Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Weight Loss
2.2. Firmness
2.3. Color
2.4. Dietary Fiber
2.5. Total Phenols and Antioxidant Capacity
2.6. Minerals
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of Dietary Fiber
3.3. Bread Making
3.4. Weight Loss
3.5. Firmness
3.6. Color
3.7. Dietary Fiber
3.8. Total Phenols and Antioxidant Capacity
3.9. Mineral Content
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruiz-Sánchez, E.; Bañuelos-Barrera, Y.; Bañuelos-Barrera, P.; Álvarez-Aguirre, A.; Valles-Verdín, M.M.; Domínguez-Cháves, C.J. Porcentaje de grasa corporal en escolares y su asociación con el estilo de vida y macronutrientes Body fat percentage in school students and its association with lifestyle and macronutrients. Rev. Cuid. 2015, 6, 1022–1028. [Google Scholar] [CrossRef]
- Saldívar-Cerón, H.I.; Garmendia-Ramírez, A.; Rocha-Acevedo, M.A.; Pérez-Rodríguez, P. Obesidad infantil: Factor de riesgo para desarrollar pie plano. Bol. Med. Hosp. Infant. Mex. 2015, 72, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Wyrwisz, J. The application of dietary fiber in bread products. J. Food Process. Technol. 2016, 6, 447. [Google Scholar] [CrossRef]
- Khan, A.R.; Alam, S.; Ali, S.; Bibi, S.; Khalil, A.I. Dietary fiber profile of food legumes. Sarhad J. Agric. 2007, 23, 763–766. [Google Scholar]
- Magalhães, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, A.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Oomah, B.D. Minor components on pulses and their potential impact of human health. Food Chem. 2010, 43, 462–482. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidants activity and health effects—A review. J. Funct. Food 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 11, 447–466. [Google Scholar] [CrossRef]
- Petkowicz, C.L.O.; Vriesmann, L.C.; Williams, P.A. Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocoll. 2017, 65, 57–67. [Google Scholar] [CrossRef]
- Rodríguez, R.; Jiménez, A.; Fernández-Bolaños, J.; Guillén, R.; Heredia, A. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 2006, 17, 3–15. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Bose, D.; Shams-Ud-S-Din, M. The effect of chickpea (Cicer arietinim) husk on the properties of cracker biscuits. J. Bangladesh Agril. Univ. 2010, 8, 147–152. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Waterhouse, G.I.; Quek, S.; Perera, C.O. Physicochemical properties of bread dough and finished bread with added pectin fiber and phenolic antioxidants. J. Food Sci. 2011, 76, H97–H107. [Google Scholar] [CrossRef] [PubMed]
- Torres-González, J.D.; González-Morelos, K.J.; Acevedo-Correa, D. Análisis del perfil de textura en frutas, productos cárnicos y quesos. Revista revisiones de la Ciencia, tecnología e ingeniería de los alimentos. Revista RECITEIA Revisiones Cienc. Tecnol. Ing. Alimentos 2014, 14, 63–75. [Google Scholar]
- Peighambardoust, S.H.; Aghamirzaei, M. Physicochemical, nutritional, shelflife and sensory properties of Iranian sangak bread fortified with grape seed powder. J. Food Process. Technol. 2014, 5, 381. [Google Scholar] [CrossRef]
- Correa, M.J.; Pérez, G.T.; Ferrero, C. Pectins as bread making additives: Effect on dough rheology and bread quality. Food Bioprocess. Tecnol. 2011, 5, 2889–2898. [Google Scholar] [CrossRef]
- Kurěrová, J.; Šottníková, V.; Nedomová, S. Influence of dietary addition on the rheological and sensory properties of dough and bakery products. Czech J. Food Sci. 2013, 31, 340–346. [Google Scholar] [CrossRef]
- Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT-Food Sci. Technol. 2009, 42, 1380–1389. [Google Scholar] [CrossRef]
- Almeida, E.L.; Chang, Y.K.; Steel, C.J. Dietary fibre sources in bread: Influence on techonological quality. LWT-Food Sci. Technol. 2013, 50, 545–553. [Google Scholar] [CrossRef]
- Kalapathy, U.; Proctor, A. Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin. Food Chem. 2001, 73, 393–396. [Google Scholar] [CrossRef]
- Urías-Orona, V.; Huerta-Oros, J.; Carvajal-Millán, E.; Lizardi-Mendoza, J.; Rascón-Chu, A.; Gardea, A.A. Component analysis and free radicals scavenging activity of Cicer arietinum L. husk pectin. Molecules 2010, 15, 6948–6955. [Google Scholar]
- Tosh, S.M.; Yada, S. Dietary fibres in pulses seed and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Vergara-Valencia, N.; Granados-Pérez, E.; Agama-Acevedo, E.; Tovar, J.; Ruales, J.; Bello-Pérez, L.A. Fibre concentrate from mango fruit: Characterization, associated antioxidant capacity and application as a bakery product ingredient. LWT-Food Sci. Technol. 2007, 40, 722–729. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Muy-Rangel, D.; Urías-Orona, V. Chickpea (Cicer arietinum) and soybean (Glycine max) hulls: By products with potential use as a source of high value-added food products. Waste Biomass Valorization 2017, 8, 1199–1203. [Google Scholar] [CrossRef]
- Eskicioglu, V.; Kamiloglu, S.; Nilufer, E.D. Antioxidant dietary fibres: Potential functional food ingredients from plant processing by-products. Czech J. Food Sci. 2015, 33, 487–499. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Antioxidant dietary fiber product: A new concept and a potential food ingredient. J. Agric. Food Chem. 1998, 46, 4303–4306. [Google Scholar] [CrossRef]
- Forssard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Ötles, S.; Ozgoz, S. Health effects of dietary fiber. Acta Sci. Pol. Technol. Aliment. 2014, 13, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Niño-Medina, G.; Gutiérrez-Soto, G.; Urías-Orona, V.; Hernández-Luna, C.E. Effect of laccase from Trametes maxima CU1 on physicochemical quality of bread. Cogent Food Agric. 2017, 3, 132876. [Google Scholar] [CrossRef]
- Demirkensen, I.; Sumnu, G.; Sahin, S. Quality of gluten free bread formulations baked in different ovens. Food Bioprocess. Technol. 2013, 6, 746–753. [Google Scholar] [CrossRef]
- Jacobs, M.S.; Izydorczyk, M.S.; Preston, K.R.; Dexter, J.E. Evaluation of baking procedures for incorporation of barley roller milling fractions containing high levels of dietary fibre into bread. J. Sci. Food Agric. 2008, 88, 558–568. [Google Scholar] [CrossRef]
- ColorHexa, Color Encyclopedia: Information and Conversion, 2018, Computer Software. Available online: http://www.colorhexa. com/ (accessed on 12 December 2018).
- Dang, T.T.; Vasanthan, T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking. Food Hydrocoll. 2019, 89, 773–782. [Google Scholar] [CrossRef]
- López-Contreras, J.J.; Zavala-García, F.; Urías-Orona, V.; Martínez-Ávila, G.C.G.; Rojas, R.; Niño-Medina, G. Chromatic, phenolic and antioxidant properties of sorghum bicolor genotypes. Not. Bot. Horti Agrobot. Cluj-Na. 2015, 43, 366–370. [Google Scholar]
- Association of Official Analytical Chemist International (AOAC). Official Methods of Analysis of AOAC International 1998, 16th ed.; 4th revision; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Treatment | Weight Loss (%) | ||
---|---|---|---|
Day 1 | Day 2 | Day 3 | |
Bread Control (0% DF) | 0.45 ± 0.01 a | 0.91 ± 0.01 a | 1.38 ± 0.01 a |
Bread + 0.15% SDF | 0.43 ± 0.01 a,b | 0.79 ± 0.01 b | 1.19 ± 0.01 b,c |
Bread + 0.15% CDF | 0.48 ± 0.01 a | 0.84 ± 0.02 a,b | 1.20 ± 0.03 a,b |
Bread + 0.3% SDF | 0.37 ± 0.01 b,c,d | 0.69 ± 0.01 c | 1.09 ± 0.03 c,d |
Bread + 0.3% CDF | 0.41 ± 0.01 a,b,c | 0.82 ± 0.01 b | 1.18 ± 0.02 b,c |
Bread + 1.5% SDF | 0.29 ± 0.03 e | 0.72 ± 0.01 c | 1.12 ± 0.03 b,c |
Bread + 1.5% CDF | 0.30 ± 0.02 d,e | 0.70 ± 0.01 c | 1.06 ± 0.01 c,d |
Bread + 2% SDF | 0.32 ± 0.01 d,e | 0.37 ± 0.01 e | 0.77 ± 0.08 e |
Bread + 2% CDF | 0.35 ± 0.02 c,d,e | 0.58 ± 0.02 d | 0.94 ± 0.01 d |
Treatment | Firmness (N) | |||
---|---|---|---|---|
Day 0 | Day 1 | Day 2 | Day 3 | |
Bread Control (0% DF) | 39.0 ± 1.3 a | 76.9 ± 1.1 a | 114.5 ± 0.7 a | 125.4 ± 2.7 a |
Bread + 0.15% SDF | 39.1 ± 1.5 a | 77.0 ± 0.2 a | 114.4 ± 1.3 a | 125.4 ± 2.7 a |
Bread + 0.15% CDF | 39.0 ± 0.3 a | 76.0 ± 0.2 a | 113.4 ± 1.9 a | 126.3 ± 2.2 a |
Bread + 0.3% SDF | 38.0 ± 3.4 a,b | 75.6 ± 1.7 a | 114.0 ± 1.4 a | 125.0 ± 1.4 a |
Bread + 0.3% CDF | 38.0 ± 1.2 a | 76.0 ± 1.2 a | 113.9 ± 1.3 a | 124.0 ± 2.8 a |
Bread + 1.5% SDF | 31.1 ± 2.8 b | 69.5 ± 1.6 b | 100.3 ± 2.0 b | 109.0 ± 2.0 b |
Bread + 1.5% CDF | 35.8 ± 2.0 a,b | 73.9 ± 1.3 a,b | 96.7 ± 0.2 b | 106.4 ± 3.0 b |
Bread + 2% SDF | 35.8 ± 1.0 b | 57.5 ± 1.6 c | 63.9 ± 0.3 c | 86.0 ± 3.5 c |
Bread + 2% CDF | 38.8 ± 0.5 a | 52.9 ± 0.4 c | 65.9 ± 1.5 c | 84.4 ± 0.8 c |
Storage Period | Treatment | Chromatic Parameter | |||
---|---|---|---|---|---|
L* | a* | b* | Color View | ||
Day 0 | Bread Control (0% DF) | 64.2 ± 0.5 a | 13.4 ± 0.2 a | 32.9 ± 0.3 a | |
Bread + 2% SDF | 67.7 ± 4.0 a | 11.9 ± 1.7 a,b | 28.6 ± 1.9 b | ||
Bread + 2% CDF | 70.8 ± 2.3 a | 9.2 ± 0.9 b | 27.1 ± 0.2 b | ||
Day 1 | Bread Control (0% DF) | 67.0 ± 6.0 a | 10.9 ± 2.9 a | 29.0 ± 1.8 a | |
Bread + 2% SDF | 72.8 ± 0.2 a | 7.1 ± 1.0 a | 25.7 ± 1.6 a | ||
Bread + 2% CDF | 70.8 ± 6.7 a | 8.5 ± 5.0 a | 26.8 ± 4.0 a | ||
Day 2 | Bread Control (0% DF) | 66.4 ± 3.0 a | 10.6 ± 2.2 a | 27.2± 4.3 a | |
Bread + 2% SDF | 67.2 ± 0.2 a | 10.2 ± 0.2 a | 39.8 ± 3.2 a | ||
Bread + 2% CDF | 72.1 ± 1.8 a | 8.1 ± 1.8 a | 27.8 ± 0.4 a | ||
Day 3 | Bread Control (0% DF) | 63.6 ± 0.9 a | 11.7 ± 1.2 a | 29.5 ± 2.0 a | |
Bread + 2% SDF | 60.9 ± 5.8 a | 12.1 ± 2.2 a | 29.9 ± 0.7 a | ||
Bread + 2% CDF | 66.3 ± 6.2 a | 9.8 ± 3.2 a | 28.7 ± 1.5 a |
Treatment | Dietary Fiber (%) | ||
---|---|---|---|
Insoluble | Soluble | Total | |
Bread Control (0% DF) | 2.3 ± 0.2 a | 2.6 ± 0.1 b | 4.9 ± 0.3 b |
Bread + 2% SDF | 3.1 ± 0.1 a | 4.1 ± 0.3 a | 7.1 ± 0.3 a |
Bread + 2% CDF | 2.7 ± 0.3 a | 4.2 ± 0.2 a | 6.9 ± 0.6 a |
Treatment | Total Phenols (mgGAE/kg) | Antioxidant Capacity (μmolTE/kg) | ||
---|---|---|---|---|
DPPH | ABTS | FRAP | ||
Bread Control (0% DF) | 232 ± 29 c | 354 ± 40 b | 1445 ± 146 b | 819 ± 72 c |
Bread + 2% SDF | 1036 ± 5 b | 1097 ± 36 a | 2567 ± 94 a | 1800 ± 5 b |
Bread + 2% CDF | 1102 ± 6 a | 1168 ± 88 a | 3025 ± 626 a | 1247 ± 29 a |
Treatment | Minerals (mg/100 g) | |||
---|---|---|---|---|
Na | K | Ca | Mg | |
Bread Control (0% DF) | 9032 ± 141 a | 1995 ± 21 a | 1956 ± 28 b | 393 ± 4 a |
Bread + 2% SDF | 9747 ± 46 a | 2017 ± 93 a | 2154 ± 30 a | 417 ± 3 a |
Bread + 2% CDF | 9684 ± 317 a | 2059 ± 36 a | 1991 ± 32 b | 391 ± 9 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niño-Medina, G.; Muy-Rangel, D.; de la Garza, A.L.; Rubio-Carrasco, W.; Pérez-Meza, B.; Araujo-Chapa, A.P.; Gutiérrez-Álvarez, K.A.; Urías-Orona, V. Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties. Molecules 2019, 24, 991. https://doi.org/10.3390/molecules24050991
Niño-Medina G, Muy-Rangel D, de la Garza AL, Rubio-Carrasco W, Pérez-Meza B, Araujo-Chapa AP, Gutiérrez-Álvarez KA, Urías-Orona V. Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties. Molecules. 2019; 24(5):991. https://doi.org/10.3390/molecules24050991
Chicago/Turabian StyleNiño-Medina, Guillermo, Dolores Muy-Rangel, Ana Laura de la Garza, Werner Rubio-Carrasco, Briceida Pérez-Meza, Ana P. Araujo-Chapa, Kelsy A. Gutiérrez-Álvarez, and Vania Urías-Orona. 2019. "Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties" Molecules 24, no. 5: 991. https://doi.org/10.3390/molecules24050991
APA StyleNiño-Medina, G., Muy-Rangel, D., de la Garza, A. L., Rubio-Carrasco, W., Pérez-Meza, B., Araujo-Chapa, A. P., Gutiérrez-Álvarez, K. A., & Urías-Orona, V. (2019). Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties. Molecules, 24(5), 991. https://doi.org/10.3390/molecules24050991