Chemo-Diversity and Antiradical Potential of Twelve Matricaria chamomilla L. Populations from Iran: Proof of Ecological Effects
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Contents
2.2. Chemical Profiles of Volatile Oils
2.3. Apigenin and Luteolin Quantification of Methanolic Extracts
2.4. Classification of M. Chamomilla Populations
2.5. Effect of Environmental Factors on Phytochemicals
2.6. Antiradical Activity of the Extracts
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Spectrophotometric Measurements
4.3. Extraction of Volatile Oils
4.4. Gas Chromatographic Analysis (GC-FID)
4.5. Gas Chromatography-Mass Spectrometric (GC-MS) Analysis
4.6. Identification of Essential Oil Components
4.7. Preparation of Solvent Extracts
4.8. HPLC Analysis of Apigenin And Luteolin
4.9. Antiradical Capacity
4.9.1. DPPH Assay
4.9.2. ORAC Assay
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singleton, V.L.; Rossi, J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158. [Google Scholar]
- Raal, A.; Kaur, H.; Orav, A.; Arak, E.; Kailas, T.; Müürisepp, M. Content and composition of essential oils in some Asteraceae species. Proc. Est. Acad. Sci. 2011, 60, 55–63. [Google Scholar] [CrossRef]
- Shivananda Nayak, B.; Sivachandra Raju, S.; Chalapathi Rao, A. Wound healing activity of Matricaria recutita L. extract. J. Wound Care 2007, 16, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Sashidhara, K.; Verma, R.; Ram, P. Essential oil composition of Matricaria recutita L. from the lower region of the Himalayas. Flavour Fragr. J. 2006, 21, 274–276. [Google Scholar] [CrossRef]
- Owlia, P.; Rasooli, I.; Saderi, H.; Aliahmad, M. Retardation of biofilm formation with reduced productivity of alginate as a result of Pseudomonas aeruginosa exposure to Matricaria chamomilla essential oil. Pharmacogn. Mag. 2007, 3, 83–89. [Google Scholar]
- Formisano, C.; Delfine, S.; Oliviero, F.; Carlo, G.; Rigano, D.; Senatore, F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind. Crop. Prod. 2014, 23, 256–263. [Google Scholar] [CrossRef]
- Firat, Z.; Demirci, F.; Demirci, B. Antioxidant activity of chamomile essential oil and main components. Nat. Volatiles Essent. Oils 2018, 5, 11–16. [Google Scholar]
- Göger, G.; Demirci, B.; Ilg, S.; Demirci, F. Antimicrobial and toxicity profiles evaluation of the chamomile (Matricaria recutita L.) essential oil combination with standard antimicrobial agents. Ind. Crop. Prod. 2018, 120, 279–285. [Google Scholar] [CrossRef]
- Homami, S.S.; Jaimand, K.; Rezaee, M.B.; Afzalzadeh, R. Comparative studies of different extraction methods of essential oil from Matricaria recutita L. in Iran. J. Chil. Chem. Soc. 2016, 61, 2982–2984. [Google Scholar] [CrossRef]
- Wesolowska, A.; Grzeszczuk, M.; Kulpa, D. Propagation method and distillation apparatus type affect essential oil from different parts of Matricaria recutita L. plants. J. Essent. Oil Bear. Plants 2015, 18, 179–194. [Google Scholar] [CrossRef]
- Andrade, M.A.; Azevedo, S.; Motta, F.N.; Lucília, M.; Silva, C.L.; De Santana, J.M.; Bastos, I.M.D. Essential oils: In vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition. BMC Complement. Altern. Med. 2016, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Heuskin, S.; Godin, B.; Leroy, P.; Capella, Q.; Wathelet, J. Fast gas chromatography characterisation of purified semiochemicals from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepeta cataria L. (Lamiaceae). J. Chromatogr. A 2009, 1216, 2768–2775. [Google Scholar] [CrossRef] [PubMed]
- Berechet, M.D.; Manaila, E.; Stelescu, M.D.; Craciun, G. The composition of essential oils obtained from Achillea millefolium and Matricaria chamomilla L., originary from Romania. Rev. Chim. 2017, 68, 2787–2795. [Google Scholar]
- Šavikin, K.; Menković, N.; Ristić, M.; Arsić, I.; Zdunić, G.; Đorđević, S.; Ćujić, N.; Pljevljakušić, D. Quality testing of chamomile essential oil Chamomilla recutita (L.) Rausch., variety Banatska in comparison to requirements of the European Pharmacopoeia and ISO standard. Lek. sirovine 2011, 31, 55–65. [Google Scholar]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef]
- Farhoudi, R. Chemical constituents and antioxidant properties of Matricaria recutita and Chamaemelum nobile essential oil growing wild in the south west of Iran. J. Essent. Oil Bear. Plants 2013, 16, 531–537. [Google Scholar] [CrossRef]
- Ansari, M.J.; Al-Ghamdi, A.; Usmani, S.; Ali Khan, K.A.; Alqarni, A.S.; Kaur, M.; Al-Waili, N. In vitro evaluation of the effects of some plant essential oils on Ascosphaera apis, the causative agent of Chalkbrood disease. Saudi J. Biol. Sci. 2017, 24, 1001–1006. [Google Scholar] [CrossRef]
- Choopani, R.; Sadr, S.; Kaveh, S.; Kaveh, N.; Dehghan, S. Pharmacological treatment of catarrh in Iranian traditional medicine. J. Tradit. Chinese Med. Sci. 2015, 5, 71–74. [Google Scholar] [CrossRef]
- Cvetanovic, A.; Svarc-Gajic, J.; Zekovic, Z.; Savic, S.; Vulic, J.; Maskovic, P.; Cetkovic, G. Comparative analysis of antioxidant, antimicrobiological and cytotoxic activities of native and fermented chamomile ligulate flower extracts. Planta 2015, 242, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Zaiter, L.; Bouheroum, M.; Benayache, S.; Benayache, F.; Leon, F.; Brouard, I.; Quintana, J.; Estevez, F.; Bermejo, J. Sesquiterpene lactones and other constituents from Matricaria chamomilla L. Biochem. Syst. Ecol. 2007, 35, 533–538. [Google Scholar] [CrossRef]
- Da Silva Pinto, M. Tea: A new perspective on health benefits. Food Res. Int. 2013, 53, 558–567. [Google Scholar] [CrossRef]
- Ionita, R.; Alexandra, P.; Mihasan, M.; Lucian, D.; Hancianu, M.; Cioanca, O.; Hritcu, L. Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study. Phytomedicine 2018, 47, 113–120. [Google Scholar] [CrossRef]
- Iran Meteorological Organization. Available online: https://www.irimo.ir/far/index.php(accessed on 3 January 2019).
- Croteau, R.; Gershenzon, J. Genetic Control of Monoterpene Biosynthesis in Mints (Mentha: Lamiaceae). In Genetic Engineering of Plant Secondary Metabolism; Ellis, B.E., Kuroki, G.W., Stafford, H.A., Eds.; Plenum Press: New York, NY, USA, 1994; pp. 193–229. [Google Scholar]
- Tirillini, B.; Pagiotti, R.; Menghini, L.; Pintore, G. Essential oil composition of ligulate and tubular flowers and receptacle from wild Chamomilla recutita (L.) Rausch. grown in Italy. J. Essent. Oil Res. 2006, 18, 42–45. [Google Scholar] [CrossRef]
- Rahmati, M.; Azizi, M.; Hasanzadeh Khayyat, M.; Nemati, H.; Asili, J. Yield and oil constituents of chamomile (Matricaria chamomilla L.) flowers depending on nitrogen application, plant density and climate conditions. J. Essent. Oil Bear. Plants 2011, 14, 731–741. [Google Scholar] [CrossRef]
- Das, M.; Ram, G.; Singh, A.; Mallavarapu, G.R.; Remash, S.; Ram, M.; Kumar, S. Volatile constituents of different plant parts of Chamomilla recutita L. Rausch grown in the Indo-Gangetic plains. Flavour Fragr. J. 2002, 17, 9–12. [Google Scholar] [CrossRef]
- Salehi, A.; Hazrati, S. How essential oil content and composition fluctuate in German chamomile flowers during the day? J. Essent. Oil Bear. Plants 2017, 20, 622–631. [Google Scholar] [CrossRef]
- Nurcahyanti, A.D.R.; Nasser, I.J.; Sporer, F.; Graf, J.; Bermawie, N.; Reichling, J.; Wink, M. Chemical composition of the essential oil from aerial parts of Javanian Pimpinella Pruatjan Molk. and its molecular phylogeny. Diversity 2016, 8, 15. [Google Scholar] [CrossRef]
- Padalia, R.C.; Singh, V.R.; Bhatt, G.; Chauhan, A.; Upadhyay, R.K.; Verma, R.S.; Chanotiya, C.S. Optimization of harvesting and post-harvest drying methods of Ocimum africanum Lour. for production of quality essential oil. J. Essent. Oil Res. 2018, 30, 437–443. [Google Scholar] [CrossRef]
- Lee, N.K.; Shin, H.J.; Kim, W.-S.; In, G.; Han, C.K. Studies on the Chemical Constituents from the Seeds of Zizyphus jujuba var. inermis. Nat. Prod. Sci. 2017, 23, 258–264. [Google Scholar] [CrossRef]
- Jaimand, K.; Rezaee, M. A study on chemical composition of essential oils of Matricaria chamomilla L. from Tehran, Hammedan and Kazeroon. Iran. J. Med. Aromat. Plants Res. 2003, 13, 11–24. [Google Scholar]
- Ayoughi, F.; Barzegar, M.; Sahari, M.A.; Naghdibadi, H. Chemical compositions of essential oils of Artemisia dracunculus L. and endemic Matricaria chamomilla L. and an evaluation of their antioxidative effects. J. Agric. Sci. Technol. 2011, 13, 79–88. [Google Scholar]
- Amiri, S.; Sharafzadeh, S. Essential oil components of German chamomile cultivated in Firoozabad, Iran. Orient. J. Chem. 2014, 30, 365–367. [Google Scholar] [CrossRef]
- Farag, M.A.; Al-Mahdy, D.A. Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. Nat. Prod. Res. 2013, 27, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Bayala, B.; Bassole, I.H.N.; Gnoula, C.; Nebie, R.; Yonli, A.; Morel, L.; Figueredo, G.; Nikiema, J.B.; Lobaccaro, J.M.A.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS ONE 2014, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sylvestre, M.; Pichette, A.; Longtin, A.; Nagau, F.; Legault, J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J. Ethnopharmacol. 2006, 103, 99–102. [Google Scholar] [CrossRef]
- Jou, Y.-J.; Chen, C.-J.; Liu, Y.-C.; Way, T.-D.; Lai, C.-H.; Hua, C.-H.; Wang, C.-Y.; Huang, S.-H.; Kao, J.-Y.; Lin, C.-W. Quantitative phosphoproteomic analysis reveals gamma-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation. Proteomics 2015, 15, 3296–3309. [Google Scholar] [CrossRef]
- Apaza, M.J.T. Antibacterial effect against Streptococcus mutans (ATCC 25175) and phenolic compounds profile of chamomile (Matricaria chamomile L.) cultivated in Puno. Rev. Investig. Altoandinas 2015, 17, 173–182. [Google Scholar] [CrossRef]
- Vieira Pereira, S.; Reis, R.A.S.; Garbuio, D.C.; Alexandre, L.; Pedro De Freitas, L.A. Dynamic maceration of Matricaria chamomilla inflorescences: Optimal conditions for flavonoids and antioxidant activity. Rev. Bras. Farmacogn. 2018, 28, 111–117. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Mielnik, M.B.; Rzeszutek, A.; Triumf, E.C.; Egelandsdal, B. Antioxidant and other quality properties of reindeer muscle from two different Norwegian regions. Meat Sci. 2011, 89, 526–532. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
No. | RI A | RT B | Populations | B | I | BM | L | MS | Mo | G | SS | Mu | A | DS | S | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds C | Amount (%) | |||||||||||||||
1 | 1063 | 7.79 | Artemisia ketone | nd | 0.65 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
2 | 1423 | 17.75 | Trans-caryophyllene | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.5 | |
3 | 1454 | 18.75 | (E)-β-Farnesene | 8.51 b | 16.68 a | 9.58 a,b | 10.60 a,b | 13.92 a,b | 13.91 a,b | 9.82 a,b | 6.61 b | 10.33 a,b | 15.29 a | 12.37 a,b | 5.25 b | |
4 | 1484 | 19.45 | Germacrene D | 1.31 | nd | nd | nd | nd | nd | nd | nd | nd | 0.55 | nd | 2.21 | |
5 | 1500 | 20 | Bicyclo-germacrene | 2.01 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
6 | 1506 | 20.21 | (Z)-α-Bisabolene | nd | nd | nd | nd | nd | 0.81 | nd | nd | nd | nd | nd | nd | |
7 | 1514 | 20.3 | (Z)-γ-Bisabolene | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 40.08 | |
8 | 1529 | 20.7 | (E)-γ-Bisabolene | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 42.76 | |
9 | 1561 | 21.65 | (E)-Nerolidol | 1.76 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
10 | 1577 | 22.1 | (+)-Spathulenol | 1.53 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
11 | 1630 | 23.18 | (γ)-Eudesmol | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 1.78 | |
12 | 1656 | 24.16 | α-Bisabolol oxide-B | 21.88 a | 1.55 b,c | 1.52 b,c | 1.59 b,c | 1.39 c | 1.65 b,c | 1.68 b,c | 1.80 b | 1.58 b,c | 1.64 b,c | 1.37 c | nd | |
13 | 1685 | 24.56 | α-Bisabolol | nd | nd | nd | nd | 1.32 | 2.86 | 2.07 | nd | nd | nd | nd | nd | |
14 | 1693 | 24.9 | α-Bisabolone oxide A | 11.36 d | 47.91 b,c | 53.28 b | 52.14 b,c | 46.98 c | 46.74 c | 45.64 c | 51.87 b,c | 65.41 a | 47.7 b,c | 49.18 b,c | nd | |
15 | 1730 | 25.76 | Chamazulene | 19.22 a | 8.29 b,c | 9.74 b | 4.74 e | 8.44 b,c | 6.14 d | 8.02 c | 9.3 b,c | 4.18 e | 2.58 f | 6.06 d | nd | |
16 | 1748 | 26.18 | α-Bisabolol oxide A | 16.78 b,c | 14.03 c | 13.93 c | 19.35 b | 16.75 b,c | 19.41 b | 24.02 a | 22.26 a,b | 7.53 d | 20.25 b | 17.22 b,c | nd | |
17 | 1890 | 26.31 | (E)-Spiroether | 8.37 a | 7.51 b | 4.70 c | 5.75 b,c | 7.12 a,b | 6.41 b | 6.49 b | 3.73 c | 5.31 b,c | 5.96 b | 7.26 a,b | nd | |
Total identified compounds % | 92.73 | 96.64 | 92.76 | 94.2 | 95.27 | 96.51 | 97.71 | 95.59 | 94.35 | 94.53 | 93.47 | 93.08 | ||||
EOs yield % | 1.03 ± 0.003 | 0.84 ± 0.006 | 0.78 ± 0.17 | 0.88 ± 0.012 | 0.94 ± 0.035 | 0.79 ± 0.006 | 0.88 ± 0.021 | 0.91 ± 0.009 | 0.9 ± 0.023 | 0.89 ± 0.006 | 0.83 ± 0.009 | 0.98 ± 0.021 |
Major Phytochemicals | Principal Components | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Chamazulene | 0.377 | 0.881 | 0.023 |
α-Bisabolol oxide A | 0.760 | 0.126 | 0.114 |
(E)-β-Farnesene | 0.679 | −0.293 | −0.004 |
α-Bisabolol oxide B | 0.044 | 0.961 | 0.011 |
α-Bisabolone oxide A | 0.742 | 0.525 | 0.104 |
(E)-Spiroether | 0.849 | 0.377 | −0.032 |
(Z)-γ-Bisabolene | −0.965 | −0.119 | −0.130 |
(E)-γ-Bisabolene | −0.965 | −0.119 | −0.130 |
Essential oil content | −0.480 | 0.600 | −0.348 |
Apigenin | 0.002 | −0.295 | 0.638 |
Luteolin | 0.160 | 0.235 | 0.857 |
Eigen values | 4.57 | 2.74 | 1.32 |
Variance (%) | 41.57 | 24.98 | 12.02 |
Cumulative variance (%) | 41.57 | 66.55 | 78.57 |
Population Name | Voucher’s Code | Abbreviated Name | Altitude (m) | Latitude | Longitude | MAP (mm/year) | MAT (°C) | MMaxAT (°C) | MMinAT (°C) |
---|---|---|---|---|---|---|---|---|---|
Bodold (Ahvaz) | KHAU_236 | B | 16 | 31°18′ N | 48°39′ E | 98.20 | 22.62 | 35.77 | 9.47 |
Izeh | KHAU_237 | I | 428 | 31°57′ N | 48°49′ E | 472.80 | 18.35 | 31.28 | 5.42 |
Bagh Malek | KHAU_238 | BM | 907 | 31°19′ N | 50°05′ E | 285.90 | 20.28 | 32.17 | 8.4 |
Lali | KHAU_239 | L | 373 | 32°20′ N | 49°05′ E | 280.60 | 21.26 | 33.57 | 8.95 |
Masjed Soleyman | KHAU_240 | MS | 250 | 32°02′ N | 49°11′ E | 241.30 | 22.67 | 34.27 | 11.07 |
Mollasani | KHAU_241 | Mo | 51 | 31°39′ N | 48°57′ E | 100.80 | 22.26 | 36.35 | 8.17 |
Gotvand | KHAU_242 | G | 70 | 32°14′ N | 48°48′ E | 159.70 | 21.08 | 34.96 | 7.21 |
Saleh Shahr | KHAU_243 | SS | 65 | 32°04′ N | 48°40′ E | 164.30 | 20.69 | 34.07 | 7.32 |
Murmuri | KHAU_244 | Mu | 530 | 32°46′ N | 47°37′ E | 213.90 | 23.35 | 35.17 | 11.53 |
Abdanan | KHAU_245 | A | 740 | 32°55′ N | 47°31′ E | 363.60 | 19.62 | 30.44 | 8.8 |
Darreh Shahr | KHAU_246 | DS | 629 | 33°05′ N | 47°28′ E | 463.00 | 17.85 | 30.9 | 4.8 |
Sarableh | KHAU_247 | S | 1037 | 33°47′ N | 46°35′ E | 345.80 | 15.01 | 27.31 | 2.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piri, E.; Mahmoodi Sourestani, M.; Khaleghi, E.; Mottaghipisheh, J.; Zomborszki, Z.P.; Hohmann, J.; Csupor, D. Chemo-Diversity and Antiradical Potential of Twelve Matricaria chamomilla L. Populations from Iran: Proof of Ecological Effects. Molecules 2019, 24, 1315. https://doi.org/10.3390/molecules24071315
Piri E, Mahmoodi Sourestani M, Khaleghi E, Mottaghipisheh J, Zomborszki ZP, Hohmann J, Csupor D. Chemo-Diversity and Antiradical Potential of Twelve Matricaria chamomilla L. Populations from Iran: Proof of Ecological Effects. Molecules. 2019; 24(7):1315. https://doi.org/10.3390/molecules24071315
Chicago/Turabian StylePiri, Elahe, Mohammad Mahmoodi Sourestani, Esmaeil Khaleghi, Javad Mottaghipisheh, Zoltán Péter Zomborszki, Judit Hohmann, and Dezső Csupor. 2019. "Chemo-Diversity and Antiradical Potential of Twelve Matricaria chamomilla L. Populations from Iran: Proof of Ecological Effects" Molecules 24, no. 7: 1315. https://doi.org/10.3390/molecules24071315
APA StylePiri, E., Mahmoodi Sourestani, M., Khaleghi, E., Mottaghipisheh, J., Zomborszki, Z. P., Hohmann, J., & Csupor, D. (2019). Chemo-Diversity and Antiradical Potential of Twelve Matricaria chamomilla L. Populations from Iran: Proof of Ecological Effects. Molecules, 24(7), 1315. https://doi.org/10.3390/molecules24071315