Study of Catalytic CO2 Absorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals
Abstract
:1. Introduction
2. Theory
2.1. Reaction Scheme, and Suitable Mechanisms of CO2-R3N Interaction
2.2. Role of Solid Alkalis Chemicals for Absorption
2.3. Role of Lewis Acid and BrØnsted Acid for CO2 Desorption
3. Materials and Experimental Methods
3.1. Chemicals
3.2. pKa Analysis
3.3. CO2 Absorption Process with Absorption Profiles
3.4. CO2 Desorption Tests with Heat Duty Calculation
4. Results and Discussions
4.1. The Critical Point of CO2 Absorption Curve of DEEA and 1-DMA-2P at 293 K, Affected by Equilibrium Solubility
4.2. The pKa of DEEA and 1-DMA-2P at 293 K
4.3. The CO2 Absorption Profiles with Initial Absorption Rates
4.4. The Effect of Solid Base to CO2 Absorption to Tertiary Amine DEEA and 1DMA-2P with Comparison to MEA and DEA
4.5. The CO2 Desorption Profiles with Heat Duty Analyses
4.6. The Effect of Solid Acid to Tertiary Amine DEEA and 1DMA-2P and Compared with MEA and DEA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Afkhamipour, M.; Mofarahi, M. A modeling-optimization framework for assessment of CO2 absorption capacity by novel amine solutions: 1DMA2P, 1DEA2P, DEEA, and DEAB. J. Clean. Prod. 2018, 171, 234–249. [Google Scholar]
- Liang, Z.; Rongwong, W.; Liu, H.; Fu, K.; Gao, H.; Cao, F.; Zhang, R.; Sema, T.; Henni, A.; Sumon, K.; et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. Int. J. Greenh. Gas Control 2015, 40, 26–54. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xiao, M.; Tontiwachwuthikul, P.; Liang, Z. A Novel Model for Correlation and Predication of the Equilibrium CO2 Solubility in Seven Tertiary Solvents. Energy Procedia 2017, 105, 4476–4481. [Google Scholar] [CrossRef]
- Mofarahi, M.; Khojasteh, Y.; Khaledi, H.; Farahnak, A. Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy 2008, 33, 1311–1319. [Google Scholar] [CrossRef]
- Min Xiao, H.L. Raphael Idem, Paitoon Tontiwachwuthikul, Zhiwu Liang, A study of structure–activity relationships of commercial tertiary amines for post-combustion CO2 capture. Appl. Energy 2016, 184, 219–229. [Google Scholar] [CrossRef]
- Shi, H.C.; Naami, A.; Idem, R.; Tontiwachwuthikul, P. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. Int. J. Greenh. Gas Control 2014, 26, 39–50. [Google Scholar] [CrossRef]
- Srisang, W.; Pouryousefi, F.; Osei, P.A.; Decardi-Nelson, B.; Akachuku, A.; Tontiwachwuthikul, P.; Idem, R. CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines. Int. J. Greenh. Gas Control 2018, 69, 52–59. [Google Scholar] [CrossRef]
- Srisang, W.; Pouryousefi, F.; Osei, P.A.; Decardi-Nelson, B.; Akachuku, A.; Tontiwachwuthikul, P.; Idem, R. Evaluation of the heat duty of catalyst aided amine post combustion CO2 capture. Chem. Eng. Sci. 2017, 170, 48–57. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhang, X.; Gao, H.X.; Liang, Z.W.; Idem, R.; Tontiwachwuthikul, P. Investigation of CO2 Regeneration in Single and Blended Amine Solvents with and without Catalyst. Ind. Eng. Chem. Res. 2017, 56, 7656–7664. [Google Scholar] [CrossRef]
- Luo, X.; Chen, N.; Liu, S.; Rongwong, W.; Idem, R.O.; Tontiwachwuthikul, P.; Liang, Z. Experiments and modeling of vapor-liquid equilibrium data in DEEA-CO2-H2O system. Int. J. Greenh. Gas Control 2016, 53, 160–168. [Google Scholar] [CrossRef]
- Rayer, A.V.; Sumon, K.Z.; Jaffari, L.; Henni, A. Dissociation Constants (pKa) of Tertiary and Cyclic Amines: Structural and Temperature Dependences. J. Chem. Eng. Data 2014, 59, 3805–3813. [Google Scholar] [CrossRef]
- Xu, B.; Gao, H.; Luo, X.; Liao, H.; Liang, Z. Mass transfer performance of CO2 absorption into aqueous DEEA in packed columns. Int. J. Greenh. Gas Control 2016, 51, 11–17. [Google Scholar] [CrossRef]
- Kadiwala, S.; Rayer, A.V.; Henni, A. Kinetics of carbon dioxide (CO2) with ethylenediamine, 3-amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-dimethylamino-1-propanol in water using stopped-flow technique. Chem. Eng. J. 2012, 179, 262–271. [Google Scholar] [CrossRef]
- Liang, Y.J.; Liu, H.L.; Rongwong, W.; Liang, Z.W.; Idem, R.; Tontiwachwuthikul, P. Solubility, absorption heat and mass transfer studies of CO2 absorption into aqueous solution of 1-dimethylamino-2-propanol. Fuel 2015, 144, 121–129. [Google Scholar] [CrossRef]
- Liu, H.; Gao, H.; Idem, R.; Tontiwachwuthikul, P.; Liang, Z. Analysis of CO2 solubility and absorption heat into 1-dimethylamino-2-propanol solution. Chem. Eng. Sci. 2017, 170, 3–15. [Google Scholar] [CrossRef]
- Hamborg, E.S.; Versteeg, G.F. Dissociation Constants and Thermodynamic Properties of Amines and Alkanolamines from (293−353) K. Chem. Eng. Data 2009, 54, 1318–1328. [Google Scholar] [CrossRef]
- Liu, H.; Idem, R.; Tontiwachwuthikul, P.; Liang, Z. Study of Ion Speciation of CO2 Absorption into Aqueous 1-Dimethylamino-2-propanol Solution Using the NMR Technique. Ind. Eng. Chem. Res. 2017, 56, 8697–8704. [Google Scholar] [CrossRef]
- Narku-Tetteh, J.; Afari, D.B.; Coker, J.; Idem, R. Evaluation of the Roles of Absorber and Desorber Catalysts in the Heat Duty and Heat of CO2 Desorption from Butylethanolamine–2-Amino-2-methyl-1-propanol and Monoethanolamine–Methyldiethanolamine Solvent Blends in a Bench-Scale CO2 Capture Pilot Plant. Energy Fuels 2018, 32, 9711–9726. [Google Scholar] [CrossRef]
- Idem, R.; Shi, H.; Gelowitz, D.; Tontiwachwuthikul, P. Catalytic Method and Apparatus for Separation Gaseous Component from an Incoming Gas Stream. U.S. Patent US 2013/0108532 A1, 2 May 2013. [Google Scholar]
- Shi, H.C.; Zhou, Y.L.; Zuo, Y.H.; Cui, L.F.; Idem, R.; Tontiwachwuthikul, P. Heterogeneous catalysis of CO2-diethanolamine absorption with MgCO3 and CaCO3 and comparing to non-catalytic CO2-monoethanolamine interactions. React. Kinet. Mech. Catal. 2017, 122, 539–555. [Google Scholar] [CrossRef]
- Liang, Z.W.; Idem, R.; Tontiwachwuthikul, P.; Yu, F.H.; Liu, H.L.; Rongwong, W. Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts. AIChE J. 2016, 62, 753–765. [Google Scholar] [CrossRef]
- Shi, H.C.; Zhou, Y.L.; Si, M.Y.; Zuo, Y.H.; Kang, S.F.; Wang, Y.G.; Cui, L.F.; Idem, R.; Tontiwachwuthikul, P.; Liang, Z.W. Amine Regeneration tests on MEA, DEA and MMEA with respect to carbamate stability analyses. Can. J. Chem. Eng. 2017, 95, 1471–1479. [Google Scholar] [CrossRef]
- Decardi-Nelson, B.; Akachuku, A.; Osei, P.; Srisang, W.; Pouryousefi, F.; Idem, R. A flexible and robust model for low temperature catalytic desorption of CO2 from CO2-loaded amines over solid acid catalysts. Chem. Eng. Sci. 2017, 170, 518–529. [Google Scholar] [CrossRef]
- Bhatti, U.H.; Shah, A.K.; Kim, J.N.; You, J.K.; Choi, S.H.; Lim, D.H.; Nam, S.; Park, Y.H.; Baek, H. Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process. ACS Sustain. Chem. Eng. 2017, 5, 5862–5868. [Google Scholar] [CrossRef]
- Qinghua, L.; Sam, T.; Mohammed, A.A.; Huaigang, C.; Armistead, G.R.; Hertanto, A.; Maciej, R.; Maohong, F. Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nat. Commun. 2018, 9, 2672. [Google Scholar]
- Shi, H.C.; Zheng, L.N.; Huang, M.; Zuo, Y.H.; Kang, S.F.; Huang, Y.D.; Idem, R.; Tontiwachwuthikul, P. Catalytic-CO2-Desorption Studies of DEA and DEA-MEA Blended Solutions with the Aid of Lewis and Bronsted Acids. Ind. Eng. Chem. Res. 2018, 57, 11505–11516. [Google Scholar] [CrossRef]
- Teerawat Sema, A.N. Zhiwu Liang, Huancong Shi, Aravind V Rayer, Kazi Z Sumon, Pathamaporn Wattanaphan, Amr Henni, Raphael Idem, Chintana Saiwan, Paitoon Tontiwachwuthikul, Part 5b: Solvent chemistry: Reaction kinetics of CO2 absorptoin into reactive amine solutions. Carbon Manag. 2012, 3, 201–220. [Google Scholar]
- Caplow, M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 1968, 90, 6795–6803. [Google Scholar] [CrossRef]
- Aboudheir, A.; Tontiwachwuthikul, P.; Chakma, A.; Idem, R. Kinetics of the reactive absorption of carbon dioxide in high CO2 -loaded, concentrated aqueous monoethanolamine solutions. Chem. Eng. Sci. 2003, 58, 5195–5210. [Google Scholar] [CrossRef]
- Donaldson, T.L.; Nguyen, N.Y. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind. Eng. Chem. Fundam. 1980, 19, 260–266. [Google Scholar] [CrossRef]
- Yu, W.C.; Astarita, G.; Savage, D.W. Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine. Chem. Eng. Sci. 1985, 40, 1585–1590. [Google Scholar] [CrossRef]
- Shi, H.C.; Naami, A.; Idem, R.; Tontiwachwuthikul, P. 1D NMR Analysis of a Quaternary MEA-DEAB-CO2-H2O Amine System: Liquid Phase Speciation and Vapor-Liquid Equilibria at CO2 Absorption and Solvent Regeneration Conditions. Ind. Eng. Chem. Res. 2014, 53, 8577–8591. [Google Scholar] [CrossRef]
- Narku-Tetteh, J.; Muchan, P.; Saiwan, C.; Supap, T.; Idem, R. Selection of components for formulation of amine blends for post combustion CO2 capture based on the side chain structure of primary, secondary and tertiary amines. Chem. Eng. Sci. 2017, 170, 542–560. [Google Scholar] [CrossRef]
- Muchan, P.; Saiwan, C.; Narku-Tetteh, J.; Idem, R.; Supap, T.; Tontiwachwuthikul, P. Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. Chem. Eng. Sci. 2017, 170, 574–582. [Google Scholar] [CrossRef]
- Singto, S.; Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Tantayanon, S.; Al-Marri, M.J.; Benamor, A. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep. Purif. Technol. 2016, 167, 97–107. [Google Scholar] [CrossRef]
- Horwitz, W. Association of Official Analytical Chemists (AOAC) Methods; George Banta Co.: Menasha, WI, USA, 1975. [Google Scholar]
- Shi, H.C.; Zheng, L.N.; Huang, M.; Zuo, Y.H.; Li, M.Y.; Jiang, L.H.; Idem, R.; Tontiwachwuthikul, P. CO2 desorption tests of blended monoethanolamine-diethanolamine solutions to discover novel energy efficient solvents. Asia-Pac. J. Chem. Eng. 2018, 13, e2186–e2199. [Google Scholar] [CrossRef]
- Uyan, M.; Sieder, G.; Ingram, T.; Held, C. Predicting CO2 solubility in aqueous N-methyldiethanolamine solutions with ePC-SAFT. Fluid Phase Equilib. 2015, 393, 91–100. [Google Scholar] [CrossRef]
- Wangler, A.; Sieder, G.; Ingram, T.; Heilig, M.; Held, C. Prediction of CO2 and H2S solubility and enthalpy of absorption in reacting N-methyldiethanolamine /water systems with ePC-SAFT. Fluid Phase Equilib. 2018, 461, 15–27. [Google Scholar] [CrossRef]
- Afari, D.B.; Coker, J.; Narku-Tetteh, J.; Idem, R. Comparative kinetic studies of solid absorber catalyst (K/MgO) and solid desorber catalyst (HZSM-5)-aided CO2 absorption and desorption from aqueous solutions of MEA and blended solutions of BEA-AMP and MEA-MDEA. Ind. Eng. Chem. Res. 2018, 57, 15824–15839. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors, the solid catalysts are commercially available, and the amines are also commercial available to prepare solutions. |
Amine | Predicted pKa | Reference | Measured This Work |
---|---|---|---|
DEEA | 9.60 (298 K) [5] | 9.73 (298 K) [11] 9.82 (293 K) [11] | 9.82 (293 K) |
1DMA-2P | 9.20 (298 K) [5] | 9.67 (301 K) [17] 9.41 (298 K) [15] | 9.51 (293 K) |
Amine Solvents | CaCO3 (g) | MgCO3 (g) |
---|---|---|
1.0 M DEEA | 7.5 | 10 |
1.5 M DEEA | 7.5 | 5 |
1.0 M 1DMA-2P | 7.5 | 10 |
1.5 M 1DMA-2P | 10 | 5 |
Amine Solvents | Optimized Catalysts | Heat Duty (kJ/mol CO2) | ||
---|---|---|---|---|
Optimized Catalysis | Non-Catalyst | Ratio (%) | ||
DEEA 1.0 mol/L | 7.5 g γ-Al2O3 | 1741.8 | 2004.2 | 86.91% |
10 g HZSM-5 | 1685.7 | 2004.2 | 84.11% | |
1.5 mol/L | 7.5 g γ-Al2O3 | 1032.8 | 1136.9 | 90.84% |
10 g HZSM-5 | 945.0 | 1136.9 | 83.12% | |
2.0 mol/L | 7.5 g γ-Al2O3 | 640.3 | 703.4 | 91.03% |
10 g HZSM-5 | 606.5 | 703.4 | 86.22% | |
1DMA-2P 1.0 mol/L | 10 g γ-Al2O3 | 1401.3 | 1427.0 | 98.20% |
10 g HZSM-5 | 1352.6 | 1427.0 | 94.78% | |
1.5 mol/L | 7.5 g γ-Al2O3 | 816.3 | 1040.2 | 78.48% |
10 g HZSM-5 | 760.5 | 1040.2 | 73.11% | |
2.0 mol/L | 10 g γ-Al2O3 | 545.0 | 616.5 | 88.40% |
10 g HZSM-5 | 522.1 | 616.5 | 84.69% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Huang, M.; Wu, Q.; Zheng, L.; Cui, L.; Zhang, S.; Tontiwachwuthikul, P. Study of Catalytic CO2 Absorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals. Molecules 2019, 24, 1009. https://doi.org/10.3390/molecules24061009
Shi H, Huang M, Wu Q, Zheng L, Cui L, Zhang S, Tontiwachwuthikul P. Study of Catalytic CO2 Absorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals. Molecules. 2019; 24(6):1009. https://doi.org/10.3390/molecules24061009
Chicago/Turabian StyleShi, Huancong, Min Huang, Qiming Wu, Linna Zheng, Lifeng Cui, Shuping Zhang, and Paitoon Tontiwachwuthikul. 2019. "Study of Catalytic CO2 Absorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals" Molecules 24, no. 6: 1009. https://doi.org/10.3390/molecules24061009
APA StyleShi, H., Huang, M., Wu, Q., Zheng, L., Cui, L., Zhang, S., & Tontiwachwuthikul, P. (2019). Study of Catalytic CO2 Absorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals. Molecules, 24(6), 1009. https://doi.org/10.3390/molecules24061009