Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH)
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tiwari, M.; Sahu, S.K.; Pandit, G.G. Distribution of PAHs in different compartment of creek ecosystem: Ecotoxicological concern and human health risk. Environ. Toxicol. Pharmacol. 2017, 50, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.; Sahu, S.K.; Pandit, G.G. Inhalation risk assessment of PAH exposure due to combustion aerosols generated from household fuels. Aerosol Air Qual. Res. 2015, 15, 582–590. [Google Scholar] [CrossRef]
- Keith, L.; Telliard, W. ES&T. Special Report Priority pollutants: I-a perspective view. Environ. Sci. Technol. 1979, 13, 416–423. [Google Scholar]
- Keith, L.H. The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Compd. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Andersson, J.T.; Achten, C. A Critical Look at the 16 EPA PAHs. Polycycl. Aromat. Compd. 2015, 35, 143–146. [Google Scholar] [CrossRef]
- Andersson, J.T.; Achten, C. Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycycl. Aromat. Compd. 2015, 35, 330–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samburova, V.; Zielinska, B.; Khlystov, A. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? Toxics 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme (UNEP). Guidance for a Global Monitoring Programme for Persistent Organic Pollutants; UNEP: Nairobi, Kenya, 2004. [Google Scholar]
- Stogiannidis, E.; Laane, R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Rev. Environ. Contam. Toxicol. 2015, 234, 49–133. [Google Scholar] [PubMed]
- Abdel-Shafy, H.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyp. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Huang, Y.; Wang, R.; Zhu, D.; Li, W.; Shen, G.; Wang, B.; Zhang, Y.; Chen, Y.; Lu, Y.; et al. Global Atmospheric Emissions of Polycyclic Aromatic Hydrocarbons from 1960 to 2008 and Future Predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Man, P.L.; Totton, T.S.; Sander, M.; Shirley, R.A.; Kraft, M. New polycyclic aromatic hydrocarbon (PAH) surface processes to improve the model prediction of the composition of combustion-generated PAHs and soot. Carbon 2010, 48, 319–332. [Google Scholar] [CrossRef]
- Frenklach, M. Reaction mechanism of soot formation in flames. Proc. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. [Google Scholar] [CrossRef]
- Georganta, E.; Rahman, R.; Raj, A. Growth of polycyclic aromatic hydrocarbons (PAHs) by methyl radicals: Pyrene formation from phenanthrene. Combust. Flame 2017, 85, 129–141. [Google Scholar] [CrossRef]
- Hansen, N.; Schenk, M.; Moshammer, K.; Kohse-Höinghaus, K. Investigating repetitive reaction pathways for the formation of polycyclic aromatic hydrocarbons in combustion processes. Combust. Flame 2017, 180, 250–261. [Google Scholar] [CrossRef]
- Hansen, N.; Miller, J.A.; Klippenstein, S.J.; Westmoreland, P.R.; Kohse-Höinghaus, K. Exploring formation pathways of aromatic compounds in laboratory-based model flames of aliphatic fuels. Combust. Explos. Shock Waves 2012, 48, 508–515. [Google Scholar] [CrossRef]
- Hansen, N.; Li, W.; Law, M.E.; Kasper, T.; Westmoreland, P.R.; Yang, B.; Cool, T.A.; Lucassen, A. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Phys. Chem. Chem. Phys. 2010, 12, 12112–12122. [Google Scholar] [CrossRef] [PubMed]
- McEnally, C.; Pfefferle, L.; Atakan, B.; Kohse-Höinghaus, K. Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Prog. Energy Combust. Sci. 2006, 32, 247–294. [Google Scholar] [CrossRef]
- Richter, H.; Howard, J.B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways. Prog. Energy Combust. Sci. 2000, 26, 565–608. [Google Scholar] [CrossRef]
- Cavallotti, C.; Polino, D. On the kinetics of the C5H5 + C5H5 reaction. Proc. Combust. Inst. 2013, 34, 557–564. [Google Scholar] [CrossRef]
- Wang, H.; Frenklach, M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame 1997, 110, 173–221. [Google Scholar] [CrossRef]
- Raj, A.; Prada, I.D.C.; Amer, A.A.; Chung, S.H. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combust. Flame 2012, 159, 500–515. [Google Scholar] [CrossRef]
- Thomas Mckinnon, J.; Howard, J.B. The roles of pah and acetylene in soot nucleation and growth. Symp. Combust. 1992, 24, 965–971. [Google Scholar] [CrossRef]
- D’Anna, A.; Violi, A. A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Symp. Combust. 1998, 27, 425–433. [Google Scholar] [CrossRef]
- Kislov, V.V.; Sadovnikov, A.I.; Mebel, A.M. Formation Mechanism of Polycyclic Aromatic Hydrocarbons beyond the Second Aromatic Ring. J. Phys. Chem. A 2013, 117, 4794–4816. [Google Scholar] [CrossRef] [PubMed]
- Shukla, B.; Koshi, M. A novel route for PAH growth in HACA based mechanisms. Combust. Flame 2012, 159, 3589–3596. [Google Scholar] [CrossRef]
- Miller, J.A.; Melius, C.F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combust. Flame 1992, 91, 21–39. [Google Scholar] [CrossRef]
- Lindstedt, P.; Maurice, L.; Meyer, M. Thermodynamic and kinetic issues in the formation and oxidation of aromatic species. Faraday Discuss. 2001, 119, 409–432. [Google Scholar] [CrossRef]
- Raj, A.; Al Rashidi, M.J.; Chung, S.; Sarathy, S. PAH Growth Initiated by Propargyl Addition: Mechanism Development and Computational Kinetics. J. Phys. Chem. A 2014, 118, 2865–2885. [Google Scholar] [CrossRef] [PubMed]
- Melius, C.F.; Colvin, M.E.; Marinov, N.M.; Pit, W.J.; Senkan, S.M. Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety. Symp. Combust. 1996, 26, 685–692. [Google Scholar] [CrossRef]
- Kim, D.H.; Mulholland, J.A.; Wang, D.; Violi, A. Pyrolytic Hydrocarbon Growth from Cyclopentadiene. J. Phys. Chem. A 2010, 114, 12411–12416. [Google Scholar] [CrossRef] [PubMed]
- Frenklach, M.; Yuan, T.; Ramachandra, M.K. Soot formation in binary hydrocarbon mixtures. Energy & Fuels 1988, 2, 462–480. [Google Scholar]
- Froese, R.; Coxon, J.; West, S.; Morokuma, K. Theoretical Studies of Diels−Alder Reactions of Acetylenic Compounds. J. Org. Chem. 1997, 62, 6991–6996. [Google Scholar] [CrossRef]
- Siegmann, K.; Sattler, K. Formation mechanism for polycyclic aromatic hydrocarbons in methane flames. J. Chem. Phys. 1999, 112, 698. [Google Scholar] [CrossRef]
- Kislov, V.; Islamova, N.; Kolker, A.M.; Lin, S.H.; Mebel, A.M. Hydrogen Abstraction Acetylene Addition and Diels−Alder Mechanisms of PAH Formation: A Detailed Study Using First Principles Calculations. J. Chem. Theory Comput. 2005, 1, 908–924. [Google Scholar] [CrossRef] [PubMed]
- Shukla, B.; Susa, A.; Miyoshi, A.; Koshi, M. Role of Phenyl Radicals in the Growth of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 2008, 112, 2362–2369. [Google Scholar] [CrossRef] [PubMed]
- Shukla, B.; Koshi, M. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 2010, 12, 2427. [Google Scholar] [CrossRef] [PubMed]
- Shukla, B.; Miyoshi, A.; Koshi, M. Role of Methyl Radicals in the Growth of PAHs. J. Am. Soc. Mass Spectrom. 2010, 21, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Comandini, A.; Abid, S.; Chaumeix, N. Polycyclic Aromatic Hydrocarbon Growth by Diradical Cycloaddition/Fragmentation. J. Phys. Chem. A 2017, 21, 5921–5931. [Google Scholar] [CrossRef] [PubMed]
- Desgroux, P.; Mercier, X.; Thomson, K. Study of the formation of soot and its precursors in flames using optical diagnostics. Proc. Combust. Inst. 2013, 34, 1713–1738. [Google Scholar] [CrossRef]
- Raj, A.; Celnik, M.; Shirley, R.; Sander, M. A statistical approach to develop a detailed soot growth model using PAH characteristics. Combust. Flame 2009, 56, 896–913. [Google Scholar] [CrossRef]
- Shukla, B.; Susa, A.; Miyoshi, A.; Koshi, M. In Situ Direct Sampling Mass Spectrometric Study on Formation of Polycyclic Aromatic Hydrocarbons in Toluene Pyrolysis. J. Phys. Chem. A 2007, 111, 8308–8324. [Google Scholar] [CrossRef] [PubMed]
- Bauschlicher, J.C.; Ricca, A. Mechanisms for polycyclic aromatic hydrocarbon (PAH) growth. Chem. Phys. Lett. 2000, 326, 283–287. [Google Scholar] [CrossRef]
- Xu, F.; Shi, X.; Zhang, Q.; Wang, W. Mechanism for the growth of polycyclic aromatic hydrocarbons from the reactions of naphthalene with cyclopentadienyl and indenyl. Chemosphere 2016, 162, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Shi, X.; Sun, Y.; Zhang, Q.; Wang, W. The growth mechanism of polycyclic aromatic hydrocarbons from the reactions of anthracene and phenanthrene with cyclopentadienyl and indenyl. Chemosphere 2017, 189, 265–276. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Monogrpah on the Evaluation of Carcinogenic Risks to Human; List of Classifications; IARC: Lyon, France, 2018. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.B.; Schlegel, H.; Scuseria, G.E.; Robb, M.A.; Cheeseman, R.; Montgomery, J.J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, G.D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Montgomery, J.A.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. J. Chem. Phys. 1994, 101, 5900–5909. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Hou, D.; You, X. Reaction kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by H atoms. Phys. Chem. Chem. Phys. 2017, 19, 30772–30780. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R. Searching for zwitterionic intermediates in Hetero Diels–Alder reactions between methyl α,p-dinitrocinnamate and vinyl-alkyl ethers. Comput. Theor. Chem. 2014, 1046, 93–98. [Google Scholar] [CrossRef]
- Gonzales, C.; Schlegel, H.B. Reaction Path Following in Mass-Wighted Internal Coordinates. J. Phys. Chem. A 1990, 90, 2154. [Google Scholar]
- Burns, D.M.; Iball, I. The bond lengths in chrysene. Acta Crystallogr. 1956, 9, 314–315. [Google Scholar] [CrossRef] [Green Version]
- Gittins, C.M.; Rohlfing, E.A.; Rohlfing, C.M. Experimental and theoretical characterization of the S1–S0 transition of benzo[a]pyrene. J. Chem. Phys. 1998, 105, 7323. [Google Scholar] [CrossRef]
- Reed, D.R.; Kass, S.R. Experimental Determination of the a and b C-H Bond Dissociation Energies in Naphthalene; Wiley: Hoboken, NJ, USA, 2000; Volume 35. [Google Scholar]
BaA→BaP | ΔG | ΔH | S | Chr→BaP | ΔG | ΔH | S |
---|---|---|---|---|---|---|---|
a | 0.00 | 0.00 | 108.46 | A | 0.00 | 0.00 | 108.91 |
TSab | 94.50 | 67.86 | 114.51 | TSAB | 92.24 | 64.50 | 114.06 |
b | 24.76 | 30.63 | 109.44 | B | 21.46 | 26.89 | 109.54 |
c | −307.39 | −359.74 | 113.13 | C | −313.47 | −364.87 | 114.34 |
TScd | −255.24 | −336.50 | 117.34 | TSCD | −257.86 | −339.06 | 117.84 |
d | −389.58 | −435.92 | 114.22 | D | −377.64 | −424.03 | 114.62 |
TSde | −256.98 | −306.65 | 111.54 | TSDE | −265.48 | −315.72 | 111.53 |
e | −358.30 | −408.32 | 111.27 | E | −372.38 | −422.91 | 111.31 |
TSef | −244.05 | −294.14 | 111.21 | TSEF | −249.81 | −300.47 | 111.21 |
f | −295.00 | −314.47 | 108.36 | F | −300.71 | −320.71 | 108.38 |
TSfg | −243.72 | −291.55 | 113.02 | TSFG | −248.99 | −297.58 | 112.86 |
g | −387.31 | −401.11 | 109.19 | G | −390.87 | −405.51 | 108.96 |
h | −631.14 | −700.50 | 115.01 | H | −639.50 | −708.80 | 115.49 |
TShi | −558.99 | −656.73 | 119.65 | TSHI | −567.16 | −664.70 | 120.25 |
i | −649.59 | −710.62 | 117.95 | I | −655.24 | −715.79 | 118.78 |
TSij1 | −527.83 | −590.35 | 117.05 | TSIJ1 | −533.35 | −595.99 | 117.10 |
TSij2 | −529.88 | −592.03 | 116.76 | TSIJ2 | −533.31 | −596.02 | 117.05 |
j1 | −545.54 | −603.31 | 120.90 | J1 | −553.65 | −611.28 | 121.12 |
j2 | −553.48 | −610.83 | 120.57 | J2 | −552.85 | −610.59 | 121.03 |
TSj1k1 | −524.89 | −587.64 | 116.58 | TSJ1K1 | −526.23 | −588.62 | 117.31 |
TSj2k2 | −526.08 | −588.47 | 116.87 | TSJ2K2 | −524.15 | −586.46 | 117.38 |
k1 | −764.02 | −827.12 | 116.29 | K1 | −755.42 | −818.33 | 116.88 |
k2 | −752.55 | −818.11 | 114.32 | K2 | −756.29 | −820.14 | 116.13 |
TSk1P | −614.19 | −678.89 | 115.01 | TSK1P | −602.87 | −668.16 | 114.99 |
TSk2P | −614.69 | −679.93 | 114.58 | TSK2P | −602.96 | −668.26 | 114.97 |
P | −658.89 | −694.43 | 110.99 | P | −646.93 | −683.02 | 110.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reizer, E.; Csizmadia, I.G.; Palotás, Á.B.; Viskolcz, B.; Fiser, B. Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH). Molecules 2019, 24, 1040. https://doi.org/10.3390/molecules24061040
Reizer E, Csizmadia IG, Palotás ÁB, Viskolcz B, Fiser B. Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH). Molecules. 2019; 24(6):1040. https://doi.org/10.3390/molecules24061040
Chicago/Turabian StyleReizer, Edina, Imre G. Csizmadia, Árpád B. Palotás, Béla Viskolcz, and Béla Fiser. 2019. "Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH)" Molecules 24, no. 6: 1040. https://doi.org/10.3390/molecules24061040
APA StyleReizer, E., Csizmadia, I. G., Palotás, Á. B., Viskolcz, B., & Fiser, B. (2019). Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH). Molecules, 24(6), 1040. https://doi.org/10.3390/molecules24061040