CuDDI: A CUDA-Based Application for Extracting Drug-Drug Interaction Related Substance Terms from PubMed Literature
Abstract
:1. Introduction
2. Results
2.1. Input and Output of CuDDI.
2.2. The Performance of CuDDI Comparing with a CPU-Based Python Version
3. Conclusion and Discussion
4. Methods
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tatro, D.S. Drug Interaction Facts; Lippincott Williams and Wilkins Publisher: Philadelphia, PA, USA, 1992. [Google Scholar]
- Lehmann, K. Drug interactions-principles, examples and clinical consequences. Additional important drug interactions. Dtsch. Arztebl. Int. 2013, 110, 133. [Google Scholar] [PubMed]
- Percha, B.; Altman, R.B. Informatics confronts drug-drug interactions. Trends Pharmacol. Sci. 2013, 34, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Obach, R.S. Drug-drug interactions: An important negative attribute in drugs. Drugs Today 2003, 39, 301–338. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.D.; Han, X.; Wang, Z.; Subhadarshini, A.; Karnik, S.D.; Li, X.; Hall, S.D.; Jin, Y.; Callaghan, J.T.; Overhage, M.J.; et al. Literature based drug interaction prediction with clinical assessment using electronic medical records: Novel myopathy associated drug interactions. PLoS Comput. Biol. 2012, 8, e1002614. [Google Scholar]
- Wang, Z.; Kim, S.; Quinney, S.K.; Guo, Y.; Hall, S.D.; Rocha, L.M.; Li, L. Literature mining on pharmacokinetics numerical data: A feasibility study. J. Biomed. Inform. 2009, 42, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Tari, L.; Anwar, S.; Liang, S.; Cai, J.; Baral, C. Discovering drug-drug interactions: A text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 2010, 26, i547–i553. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shen, D.; Pietsch, M.; Nagar, C.; Fadli, Z.; Huang, H.; Tu, Y.C.; Cheng, F. A novel algorithm for analyzing drug-drug interactions from MEDLINE literature. Sci. Rep. 2015, 5, 17357. [Google Scholar] [PubMed] [Green Version]
- Lu, Y.; Figler, B.; Huang, H.; Tu, Y.C.; Wang, J.; Cheng, F. Characterization of the mechanism of drug-drug interactions from PubMed using MeSH terms. PLoS ONE 2017, 12, e0173548. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable Parallel Programming with CUDA. ACM Queue 2008, 6, 40–53. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters | Value |
---|---|
Sample Times | 1000 |
cutoff | 4 |
p-value | 0.05 |
Z-score | 1.645 |
end date | 2015/12/31 |
Terms | Frequency | p-Value | DDI with Simvastatin * |
---|---|---|---|
FDA Approved Drugs | |||
Cyclosporine | 35 | 0 | Y |
Warfarin | 23 | 0 | Y |
Diltiazem | 19 | 0 | Y |
Ticlopidine | 18 | 0 | N |
Clopidogrel | 18 | 0 | N |
Clarithromycin | 17 | 0 | Y |
Amiodarone | 17 | 0 | Y |
Itraconazole | 15 | 0 | Y |
Aspirin | 15 | 0.023 | Y |
Verapamil | 12 | 0 | Y |
Rifampin | 11 | 0 | Y |
Ketoconazole | 11 | 0 | Y |
Amlodipine | 9 | 0 | Y |
pitavastatin | 9 | 0.0083 | Y |
Ritonavir | 7 | 0 | Y |
Digoxin | 7 | 0 | Y |
Midazolam | 7 | 0 | N |
Erythromycin | 6 | 0 | Y |
Imatinib Mesylate | 5 | 0 | Y |
Colchicine | 5 | 0 | Y |
Tacrolimus | 5 | 0 | Y |
Nifedipine | 5 | 0.000083 | Y |
Sirolimus | 5 | 0.0016 | Y |
Lisinopril | 5 | 0.0032 | N |
Atenolol | 5 | 0.0053 | N |
Ramipril | 5 | 0.026 | N |
Nelfinavir | 4 | 0 | Y |
nefazodone | 4 | 0 | Y |
Ranolazine | 4 | 0 | Y |
Troglitazone | 4 | 0 | Y |
Carbamazepine | 4 | 0 | Y |
Fluconazole | 4 | 0 | Y |
Sitagliptin Phosphate | 4 | 0.0000052 | N |
Proteins | |||
Cytochrome P-450 CYP3A | 93 | 0 | |
CYP3A4 protein, human | 57 | 0 | |
CYP3A protein, human | 34 | 0 | |
Mixed Function Oxygenases | 16 | 0 | |
Aryl Hydrocarbon Hydroxylases | 16 | 0.0024 | |
Oxidoreductases, N-Demethylating | 4 | 0.0018 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Ramachandra, A.C.V.; Pham, M.; Tu, Y.-C.; Cheng, F. CuDDI: A CUDA-Based Application for Extracting Drug-Drug Interaction Related Substance Terms from PubMed Literature. Molecules 2019, 24, 1081. https://doi.org/10.3390/molecules24061081
Lu Y, Ramachandra ACV, Pham M, Tu Y-C, Cheng F. CuDDI: A CUDA-Based Application for Extracting Drug-Drug Interaction Related Substance Terms from PubMed Literature. Molecules. 2019; 24(6):1081. https://doi.org/10.3390/molecules24061081
Chicago/Turabian StyleLu, Yin, Aditya Chandra Vothgod Ramachandra, Minh Pham, Yi-Cheng Tu, and Feng Cheng. 2019. "CuDDI: A CUDA-Based Application for Extracting Drug-Drug Interaction Related Substance Terms from PubMed Literature" Molecules 24, no. 6: 1081. https://doi.org/10.3390/molecules24061081
APA StyleLu, Y., Ramachandra, A. C. V., Pham, M., Tu, Y. -C., & Cheng, F. (2019). CuDDI: A CUDA-Based Application for Extracting Drug-Drug Interaction Related Substance Terms from PubMed Literature. Molecules, 24(6), 1081. https://doi.org/10.3390/molecules24061081