
Xylose (0.100 g/L) | 0.109 ± 0.001 | 0.109 ± 0.001 | 0.110 ± 0.001 | 0.109 ± 0.001 | 0.46 |
Medium | Arginine (µmol/L) | Glucose (mg/L) | ||||
---|---|---|---|---|---|---|
Expected | Mean ± std | %Recovery | Expected | Mean ± std | %Recovery | |
H2O | 5.0 | 4.87 ± 0.01 | 97.38 | 20.0 | 19.74 ± 0.19 | 98.68 |
H2O | 15.0 | 14.44 ± 0.10 | 96.29 | 10.0 | 10.28 ± 0.31 | 102.80 |
H2O a | 15.0 | 14.89 ± na | 99.24 | 10.0 | 10.40 ± 0.04 | 104.00 |
M9’ | 5.0 | 4.97 ± 0.01 | 99.34 | 20.0 | 20.02 ± 0.01 | 100.08 |
M9’ | 15.0 | 14.79 ± 0.08 | 98.60 | 10.0 | 9.61 ± 0.08 | 96.12 |
M9’ a | 15.0 | 14.61 ± 0.24 | 97.38 | 10.0 | 10.19 ± 0.19 | 101.91 |
LB | 6.82 b | 6.72 ± 0.30 | 98.52 | 20.0 | 19.90 ± 0.01 | 99.48 |
LB | 16.82 b | 16.55 ± 0.56 | 98.40 | 10.0 | 10.45 ± 0.29 | 104.53 |
LB a | 16.82 b | 16.99 ± 0.12 | 100.99 | 10.0 | 10.24 ± 0.06 | 102.36 |
Media | Arginine (µmol/L) | Xylose (mg/L) | ||||
Expected | Mean ± std | %Recovery | Expected | Mean ± std | %Recovery | |
H2O | 5.0 | 4.98 ± 0.09 | 99.60 | 20.0 | 19.45 ± 0.17 | 97.25 |
H2O | 15.0 | 15.24 ± 0.04 | 101.61 | 10.0 | 10.22 ± 0.04 | 102.17 |
H2O a | 15.0 | 15.01 ± 0.34 | 100.05 | 10.0 | 9.75 ± 0.13 | 97.47 |
M9’ | 5.0 | 4.96 ± 0.13 | 99.28 | 20.0 | 19.56 ± 0.52 | 97.78 |
M9’ | 15.0 | 14.84 ± 0.05 | 98.91 | 10.0 | 9.99 ± 0.13 | 99.88 |
M9’ a | 15.0 | 14.79 ± 0.12 | 98.63 | 10.0 | 9.63 ± 0.03 | 96.31 |
LB | 6.8 b | 6.74 ± 0.02 | 98.84 | 20.0 | 18.87 ± 0.53 | 94.37 |
LB | 16.8 b | 16.75 ± 0.15 | 99.59 | 10.0 | 10.02 ± 0.15 | 100.12 |
LB a | 16.8 b | 16.80 ± 0.08 | 99.88 | 10.0 | 9.87 ± 0.12 | 98.71 |
Medium | Arginine (µmol/L) | Glucose (mg/L) | Xylose (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
Exp. | Mean ± Std | %Recovery | Exp. | Mean ± Std | %Recovery | Exp. | Mean ± Std | %Recovery | |
H2O | 15.0 | 15.07 ± 0.18 | 100.49 | 10.0 | 9.94 ± 0.90 | 99.37 | 10.0 | 10.31 ± 0.72 | 103.07 |
M9’ | 15.0 | 14.92 ± 0.31 | 99.49 | 10.0 | 9.74 ± 0.79 | 100.86 | 10.0 | 10.09 ± 0.70 | 100.86 |
LB | 16.8 a | 16.50 ± 0.35 | 98.11 | 10.0 | 9.53 ± 0.40 | 95.27 | 10.0 | 9.56 ± 0.39 | 95.58 |
Medium | Arginine (mmol/L) | Glucose (g/L) | ||||
---|---|---|---|---|---|---|
Expected | Mean ± std | %Recovery | Expected | Mean ± std | %Recovery | |
H2O | 0.125 | 0.128 ± na | 102.40 | 1.00 | 1.00 ± 0.01 | 99.97 |
0.75 | 0.80 ± 0.02 | 107.08 | 0.10 | 0.10 ± na | 99.73 | |
7.50 | 6.77 ± 0.06 | 90.23 | 0.01 | 0.01 ± na | 93.67 | |
M9’ | 0.125 | 0.127 ± na | 101.57 | 1.00 | 1.09 ± 0.02 | 108.90 |
0.75 | 0.78 ± na | 104.92 | 0.10 | 0.09 ± na | 97.63 | |
7.50 | 7.65 ± 0.06 | 101.99 | 0.01 | 0.01 ± na | 101.00 | |
LB | 0.143 a | 0.145 ± na | 101.58 | 1.00 | 1.06 ± 0.01 | 106.42 |
0.768 a | 0.82 ± na | 106.27 | 0.10 | 0.11 ± na | 106.30 | |
7.518 a | 7.62 ± 0.02 | 101.34 | 0.05 | 0.05 ± na | 96.80 | |
CSL | 0.125 | 0.116 ± na | 92.69 | 1.00 | 1.04 ± 0.05 | 103.70 |
0.75 | 0.78 ± 0.02 | 104.93 | 0.10 | 0.11 ± na | 107.67 | |
7.50 | 7.67 ± 0.01 | 102.31 | 0.05 | 0.05 ± na | 102.07 | |
Medium | Arginine (mmol/L) | Xylose (g/L) | ||||
Expected | Mean ± std | %Recovery | Expected | Mean ± std | %Recovery | |
H2O | 0.125 | 0.124 ± na | 98.91 | 1.00 | 0.98 ± na | 98.08 |
0.75 | 0.73 ± 0.01 | 97.68 | 0.10 | 0.09 ± na | 94.20 | |
7.50 | 6.99 ± 0.01 | 93.27 | 0.01 | 0.01 ± na | 97.00 | |
M9’ | 0.125 | 0.115 ± na | 92.03 | 1.00 | 0.96 ± na | 96.54 |
0.75 | 0.74 ± na | 98.97 | 0.10 | 0.09 ± na | 96.10 | |
7.50 | 7.45 ± 0.09 | 99.30 | 0.01 | 0.01 ± na | 105.67 | |
LB | 0.143 a | 0.133 ± 0.01 | 92.90 | 1.00 | 0.97 ± 0.02 | 97.65 |
0.768 a | 0.81 ± 0.01 | 105.28 | 0.10 | 0.11 ± na | 105.00 | |
7.518 a | 7.58 ± 0.11 | 100.81 | 0.05 | 0.05 ± na | 105.00 | |
CSL | 0.125 | 0.123 ± na | 98.67 | 1.00 | 1.01 ± 0.02 | 101.35 |
0.75 | 0.69 ± 0.01 | 92.31 | 0.10 | 0.10 ± na | 101.90 | |
7.50 | 7.52 ± 0.04 | 100.25 | 0.05 | 0.05 ± na | 109.27 |
RP-UHPLC-CAD | HPAEC-IPAD | |
---|---|---|
Method | ||
Eluents | 0.4% HFBA, acetonitrile | water, 250 mM NaOH, 1 M NaOAc |
Flow rate | 0.25–0.45 mL/min | 0.75 mL/min |
Injection volume | 5 µL | 25 µL |
Total run time | 22 min | 23 min |
Start-up routine | 15 min with only nitrogen generator on. Pump priming. Gradual increase of flow rate up to initial method value. 5 min equilibration check for pump pressure and detector signal. | Eluents filtered through 0.45-µM filters and degassed 5 min with argon. Disposable gold electrode (change every week). Ref. electrode pH calibration. Pump priming. Gradual increase of flow rate up to method value. 5 min equilibration check for pump pressure and detector signal. |
Analysis (pure water) | ||
Arginine | ||
Retention time | 10.98 min | 2.26 min |
Range | 2–1300 mg/L (20–6500 ng on column) | 0.26–5.2 mg/L (6.5–131 ng on column) |
LOQ | 1.74 mg/L (8.7 ng on column) | 52 µg/L (1.3 ng on column) |
LOD | 0.35 mg/L (1.7 ng on column) | 17 µg/L (0.42 ng on column) |
Glucose | ||
Retention time | 2.17 min | 7.27 min |
Range | 1.5–1000 mg/L (7.5–5000 ng on column) | 2–20 mg/L (50–500 ng on column) |
LOQ | 1 mg/L (5 ng on column) | 1 mg/L (25 ng on column) |
LOD | 0.3 mg/L (1.5 ng on column) | 30 µg/L (0.75 ng on column) |
Xylose | ||
Retention time | 2.22 min | 7.60 min |
Range | 1.5–1000 mg/L (7.5–5000 ng on column) | 1–20 mg/L (25–500 ng on column) |
LOQ | 1 mg/L (5 ng on column) | 0.25 mg/L (6.3 ng on column) |
LOD | 0.4 mg/L (2.5 ng on column) | 8 µg/L (0.2 ng on column) |
Performance (fermentation media) | ||
Arginine | ||
Accuracy a | 101.2–104.3% | 96.2–102.7% |
Repeatability b | 0.3–3.1% | 1.2–3.1% |
Intermediate precision c | 1.5% | 1.8% |
Media | M9’, LB, CSL | M9’, LB |
Glucose | ||
Accuracy a | 91.5–108.3% | 99.0–102.6% |
Repeatability b | 1.1–4.4% | 0.1–4.8% |
Intermediate precision c | 2.5% | 1.1% |
Media | M9’, LB d, CSL d | M9’, LB, CSL |
Xylose | ||
Accuracy a | 96.2–105.8% | 98.8–104.3% |
Repeatability b | 0.2–3.5% | 0.3–2.2% |
Intermediate precision c | 1.0% | 2.7% |
Media | M9’, LB, CSL d | M9’, LB, CSL |
Component | CSL (per L) | M9’ (per L) | LB (per L) |
---|---|---|---|
Corn steep liquor | 15 g | - | - |
(NH4)2SO4 | 15 g | 5 g | - |
KH2PO4 | 1 g | 3 g | - |
Na2HPO4 | - | 12.8 g | - |
NaCl | - | 0.5 g | 10 g |
MgSO4·7H2O | 0.5 g | 1 g a | - |
FeSO4·7H2O | 20 mg | 20 mg a | - |
MnSO4·H2O | 12 mg | 12 mg a | - |
CaCl2 | - | 1 mg a | - |
Antifoam | 0.4 g | 0.2 g | - |
Tryptone | - | - | 10 g |
Yeast extract | - | - | 5 g |
Thiamine·HCl | 0.5 mg a | 0.5 mg a | - |
Tetracycline | 20 mg a | 20 mg a | 20 mg a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginésy, M.; Enman, J.; Rusanova-Naydenova, D.; Rova, U. Simultaneous Quantification of L-Arginine and Monosaccharides during Fermentation: An Advanced Chromatography Approach. Molecules 2019, 24, 802. https://doi.org/10.3390/molecules24040802
Ginésy M, Enman J, Rusanova-Naydenova D, Rova U. Simultaneous Quantification of L-Arginine and Monosaccharides during Fermentation: An Advanced Chromatography Approach. Molecules. 2019; 24(4):802. https://doi.org/10.3390/molecules24040802
Chicago/Turabian StyleGinésy, Mireille, Josefine Enman, Daniela Rusanova-Naydenova, and Ulrika Rova. 2019. "Simultaneous Quantification of L-Arginine and Monosaccharides during Fermentation: An Advanced Chromatography Approach" Molecules 24, no. 4: 802. https://doi.org/10.3390/molecules24040802
APA StyleGinésy, M., Enman, J., Rusanova-Naydenova, D., & Rova, U. (2019). Simultaneous Quantification of L-Arginine and Monosaccharides during Fermentation: An Advanced Chromatography Approach. Molecules, 24(4), 802. https://doi.org/10.3390/molecules24040802